- Тема 7.3. Автоматизация узлов горячего водоснабжения
- Автоматизация системы горячего водоснабжения
- Автоматизация систем водоснабжения и водоотведения
- Системы канализации бывают:
- Автоматизация горячего водоснабжения
- Автоматизация холодного водоснабжения
- Автоматизация систем водоотведения (канализации)
- Подходы к построению автоматизированной системы
- Проектирование систем автоматизации водоснабжения и водоотведения
- Экономический эффект от внедрения системы автоматизации
- Затраты на внедрение и эксплуатацию
Тема 7.3. Автоматизация узлов горячего водоснабжения
Основная задача автоматического регулирования систем горячего водоснабжения — поддержание постоянной заданной температуры воды в местах ее разбора. В идеальном случае это можно осуществить с помощью индивидуальных регуляторов температуры в каждом месте разбора горячей воды. Однако такое решение существенно усложнит эксплуатацию систем горячего водоснабжения и будет малоэффективным. В связи с этим индивидуальные регуляторы в местах разбора горячей воды устанавливают лишь в особых случаях.
Как правило, автоматически поддерживают постоянную температуру воды (60°С) на узлах горячего водоснабжения ЦТП. Постоянство температуры воды в местах разбора не гарантируется из-за остывания воды в разводящих трубопроводах. Указанный недостаток в значительной мере устраняется применением циркуляционных линий с насосами.
Для обеспечения качественного снабжения потребителей горячей водой необходима непрерывная работа циркуляционного насоса. Если работа насосов в ночное время не предполагается, то предусматривается их автоматическое выключение. При установке аккумуляторов для выравнивания графика отпуска теплоты на горячее водоснабжение предусматривается автоматическое управление зарядкой и разрядкой этих аккумуляторов. Выбор схемы автоматического регулирования температуры воды на горячее водоснабжение определяется принятой системой теплоснабжения (закрытая или открытая).
При закрытой системе теплоснабжения, когда на вводах горячего водоснабжения устанавливают водоводяные подогреватели, широко применяется схема регулирования температуры нагреваемой воды путем изменения количества сетевой воды (рис. 13.8, а, б, в) или путем разделения потока сетевой воды трехходовым регулирующим клапаном на два: поступающий поток направляется в подогреватель, а перепускаемый — по обводной линии (рис. 13.8, г).
При таком способе регулирования обеспечивается примерно постоянный расход сетевой воды, что исключает полностью или частично гидравлическую разрегулировку тепловой сети. Однако постоянство расхода сетевой воды приводит к завышению температуры воды в обратном трубопроводе тепловой сети в период малых нагрузок горячего водоснабжения. При теплоснабжении от ТЭЦ это нежелательно, так как на ТЭЦ снижается выработка электроэнергии на тепловом потреблении
При открытой системе теплоснабжения на узлах горячего водоснабжения отсутствуют водоводяные подогреватели; горячая вода к потребителю поступает непосредственно из тепловой сети. Температура воды, поступающей в систему горячего водоснабжения, регулируется смешением потоков воды из подающего и обратного трубопроводов тепловой сети.
Рис. 13 8. Схемы автоматического регулирования температуры воды горячего водоснабжения при закрытой системе теплоснабжения
а — параллельная, б — смешанная двухступенчатая, в — двухступенчатая последовательная, г — схема с трехходовым регулирующим клапаном, ТС — регулятор температуры РР — регулятор расхода
Рис. 13 9, Схемы автоматического регулирования температуры воды горячего водоснабжения при открытой системе теплоснабжения с двухходовым (а) и с трехходовым регулирующим клапаном (б)
Широкое распространение получили схемы с установкой регулирующего клапана на подающем трубопроводе и обратного клапана на обратном трубопроводе (рис. 13.9, а) и с применением трехходового клапана смешения (рис. 13.9, б).
