3 схемы подключения автоматики электрического отопления.
Практически любой электрический котел требует обязательного наличия автоматики управления.
Вы не можете установить один единственный выключатель на вводе, которым будете запускать и отключать обогрев.
При этом остановимся на самых минималистичных и простейших вариантах, которые вы сможете собрать самостоятельно своими руками.Ведь как известно, чем меньше элементов, тем больше надежность всей системы. Поэтому самые простые варианты и работают дольше и надежнее остальных.
Принципиальная схема автоматики электрокотла всегда начинается с подачи напряжения через вводной автомат.
Электрическое отопление подразумевает, как правило, наличие трехфазного ввода 380В. Значит и автомат должен быть трехполюсным.
Обратите особое внимание, это должен быть именно один трехполюсный выключатель, а не три отдельных однополюсных.
При КЗ и повреждении греющего элемента любой фазы, защита должна прекращать подачу напряжения по всем фазам.
После вводного автомата фазные проводники нужно разделить.
Делается это на электромагнитных пускателях.
Именно на них и ложится основная работа по автоматической коммутации эл.сети. Автомат то вы включаете и выключаете ручками, а пускатель будет это делать без вашего участия, на основе подачи управляющего напряжения от соответствующих датчиков.
При этом в отличие от автомата, покупайте три отдельных однофазных модульных пускателя. Старые модели типа ПМЛ, ПМА, КМИ здесь не подойдут. И дело вовсе не в их шумной работе и громких щелчках.
Модульный трехфазный экземпляр в едином корпусе, тоже будет не пригоден для нашей схемы.
Самое главное преимущество однофазных – возможность ручной и очень простой регулировки мощности электрокотла. Подробнее об этом будет сказано ниже.
К силовым клеммам каждого контактора, как раз-таки и подключаются нагревательные элементы (ТЭН, электроды) котла отопления.
Замкнутое или разомкнутое положение контактов зависит от того, подано или снято напряжение с его катушки управления. Получается, чтобы собрать автоматику, на клеммы этих самых катушек мы должны через какие-то другие элементы подавать управляющие сигналы (напряжение).
Катушка имеет два контакта А1, А2.
При покупке обращайте внимание, пускатели могут идти с катушками на 380В и 220В. Лучше брать последний вариант.
В этом случае на один из контактов вы напрямую подключаете нулевой проводник, а в разрыв второго устанавливаете кнопки-микровыключатели.
Для чего они нужны? Благодаря им, у вас появляется возможность включать поочередно 1,2 или 3 тэна, тем самым увеличивая или уменьшая мощность отопления.
К примеру, на улице за окном температура -5С. Нажимаете одну кнопку и запускаете в работу всего один ТЭН мощностью 2квт. Ударили морозы -25С, нажимаете все три кнопки и повышаете мощность в три раза.
При этом количество ступеней обогрева будет зависеть от номинальной мощности каждого нагревательного элемента. Если они все будут по 2квт – это всего три ступени.
А вот если один будет 2квт, второй 3квт, а третий 4квт, то количество ступеней автоматически возрастает до семи!
Все будет зависеть от того, какие фазы (тэны) и в какой последовательности подключать.
- по отдельности 2квт – 3квт – 4квт
Ток в цепях управления катушек очень небольшой (несколько миллиампер). Соответственно ставить сюда полноценные выключатели не нужно.
На все эти три микровыключателя должна быть подана одна фаза. Допустим фаза С. Берете ее с нижних контактов вводного автомата.
Вот именно из этой точки и начинается вся дальнейшая схема автоматики.
Обязательный элемент такой схемы – предельный термостат.
Это защитное устройство, которое отключит ваш электрокотел, если он пошел, что называется в разнос.
Например, перестал работать циркуляционный насос или где-то образовался засор. В результате этого температура начала резко возрастать и превысила допустимые значения.
Данную температуру вы устанавливаете самостоятельно при помощи ручного регулятора.
Так как это защитный элемент, который должен полностью “гасить” котел, подключать его нужно последовательно в разрыв управляющей фазы, как на рисунке внизу.
Помимо безопасности, нам потребуется еще один элемент. Элемент управления, который будет его периодически включать и выключать для поддержания заданной температуры воды.
Этим устройством является рабочий термостат.
Не путайте его с предельным. В предельном имеется взводимая вручную кнопка, которая при срабатывании препятствует самостоятельному включению датчика.
