- Мастер-класс по подбору автоматических установок поддержания давления для систем отопления и охлаждения. Технологии для высотных сооружений
- 1 марта 2008
- Подбор АУПД для систем отопления и охлаждения высотных сооружений
- Зачем устанавливать автоматизированный узел управления отоплением
- Как это работает
- Основные плюсы установки автоматизированного узла управления отоплением
- Когда целесообразно устанавливать АУУ — примеры и расчет срока окупаемости
- Вот основные итоги установки узла управления системы отопления:
- Основной вывод, который мы можем сделать из расчета срока окупаемости АУУ
- Почему более выгодно устанавливать АУУ в зданиях с большим потреблением тепла?
- Наш анализ и расчет не являются универсальными.
- Как происходит установка автоматизированного узла управления системой отопления
- Эффективное применение автоматизированных узлов учета
- Выводы
Мастер-класс по подбору автоматических установок поддержания давления для систем отопления и охлаждения. Технологии для высотных сооружений
1 марта 2008
Применение автоматических установок поддержания давления (АУПД) для систем отопления и охлаждения получило широкое распространение в связи с активным ростом объемов высотного строительства.
АУПД выполняют функции поддержания постоянного давления, компенсации температурных расширений, деаэрации системы и компенсации потерь теплоносителя.
Но поскольку это достаточно новое для российского рынка оборудование, у многих специалистов данной области возникают вопросы: что представляют собой стандартные АУПД, каковы принцип их действия и методика подбора?
Начнем с описания стандартных установок. На сегодня наиболее распространенный тип АУПД — это установки с блоком управления на основе насосов. Подобная система состоит из безнапорного расширительного бака и блока управления, которые соединены между собой. Основными элементами блока управления являются насосы, соленоидные клапаны, датчик давления и расходомер, а контроллер, в свою очередь, обеспечивает управление АУПД в целом.
Принцип действия данных АУПД заключается в следующем: при нагреве теплоноситель в системе расширяется, что приводит к росту давления. Датчик давления фиксирует это повышение и посылает калиброванный сигнал на блок управления. Блок управления (с помощью датчика веса (наполнения) постоянно фиксирующий значения уровня жидкости в баке) открывает соленоидный клапан на линии перепуска. И через него излишки теплоносителя перетекают из системы в мембранный расширительный бак, давление в котором равно атмосферному.
По достижению заданного значения давления в системе соленоидный клапан закрывается и перекрывает поток жидкости из системы в расширительный бак. При охлаждении теплоносителя в системе его объем уменьшается, и давление падает. Если давление падает ниже установленного уровня, то блок управления включает насос. Насос работает до тех пор, пока давление в системе не поднимется до заданного значения. Постоянный контроль уровня воды в баке защищает насос от «сухого» хода, а также предохраняет бак от переполнения. Если давление в системе выходит за рамки максимального или минимального, срабатывает один из насосов или соленоидных клапанов соответственно. Если производительности одного насоса в напорной линии не хватает, задействуется второй насос. Важно, чтобы АУПД такого типа имела систему безопасности: при выходе одного из насосов или соленоидов из строя должен автоматически включаться второй.
Методику подбора АУПД на основе насосов имеет смысл рассмотреть на примере из практики. Один из недавно реализованных проектов — «Жилой дом на Мосфильмовской» (объект компании «ДОН-Строй»), в центральном тепловом пункте которого применена подобная насосная установка. Высота здания составляет 208 м. Его ЦТП состоит из трех функциональных частей, отвечающих, соответственно, за отопление, вентиляцию и горячее водоснабжение. Система отопления высотного корпуса поделена на три зоны. Общая расчетная тепловая мощность системы отопления — 4,25 Гкал/ч.
Представляем пример подбора АУПД для 3-й зоны отопления.
Исходные данные, необходимые для расчета: 1) Тепловая мощность системы (зоны) Nсист, кВт. В нашем случае (для 3-й зоны отопления) этот параметр равен 1740 кВт (исходные данные проекта); 2) Статическая высота Нст (м) или статическое давление Рст (бар) — это высота столба жидкости между точкой подсоединения установки и наивысшей точкой системы (1 м столба жидкости = 0,1 бар). В нашем случае этот параметр составляет 208 м; 3) Объем теплоносителя (воды) в системе V, л. Для корректного подбора АУПД необходимо располагать данными об объеме системы. Если точное значение неизвестно, среднее значение водяного объема можно вычислить по коэффициентам, приведенным в табл. По данным проекта водяной объем 3-й зоны отопления Vсист равен 24 350 л. 4) температурный график: 90/70 °C.
