Анализ существующих систем отопления

Анализ работы системы отопления

Кто виноват, и что делать, если в здании холодно? Виновными в ситуации могут быть: проектировщики ограждающих конструкций здания, строители, разработчики и монтажники систем вентиляции и отопления, теплоснабжающая организация. Поняв, кто виноват, можно принять решение.

. – что делать. Прочитав статью до конца, вы сможете разобраться в этом вопросе максимум за час. Если не сможете – обращайтесь, поможем.

В установившемся режиме, когда в течение достаточно длительного промежутка времени остаются неизменными температура наружного воздуха, температура воздуха в здании, расход теплоносителя в системе отопления и его температуры на подаче и обратке, мощность системы отопления является величиной постоянной. Макросистема, состоящая из окружающей среды, здания и водяной системы отопления, находится в равновесном состоянии, ничего не изменяется. Вся поступающая тепловая энергия рассеивается в окружающее пространство через ограждающие конструкции (стены, пол, потолок, окна, двери), при этом внутри помещений температура воздуха стабильно сохраняется неизменной.

Опираясь на вышесказанное, можно достаточно просто создать укрупненный алгоритм анализа работы системы отопления любого здания при различных температурных условиях, используя замеры параметров, которые нужно сделать всего 1 раз, затратив на это не более 15 минут!

Для обеспечения приемлемой точности результатов расчетов из-за инерционности элементов выше обозначенной макросистемы желательно чтобы установившийся режим существовал не менее 10…15 часов для малогабаритных плохо утепленных строений и не менее 3…4 суток для больших хорошо утепленных корпусов.

Экспресс-анализ системы водяного отопления в Excel.

Запустим программу MS Excel и рассмотрим пример анализа отопления реального здания.

Исходные данные:

1. Первую группу значений исходных данных для выполнения расчета и анализа следует взять из проекта. Если проекта «под рукой» нет, то можно воспользоваться рекомендациями, приведенными ниже.

Читайте также:  Сибэко оплата за отопление

Например, для г. Москвы tнр=-26˚C, для г. Омска tнр=-37˚C. Обычно, но не всегда: tвр=+16С. +22С, tпр=+95…+85˚C, tор=+70…+60˚C. Для регистров из гладких труб n=1,32; для чугунных радиаторов МС-140-108 при подаче воды сверху — вниз n=1,30; для конвекторов n=1,30…1,35.

2. Вторую группу значений исходных данных необходимо получить, сняв показания уличного и внутреннего термометров, а также данные приборов учета ПОСЛЕ теплового узла. Нам нужны расход и температуры теплоносителя на входе в приборы отопления здания и на выходе из батарей.

Тестирование:

3. Тестирование здания и системы отопления выполняются автоматически после ввода исходных данных.

На этом этапе мы узнаем, сколько тепла потребляет здание с температурой внутри +16˚C в текущий момент при температуре наружного воздуха -20˚C.

Определим, какими будут тепловые потери здания при -37˚C на улице.

Рассчитаем максимальную мощность системы отопления, которая может быть достигнута при расчетном расходе теплоносителя и температуре на подаче +90˚C.

Вычислим величину этого расчетного расхода воды в системе. Обращаю ваше внимание, что расход воды в системе, по-хорошему, должен быть больше, чем реальный в момент снятия показаний.

Определим эффективность работы системы отопления.

Полученное значение эффективности 91,7% говорит о том, что суммарная мощность приборов отопления здания на 8,3% меньше необходимой. Возможно, теплотехники все сделали правильно, а строители не обеспечили необходимую теплозащиту здания, а возможно — это просчет теплотехников… Так или иначе, но отклонение показателя эффективности на ±5…10% можно считать не критическим и в большинстве случаев исправимым за счет настройки теплового узла без значительных материальных затрат.

Моделирование:

4. Используя результаты тестирования можно смоделировать любую ситуацию. Давайте посмотрим, что будет при лютом холоде -37˚C и работе системы отопления на максимальных режимах. Задаем температуру наружного воздуха, температуру воды на подаче и расход (смотри скриншот выше).

Читайте также:  Электрооборудование для воздушного отопления

5. Результаты моделирования работы системы отопления вычисляются программой без участия пользователя.

В результатах мы видим – воздух в здании нагреется лишь до +14,1˚C, система отопления не обеспечивает необходимые +16˚C.

Еще хуже будет ситуация, если мы вместо расчетного расхода теплоносителя введем в программу фактический на момент снятия показаний расход воды.

Температура в здании будет еще меньше на 1˚C — +13,1˚C.

Заключение.

Тестирование можно выполнить несколько раз при различных температурах наружного воздуха и усреднить результаты для получения большей верности.

Не стоит ждать от программы абсолютной точности до десятых долей градуса и даже – до градуса, потому что с такой же точностью необходимы значения и всех исходных данных, а так же продолжительная устойчивая погода, предшествующая снятию показаний приборов. Тем не менее, достаточная практическая точность рассмотренным методом обеспечивается.

Используя результаты моделирования, можно построить рабочий температурный график отопления для конкретного здания при сложившихся условиях эксплуатации и сравнить его с графиком теплоснабжающей организации.

Выполнив с помощью представленной программы анализ системы отопления, вы поймете, что нужно делать – утеплять стены и потолок (это никогда не вредно, но дорого), или добавлять (снимать) приборы отопления, или следует потребовать от энергетиков более жесткого соблюдения температурного графика подачи теплоносителя.

Программа помогает быстро, просто и точно определить из-за чего возникли проблемы с отоплением и «поставить пациенту правильный диагноз».

Желающих приобрести программу или заказать анализ системы отопления прошу обратиться через страницу обратной связи.

Ниже представлен скриншот варианта реализации программы в виде exe-файла.

Оцените статью