То есть, когда он сработал один раз, вам потребуется осмотреть всю систему и схему, дабы разобраться в причине срабатывания. И только после этого, нажав эту кнопочку, отопление можно будет запустить заново.
Данный термостат монтируется после предельного, опять же в разрыв цепи.
Таким образом мы получили элемент защиты и элемент управления. В принципе, это и есть самая примитивная схема №1 для автоматики электрического отопления.
Чтобы получить более функциональный вариант, добавим сюда прибор для отслеживания температуры воздуха в помещении – комнатный термостат.
Ему не важно какая будет температура котловой воды, он реагирует именно на комфортную температуру воздуха в вашем доме.
По аналогии с предыдущими элементами монтируете его в разрыв, перед рабочим термостатом. Вторая простейшая схема готова.
Но человек всегда стремится к большему и помимо комфорта при электрическом отоплении, всегда хочется еще и сэкономить. Все таки электроотопление за редким исключением, в наших реалиях не совсем дешевая штука.
Как это сделать, усовершенствовав вышеприведённую схему подключения? Для этого дела существует ночной тариф.
Чтобы им воспользоваться в полной мере, нам потребуется реле времени.
Оно будет запускать электроотопление только в заданный промежуток суток. Размещайте его в схеме перед комнатным термостатом.
Однако при этом обратите внимание на один нюанс. При наличии в схеме такого устройства, обязательно параллельно ему монтируется термостат минимальной температуры воздуха.
Днем в ваше отсутствие, температура на улице может резко упасть. Уезжали при -5С, приехали вечером — за окном минус 25С. Соответственно и дома существенно похолодает.
Она запустит отопление, как только температура в доме упадет ниже минимального порога. В итоге не даст дому остыть, а системе разморозиться.
Чтобы визуально наблюдать включены датчики или выключены в данный момент, можно подключить в общую точку перед микровыключателями сигнальную лампочку и вывести ее на видное место.
Особенно это полезно при нахождении щитка управления и самого котла в подвале дома или в соседней пристройке.
Большинство заводских электрокотлов отопления построено именно на таких принципиальных схемах управления. Есть одна питающая линия (фаза), подающая сигнал на катушку прибора с силовыми элементами, а все дополнительное оборудование, датчики и релюшки, как раз-таки и “навешиваются” на эту самую линию, выполняя защитную и контролирующую функции.
Как видите, ничего сложного и замысловатого здесь нет.
Автоматика управления отоплением дома своими руками. Часть 2
Напомню, что мы ведем речь о системе управления отоплением дома с применением таймера-термостата NM8036 (начало здесь).
Аналоговые (АЦП) входы контроллера и подключение датчиков температуры.
Итак, АЦП. Не каждому и не сразу понятно, что это такое и с чем его едят. Потому попытаюсь объяснить своими словами.
Вообще, что такое «аналоговый» вход? У контроллера два типа входов: цифровой и аналоговый. Цифровой может принимать только два значения: ноль и единица. Ноль — нет напряжения, единица — есть напряжение. Информация передается на цифровой вход импульсами во времени. А вот аналоговый вход способен принимать не только эти два значения, но вообще любое напряжение.
У контроллера NM8036 имеются два аналоговых входа (см. про сборку блока NM8036 в первой части). На каждый из этих входов может быть подано любое напряжение в пределах от 0 до напряжения питания (5 в). Например, 1,8 вольта, или 3,2 вольта… Короче, любое, но не более 5 вольт.
Что с этим напряжением делает контроллер? Очень просто: измеряет и представляет его в цифровом виде. Причем, делает он это в пределах от 0 до 1023. Это бинарные данные (bin-data), в которых верхний предел (1023) приравнивается к напряжению в 5 вольт. Это и есть Аналого-Цифровое Преобразование (АЦП).
Но фактическое напряжение — оно и есть фактическое. 5 вольт — они и есть 5 вольт. Это значение рассматривается здесь, как «Вольты». И правильно, вольты и есть.
Но здесь можно представить это напряжение и в других физических величинах (Физика). Например, подключили мы ко входу датчик давления или влажности, или тоже датчик температуры, но не цифровой, как DS1820, а терморезисторный. Этот терморезисторный датчик выдаст нам напряжение от 0 до 5 вольт (электронщики, не возбуждайтесь! Это лишь для примера.), но ведь нам важно знать температуру, а не напряжение!