Первый этап. Расчет объема расширительного бака к АУПД: 1. Расчет коэффициента расширения Красш (%), выражающего прирост объема теплоносителя при его нагреве от начальной до средней температуры, где Тср = (90 + 70)/2 = 80 °С. При данной температуре коэффициент расширения будет составлять 2,89 %.
2. Вычисление объема расширения Vрасш (л), т.е. объема теплоносителя, вытесняемого из системы при его нагреве до средней температуры: Vрасш = Vсист × Kрасш = 24350×2,89 = 704 л. 3. Вычисление расчетного объема расширительного бака Vб: Vб = Vрасш×Кзап = 704×1,3 = 915 л. где Кзап — коэффициент запаса.
Элементы системы | Объем системы, л | |
---|---|---|
На 1,0 кВт (860 ккал/ч) | На 1,163 кВт (1,000 ккал/ч) | |
Конвекторы и (или) воздушные обогреватели | 5,2 | 6 |
Системы воздухообработки | 6,9 | 8 |
Панельные радиаторы | 8,6 | 10 |
Колонные радиаторы | 12,0 | 14 |
Потолочные радиаторы | 21,5 | 25 |
Приборы центрального отопления | 25,8 | 30 |
Удельный водяной объем систем отопления
Далее выбираем типоразмер расширительного бака из условия, что его объем должен быть не меньше расчетного. При необходимости (например, когда существуют ограничения по габаритам) АУПД можно дополнить дополнительным баком, разбив общий расчетный объем пополам.
В нашем случае объем бака будет составлять 1000 л.
Второй этап. Подбор блока управления: 1. Определение номинального рабочего давления:Рсист = Нсист /10 + 0,5 = 208/10 + 0,5 = 21,3 бар.
2. В зависимости от значений Рсист и Nсист выбираем блок управления по специальным
таблицам или диаграммам, представленным поставщиками или производителями. В состав всех моделей блоков управления могут быть включены как один насос, так и два. В АУПД с двумя насосами в программе установки можно по желанию выбрать режим работы насосов: «Основной/резервный», «Поочередная работа насосов», «Параллельная работа насосов».
На этом расчет АУПД заканчивается, а в проекте прописываются объем бака и маркировка блока управления.
В нашем случае АУПД для 3-й зоны отопления должна включать безнапорный бак объемом 1000 л и блок управления, который обеспечит поддержание давления в системе не менее 21,3 бар.
К примеру, для данного проекта была выбрана АУПД MPR-S/2.7 на два насоса, PN 25 бар и бак MP-G 1000 фирмы Flamco (Нидерланды).
В заключение стоит упомянуть, что существуют также установки на основе компрессоров. Но это уже совсем другая история…
Подбор АУПД для систем отопления и охлаждения высотных сооружений
Опубликовано: 20 сентября 2010 г.
А. Бондаренко
Применение автоматических установок поддержания давления (АУПД) для систем отопления и охлаждения получило широкое распространение в связи с активным ростом объемов высотного строительства.
Подписаться на статьи можно на главной странице сайта.
АУПД выполняют функции поддержания постоянного давления, компенсации температурных расширений, деаэрации системы и компенсации потерь теплоносителя.
Но поскольку это достаточно новое для российского рынка оборудование, у многих специалистов данной области возникают вопросы: что представляют собой стандартные АУПД, каковы принцип их действия и методика подбора?
Начнем с описания стандартных установок. На сегодня наиболее распространенный тип АУПД – это установки с блоком управления на основе насосов. Подобная система состоит из безнапорного расширительного бака и блока управления, которые соединены между собой. Основными элементами блока управления являются насосы, соленоидные клапаны, датчик давления и расходомер, а контроллер, в свою очередь, обеспечивает управление АУПД в целом.
Принцип действия данных АУПД заключается в следующем: при нагреве теплоноситель в системе расширяется, что приводит к росту давления. Датчик давления фиксирует это повышение и посылает калиброванный сигнал на блок управления. Блок управления (с помощью датчика веса (наполнения) постоянно фиксирующий значения уровня жидкости в баке) открывает соленоидный клапан на линии перепуска. И через него излишки теплоносителя перетекают из системы в мембранный расширительный бак, давление в котором равно атмосферному.