Режим работы систем горячего водоснабжения отличается значительной неравномерностью расхода воды в течение суток, причем расход сетевой воды изменяется не только в течение суток, но и в течение года. Например, в системе горячего водоснабжения с параллельной схемой включения подогревателей при увеличении температуры воды в подающем трубопроводе тепловой сети с 70 до 150°С расход сетевой воды на горячее водоснабжение уменьшается примерно в 3,5 раза. При непосредственном водоразборе в открытых системах теплоснабжения увеличение температуры воды в подающем трубопроводе приводит к некоторому снижению ее расхода.
Водоводяные подогреватели горячего водоснабжения могут быть представлены апериодическими звеньями с запаздыванием. На рис. 13.10 приведены кривые разгона подогревателя (конструкция теплосети Мосэнерго) при скачкообразных изменениях расходов сетевой и нагреваемой воды. Анализ кривых показывает, что τ/Т подогревателя колеблется в пределах 0,08
Автоматизация системы горячего водоснабжения
В современном мире горячее водоснабжение (ГВС) является неотъемлемой частью удобства и комфорта в доме, коттедже или офисном здании. К сожалению, централизованная подача горячей воды обычно отсутствует в сельской местности, отдалённых коттеджных поселках, личных домах, офисных зданий и промышленных объектов, удалённых от центральных коммуникаций. В этом случае решение задачи по автоматизации горячего водоснабжения обычно связано с применением накопительного бойлера косвенного нагрева, либо нескольких бойлеров. Ёмкость такого бойлера варьируется обычно от 100 литров и может доходить до 1000 литров и даже более. Теплоноситель (умягчённая вода системы отопления, либо, что реже — антифриз) с более высокой температурой, циркулирует через теплообменник (обычно змеевик) внутри этого бойлера и передает тепловую энергию воде, находящейся под давлением внутри бойлера. После нагревания вода внутри бойлера с необходимой температурой (как правило от +40 до +60 градусов Цельсия) подаётся к потребителю. Практика показала, что применение двухконтурных котлов, несмотря на компактность, имеет тот существенный недостаток, что при возможном выходе из строя узла контура ГВС, котёл становится неработоспособным — это нарушает нормальную работу системы отопления и является полностью недопустимым в зимний период времени. Поэтому одноконтурный котел системы отопления, работающий в связке с бойлером косвенного нагрева, является более надежной комбинацией.
Необходимо отметить, что большинство бойлеров косвенного нагрева, как правило, имеют электромеханический термостат, настроенный либо на фиксированную целевую температуру воды ГВС, либо имеется возможность ручной установки этой температуры в определённом диапазоне значений. Недостатками работы бойлера, управляемого термостатом, являются: ограниченное количество циклов реле, низкая точность измерения температуры, отсутствие гибких настроек, невозможность автоматической дезинфекции воды ГВС, отсутствие индикации и т.д. Поэтому в Европе компании изготавливают и предлагают современные цифровые терморегуляторы для автоматизации систем горячего водоснабжения, устраняющие вышеперечисленные недостатки. Однако, главным недостатком зарубежной автоматики ГВС является их высокая цена, которая обычно начинается от 250 Евро. Нередко излишняя функциональность зарубежных устройств автоматики и сложность настроек, приводят к тому, что большинство рядовых потребителей не могут самостоятельно установить и настроить такие системы. Отметим также, что покупка импортных изделий для автоматизации систем горячего водоснабжения является инвестированием в западные компании, но не в экономику нашей страны.
Эскиз. Схема подключения контроллера ТРЦ-02 в систему горячего водоснабжения.
Автоматизация работы системы горячего водоснабжения с помощью дифференциального регулятора температуры ТРЦ-02 (полностью российская разработка и изготовление) позволяет обеспечивать необходимую и достаточную потребность в горячей воде с заданной температурой, при этом отпадает необходимость как в ручном регулировании системы ГВС, так и ручной дезинфекцией бойлера. Готовый комплект автоматики для системы горячего водоснабжения показан на Фото 1. Предлагаемое устройство обладает высокой надежностью, необходимой функциональностью и доступной ценой.
Фото 1. Готовый комплект автоматики для системы горячего водоснабжения.