Вот мы и калибруем эти значения. Нижний предел в настройках установим, например, в 16 градусов, а верхний — в 30 градусов. Вот такой вот у нас датчик, видите ли, подключен. А количество знаков после запятой поставим 2. И префикс укажем: С (то бишь, градусов Цельсия).
И что мы при этом получим? А получим то, что когда датчик пришлет на вход напряжение, например, в 2,5 вольта, контроллер быстренько все пересчитает и выдаст нам три варианта результатов: 512 (bin-data), 2,5в (Вольты) и 23.00 С (градусов цельсия). Вот таким образом можно настроить работу практически с любым датчиком, выдающим на своем выходе аналоговое значение напряжения.
Существование двух аналоговых входов у контроллера — это ведь не только возможность подключения вышеперечисленных датчиков. Можно придумать немало схем, которые могут оказаться очень даже полезными для разных целей в частном доме.
Перечислю навскидку возможные из них:
Простой выключатель на 2 положения. Может иметь на выходе Data либо 0 вольт, либо 5 вольт. Подключается тремя проводами: Vcc (+5в), Data (данные) и Gnd (общий провод). Таким выключателем можно устанавливать два разных режима работы нагрузок при программировании системы.
Переключатель на большее количество положений может обеспечить возможность программирования и большего количества режимов. Вот, скажем, на 3 положения. Каждое положение имеет свое напряжение на выходе. Самое нижнее положение — на выходе 1,25 в, среднее 2,5 в и верхнее 3.75 в. Увеличивая количество резистров в цепочке, можно увеличивать и количество положений переключателя.
Это были варианты ступенчатой регулировки, но ведь есть и вариант плавного регулирования. Здесь величина выходного напряжения зависит от положения движка переменного резистора.
Можно применить, например, для ручной регулировки температуры. Сделать программу так, чтобы она поддерживала температуру в помещении такой, какая задана регулятором. Автоматическая регулировка — это одно, но нередко хочется где-то что-то повернуть, щелкнуть, чтобы было потеплее, или, наоборот, попрохладнее. Человек ведь существо привередливое.
Или применить такую схему для контроля, скажем, за уровнем воды в емкости, в колодце… Это несложно: поплавок на нитке, намотанной на ручку переменного резистора. Подпружиненной, естественно. Но это так, навскидку, без детальной проработки.
Если же продолжать фантазировать, то можно еще измерять уровень освещенности и в нужное время включать/отключать лампу… Короче, возможностей у этих аналоговых входов масса, NM8036 вполне может осилить немало задач не только в управлении отоплением частного дома, но и для решения многих других задач. О возможностях настройки и программирования поговорим в следующих статьях.
Кстати, по поводу регулировки температуры в помещении есть очень даже неплохое решение, взятое мною из форума MasterKit. В ответ на чей-то вопрос автор сообщения Brokly (он же автор программы Advanced Manager, о ней я также расскажу далее) привел пример применения аналогового входа. Привожу дословно:
Вы бы еще сложнее че нить придумали. Поставьте контактный настенный термостат, подключите к аналоговому входу, и пусть алкаши сами его крутят. И уборщицу освободите, и пъяным забава. Да и контроллеру меньше работы, сработал термостат — можно не греть.
Как тебе такое, Мастер? А мне, знаешь, понравилось.
Теперь о подключении датчиков температуры. В инструкции, конечно, есть схема подключения, но я бы акцентировал дополнительно твое внимание на том, что датчики должны быть подключены последовательно, без образования «звезды».
Чтобы было понятнее, вот рисунок: на нем у каждого датчика свой кабель для соединения с контроллером, и где-то у самого контроллера эти кабели соединяются в один. Вот это и есть соединение звездой.
Спору нет, так, конечно, удобнее датчики раскидать. Только потом возможны проблемы с их определением, да и в работе у прибора будут необъяснимые глюки.
А вот эта схема — пример последовательного соединения датчиков температуры DS18B20. То есть, к одному непрерывному кабелю, подключенному к NM8036, последовательно подключаются датчик за датчиком на всем протяжении кабеля.