По достижению заданного значения давления в системе соленоидный клапан закрывается и перекрывает поток жидкости из системы в расширительный бак. При охлаждении теплоносителя в системе его объем уменьшается, и давление падает. Если давление падает ниже установленного уровня, то блок управления включает насос. Насос работает до тех пор, пока давление в системе не поднимется до заданного значения. Постоянный контроль уровня воды в баке защищает насос от «сухого» хода, а также предохраняет бак от переполнения. Если давление в системе выходит за рамки максимального или минимального, срабатывает один из насосов или соленоидных клапанов соответственно. Если производительности одного насоса в напорной линии не хватает, задействуется второй насос. Важно, чтобы АУПД такого типа имела систему безопасности: при выходе одного из насосов или соленоидов из строя должен автоматически включаться второй.
Методику подбора АУПД на основе насосов имеет смысл рассмотреть на примере из практики. Один из недавно реализованных проектов – «Жилой дом на Мосфильмовской» (объект компании «ДОН-Строй»), в центральном тепловом пункте которого применена подобная насосная установка. Высота здания составляет 208 м. Его ЦТП состоит из трех функциональных частей, отвечающих, соответственно, за отопление, вентиляцию и горячее водоснабжение. Система отопления высотного корпуса поделена на три зоны. Общая расчетная тепловая мощность системы отопления – 4,25 Гкал/ч.
Представляем пример подбора АУПД для 3-й зоны отопления.
Исходные данные, необходимые для расчета:
1) тепловая мощность системы (зоны) Nсист, кВт. В нашем случае (для 3-й зоны отопления) этот параметр равен 1740 кВт (исходные данные проекта);
2) статическая высота Нст (м) или статическое давление Рст (бар) – это высота столба жидкости между точкой подсоединения установки и наивысшей точкой системы (1 м столба жидкости = 0,1 бар). В нашем случае этот параметр составляет 208 м;
3) объем теплоносителя (воды) в системе V, л. Для корректного подбора АУПД необходимо располагать данными об объеме системы. Если точное значение неизвестно, среднее значение водяного объема можно вычислить по коэффициентам, приведенным в табл. По данным проекта водяной объем 3-й зоны отопления Vсист равен 24 350 л.
4) температурный график: 90/70 °C.
Первый этап. Расчет объема расширительного бака к АУПД:
1. Расчет коэффициента расширения Красш (%), выражающего прирост объема теплоносителя при его нагреве от начальной до средней температуры, где Тср = (90 + 70)/2 = 80 °С. При данной температуре коэффициент расширения будет составлять 2,89 %.
2. Вычисление объема расширения Vрасш (л), т.е. объема теплоносителя, вытесняемого из системы при его нагреве до средней температуры:
3. Вычисление расчетного объема расширительного бака Vб:
Далее выбираем типоразмер расширительного бака из условия, что его объем должен быть не меньше расчетного. При необходимости (например, когда существуют ограничения по габаритам) АУПД можно дополнить дополнительным баком, разбив общий расчетный объем пополам.
В нашем случае объем бака будет составлять 1000 л.
Второй этап. Подбор блока управления:
1. Определение номинального рабочего давления:
2. В зависимости от значений Рсист и Nсист выбираем блок управления по специальным таблицам или диаграммам, представленным поставщиками или производителями. В состав всех моделей блоков управления могут быть включены как один насос, так и два. В АУПД с двумя насосами в программе установки можно по желанию выбрать режим работы насосов: «Основной/резервный», «Поочередная работа насосов», «Параллельная работа насосов».
На этом расчет АУПД заканчивается, а в проекте прописываются объем бака и маркировка блока управления.
В нашем случае АУПД для 3-й зоны отопления должна включать безнапорный бак объемом 1000 л и блок управления, который обеспечит поддержание давления в системе не менее 21,3 бар.
К примеру, для данного проекта была выбрана АУПД MPR-S/2.7 на два насоса, Ру 25 бар и бак MP-G 1000 фирмы Flamco (Нидерланды).
В заключение стоит упомянуть, что существуют также установки на основе компрессоров. Но это уже совсем другая история…
Статья предоставлена Компанией АДЛ
Зачем устанавливать автоматизированный узел управления отоплением
Автоматизированный узел управления отоплением поможет вам решить две задачи:
- обеспечить оптимальную температуру внутри здания и
- сократить затраты на отопление.
В нашем обзоре узлов управления системой отопления вы узнаете:
Автоматизированный узел управления отоплением
Как это работает
Принцип действия узла управления системой отопления очень простой:
Когда температура снаружи понижается, например до -20 °С узел управления отоплением подает больше тепла в помещения, поддерживая, тем самым, температуру внутри помещений на необходимом уровне, например +20 °С.
Когда температура снаружи повышается, например до +5 °С, узел погодного регулирования, как его еще называют, подает меньше тепла в помещения.
Тем самым, потребления тепла сокращается, а температура в помещениях остается на необходимом нам уровне, например, +20 °С и не возрастает до +28 °С, как это часто бывает во время резкого потепления.
Температура не возрастает до +28 °С
А если по научному, то узел погодного регулирования предназначен для обеспечения и поддержания требуемой температуры теплоносителя в подающем трубопроводе, в зависимости от температуры наружного воздуха.
Основные плюсы установки автоматизированного узла управления отоплением
Как мы уже говорили, целью данного энергосберегающего мероприятия является оптимизация потребления тепловой энергии в здании, а именно:
- существенное снижением затрат на теплоснабжение зданий и сооружений,
- повышении качества и надежности теплоснабжения,
- автоматическое регулирование подачи тепла в здания и сооружения,
- возможность дистанционного контроля параметров теплоносителя и режимов работы теплоснабжающего оборудования,
- возможность, без дополнительных затрат, перенастроить работу системы отопления, например, после утепления фасадов, замены окон, ремонта здания,
- автоматизация системы учета потребления тепловой энергии.
Как показывает практика, автоматизированный узел управления (АУУ) позволяет экономить около 25% – 37 % тепловой энергии и обеспечивать комфортные условия проживания в каждом помещении.
Когда целесообразно устанавливать АУУ — примеры и расчет срока окупаемости
Давайте рассмотрим 3 примера установки узла учета и рассчитаем срок окупаемости данного мероприятия.
Все примеры из реальной жизни и базируются на энергетических обследованиях, которые мы провели.
И так, у нас три административных здания (офисы):
- Здание 1 площадью 1300 м2
- Здание 2 площадью 4800 м2
- Здание 3 площадью 18500 м2
Все три здания находятся в Москве.
Вот основные итоги установки узла управления системы отопления:
Площадь м2 | Общий расход тепла за отопительный период до установки АУУ | Общий расход тепла за отопительный период после установки АУУ | Сокращение потребления тепла Гкал | Стоимость Гкал тыс. руб. (2018 г.) | Экономия за отопительный период тыс. руб. | |
Здание №1 | 1 300 | 340 | 266 | 74 | 2,0 | 148 |
Здание №2 | 4 800 | 550 | 418 | 132 | 2,0 | 264 |
Здание №3 | 18 500 | 4 400 | 3 720 | 680 | 2,0 | 1 360 |
Как видно из таблицы, установка узла управления отоплением помогла сократить потребление тепла за отопительный период на:
- Здание №1 – 74 Гкал,
- Здание №2 – 132 Гкал,
- Здание №3 – 680 Гкал.
Столь существенная разница в сокращении потребления обусловлена, в основном:
- размером зданий (площадь и этажность)
- количеством часов эксплуатации,
- назначением.
В следующей таблице указаны:
- экономия тепла за отопительный период (из расчета стоимость 2 тыс. руб. за Гкал)
- стоимость установки и монтажа узла управления отоплением и
- срок окупаемости.
Экономия за отопительный период тыс. руб. | Стоимость АУУ (оборудование и монтаж) | Простой срок окупаемости лет | |
Здание №1 | 148 | 1 556 | 10,5 |
Здание №2 | 264 | 1 856 | 7,0 |
Здание №3 | 1 360 | 2 000 | 1,5 |
Основной вывод, который мы можем сделать из расчета срока окупаемости АУУ
Автоматизированный узел управления отоплением целесообразно устанавливать в зданиях со значительным потреблением тепловой энергии и в зданиях с перетопами.
В небольших зданиях и зданиях с малым потреблением тепловой энергии автоматизированный узел управления отоплением будет окупаться очень долго или не окупиться никогда.
В небольших зданиях более целесообразно произвести ревизию элеваторных узлов или их установку, а также установить систему балансировочных клапанов на главных стояках системы отопления.