Вообще-то, если строго судить с точки зрения электрических соединений, это соединение является параллельным, но я для лучшего понимания обозвал тут по своему. Ведь соединение звездой — тоже параллельное…
В общем, такой тип соединения, как на рисунке — наиболее правильный, но он не всегда удобен в реальных условиях, когда датчики должны располагаться в разных помещениях, разбросанных вовсе не в соответствии с логикой последовательного подключения датчиков. И что же делать?
Выходом в такой ситуации служит соединение с возвратами, именно по такому пути я и пошел. Там, где оказалось невозможно протянуть кабель последовательно от датчика до датчика, я возвращался от очередного датчика к исходной точке и далее вновь шел к следующему датчику.
Эта схема — лишь отвлеченный пример, дающий представление о способе соединения датчиков в реальных условиях. Как видим, принцип последовательного соединения здесь соблюден полностью.
При монтаже датчиков температуры я использовал кабель «витая пара», каким прокладывают компьютерные сети. В этом кабеле 8 разноцветных жил, скрученных попарно. Во-первых, это оказалось очень удобным для выполнения соединений с возвратом, а во-вторых — кабель «витая пара» как раз очень хорош для таких целей, снижая количество наведенных помех.
Купить такой кабель можно в любой компьютерной мастерской, сервисе, в магазинах электроники. Не так уж и дорого, рупь штучка, три рубля кучка.
У кабеля четыре пары: синий и белосиний, коричневый и белокоричневый, розовый и белорозовый, зеленый и белозеленый. Все провода бело- использую под общий провод. Провод коричневый — Data на входе, синий — питание на входе. На выходе: Data — зеленый, питание — розовый.
На другом конце кабеля «с возвратом» подключаю датчик по указанной схеме, т.е., все белые — общий, зеленый и коричневый — Data, синий и розовый — питание.
Теперь цоколевка датчика, назначение его выводов. Путать их, конечно, не следует. Берем датчик за ножки и смотрим на его лицевую сторону, где расположены надписи. При этом справа будет вывод питания, слева — общий, и в середине — вывод данных.
Но вот кабели раскинуты, датчики подпаяны. Как их закреплять? Вопрос неоднозначен, если задаваться целью измерения температуры с точностью до десятых градусов. Собственно, датчик так и меряет, но он меряет свою температуру. А измерение температуры датчика и температуры воды в трубе — далеко не одно и то же.
Казалось бы, чего тут сложного? Приклеил датчик к трубе — и он будет измерять температуру воды в трубе. Разве не логично? Логично. Но неверно. Во-первых, сама поверхность трубы уже дает погрешность, ведь она омывается воздухом, температуру которого не всегда равна температуре воды. Во-вторых, что самое важное, датчик прижат к трубе только одной поверхностью. Остальные — опять же омываются воздухом и температура самого датчика получается вовсе не равной температуре поверхности трубы.
Выход напрашивается сам собой: утеплить датчик и участок трубы и сделать над местом крепления датчика некий кожух, защищающий от воздействий наружного воздуха.
Но я, опять же, пошел по пути упрощения и прикрепил датчики к трубам с помощью обыкновенного матерчатого пластыря. Да, показания датчиков не соответствуют действительности. Разница в пределах от одного до полутора градусов. Ну и что?
Я же не термостат собираю для научных экспериментов, у меня просто система управления отоплением частного дома. Да и при программировании системы ничто не мешает мне учитывать эту разницу, что я, собственно и сделал. Например, в прихожке у меня разница показаний датчика и градусника (один от другого в 2-х миллиметрах) — 1,3 градуса. Градусник показывает 24, а датчик — 22,7. Кто из них врет — разве важно? Хотя, я больше все-таки цифровому датчику доверяю.
Что еще по датчикам? Вроде все. Ага, вот еще: не спеши датчики сразу все на место прикручивать/приматывать. Определять их потом будет непросто. Пусть пока в воздухе висят, чтобы потом, когда запустишь при настройках «Поиск датчиков» и все они будут определены, можно было ладонями изменять их температуру и давать имена в системе.
Система ведь датчики определит по их серийным номерам и вывалит тебе список этих серийников. Откуда она знает, что вот этот серийник принадлежит датчику возле унитаза, а вот этот — датчику под кроватью? Вот тогда заползешь под кровать, подогреешь датчик ладошками, подышишь на него, а супругу попросишь посмотреть на список датчиков. И узнаешь среди всех, у которого температура поднялась. И узнаешь, какой у него серийный номер, да и название ему присвоишь: Кровать!