Узел управления системы отопления
Почему более выгодно устанавливать АУУ в зданиях с большим потреблением тепла?
Узел управления отопления стоит примерно одинаково для больших и малых зданий (разница стоимости оборудования и монтажа – 20%-30%).
В то же время, в здании больших размеров можно сэкономить в 5-10 раз больше тепловой энергии, чем в здании малого размера.
В нашем примере мы видим:
- Узел управления отоплением окупается за 10,5 лет в здании №1, площадью 1 300 м2 и потреблением тепла 340 Гкал до установки АУУ.
- Такой же узел окупается за 1,5 лет в здании №3, площадью 18 500 м2 и потреблением тепла до установки АУУ 4 400 Гкал.
Наш анализ и расчет не являются универсальными.
Они лишь дают вам основное понимание, в каких зданиях целесообразней устанавливать автоматизированные узлы управления отопления.
Мы рекомендуем делать расчет целесообразности и срока окупаемости узла управления отоплением индивидуально для каждого здания, исходя из конкретных обстоятельств и условий.
Как происходит установка автоматизированного узла управления системой отопления
Принципиального изменения схемы теплоснабжения здания при установке автоматизированного узла управления системой отопления (АУУ) не происходит.
В отличие от элеваторных узлов, устанавливаемых на каждой секции дома, АУУ монтируется, как правило, один на здание.
Присоединение узла управления выполняется после узла учета тепловой энергии.
Узел погодного регулирования включает в себя следующие элементы:
- управляющий элемент,
- регулирующий клапан с исполнительным механизмом,
- циркуляционный насос,
- датчики температуры наружного воздуха,
- датчики температуры в помещении.
Управляющий элемент узла погодного регулирования позволяет вручную менять настройки, определяющие режим работы системы отопления, и позволяющие поддерживать различную температуру в здании в различное время.
Например, в административных зданиях в выходные и праздничные дни можно снижать температуру воздуха внутри до +12 °С.
В рабочие дни температуру можно повышать до +18 °С.
Схема и общий вид автоматизированного узла погодного регулирования представлены на рисунках ниже.
В схеме предусмотрено:
- автоматическое переключение между основным и резервным насосом при отказе одного из насосов,
- возможность введения гибкого графика регулирования температуры воздуха в помещениях с учётом ночного времени, выходных и праздничных дней на весь отопительный сезон,
- обязательный контроль температуры обратного теплоносителя,
- поддержание температурного графика.
Регулирование температуры системы отопления происходит путем изменения пропускной способности клапана и подмешивания сетевой воды при помощи циркуляционного насоса.
В процессе работы контроллер:
- периодически опрашивает датчики температуры теплоносителя, датчик воздуха внутри помещения (если он есть) и датчик наружного воздуха,
- обрабатывает полученную информацию и
- формирует управляющие сигналы, дающие команду исполнительному механизму на открытие или закрытие.
Управляющее воздействие от контроллера изменяет величину открытия проходного сечения регулирующего клапана.
При отсутствии датчика воздуха внутри помещения главным приоритетом регулирования является поддержание температурного графика.
Эффективное применение автоматизированных узлов учета
Применение АУУ наиболее эффективно:
- в зданиях большого размера с существенным теплопотреблением,
- в домах присоединенными к городским тепловым сетям,
- в зданиях с недостаточным перепадом давления в системе центрального отопления и с обязательной установкой насосов центрального отопления,
- в зданиях с децентрализованным горячим водоснабжением и центральным отоплением.
Выводы
И так, автоматизированный узел управления отоплением позволит вам:
1. Использовать на нужды отопления только необходимую для этого тепловую нагрузку.
При этом, в случае ее избытка (в периоды «перетопа»), уменьшать подачу теплоносителя вплоть до полной остановки расхода с обеспечением циркуляции горячей воды во внутреннем контуре за счет насоса.
В эти периоды УУТЭ будет фиксировать отсутствие внешнего теплопотребления.
2. Выровнять температуру нагрева радиаторов на всех этажах здания при любой схеме разводки трубопроводов за счет принудительной циркуляции.
3. Обеспечить более равномерный прогрев стояков отопления за счет сохранения насосом требуемого уровня циркуляции при проведении постоянной регулировки.
4. Поддерживать более высокую температуру в помещениях при температуре наружного воздуха ниже расчетного минимума и не выдерживании требуемого при этом температурного графика теплоисточником за счет увеличения расхода на внутреннем контуре.