Видео. Презентация контроллера ТРЦ-02.
Для одного из объектов недвижимости, удалённом от центральных коммуникаций, с целью автоматизации его системы горячего водоснабжения был применён бойлер косвенного нагрева, с гидравлическим подключением к имеющейся автономной системе отопления, устройством автоматизации был выбран российский простой и надежный регулятор температуры ТРЦ-02 с функцией автоматической дезинфекции горячей воды. На фото [см. Фото 2] показан бойлер Drazice с разобранным электрическим нагревательным элементом (ТЭН) и штатным термостатом.
Фото 2. Бойлер косвенного нагрева Drazice с разобранным ТЭН и штатным термостатом.
Керамический нагревательный элемент бойлера Drazice был проинспектирован с целью его дальнейшего подключения к мощному выходу дифференциального регулятора температуры ТРЦ-02 [см. Фото 3].
Фото 3. Керамический нагревательный элемент ТЭН бойлера Drazice
Цифровые датчики температуры, входящие в полный комплект дифференциального терморегулятора ТРЦ-02, были установлены в соответствующие герметичные гильзы [см. Фото 4].
Фото 4. Бойлер ГВС с цифровыми датчиками температуры ТРЦ-02.
Гидравлическая проверка бойлера косвенного нагрева с подключенным контроллером ТРЦ-02 показана на Фото 5.
Фото 5. Бойлер косвенного нагрева Drazice под избыточным давлением воды, подключенный к контроллеру ТРЦ-02.
Монтаж терморегулятора ТРЦ-02 для автматизации системы горячего водоснабжения объекта осуществлялся в корпус на DIN-рейку и продемонстрирован на Фото 6; на DIN-рейку слева направо установлено: УЗО [устройство защитного отключения] с током утечки 30 мА, автоматический выключатель C16 с номинальным током 16 Ампер, устройство для индикации напряжения, рабочего тока и потребляемой мощности и собственно дифференциальный регулятор температуры ТРЦ-02. К его мощному выходу был подключен ТЭН, а к маломощному выходу — циркуляционный насос, обеспечивающий циркуляцию теплоносителя от котла через змеевик бойлера. Российский дифференциальный терморегулятор ТРЦ-02 обеспечил необходимую и достаточную автоматизацию системы горячего водоснабжения.
Фото 6. Окончательный монтаж терморегулятора ТРЦ-02 для автоматизации системы горячего водоснабжения.
Автоматизация систем водоснабжения и водоотведения
Наиболее известны следующие виды систем водоснабжения.
1. Хозяйственно-питьевое водоснабжение (ГВС и ХВС) . Назначением хозяйственно-питьевого водоснабжения является удовлетворение бытовых потребностей людей, а также санитарно-гигиенических нужд. Отличительной особенностью питьевого водоснабжения от производственного является подача воды, свободной от вредных химических примесей и болезнетворных бактерий. Бывает двух видов: горячее и холодное.
В наиболее простом случае, система горячего водоснабжения состоит из водонагревательной установки и трубопроводов для передачи горячей воды к водоразборным приборам.
Системы горячего хозяйственного водоснабжения классифицируют по нескольким признакам.
По способу подачи воды на горячее водоснабжение различают:
- Закрытые системы. Вода из тепловых сетей используют только в качестве энергоносителя. Подача воды на горячее водоснабжение осуществляется через водо-водяные теплообменники.
- Открытые системы. Вода из тепловой сети используется для приготовления и подачи воды в систему горячего водоснабжения (например, смешивается).
По способу подогрева воды системы ГВС бывают:
- Централизованные. Одна водонагревательная установка обслуживает как минимум одно здание, и более зданий в пределах одного квартала (микрорайона) или поселка. Такие системы установлены в большинстве многоквартирных домов. Ввод горячей воды в дом и ее распределение происходит в ИТП.
- Децентрализованные. Приготовление горячей воды происходит вблизи водоразборных приборов (например, поквартирно или непосредственно в санузлах) и осуществляется небольшими генераторами тепла: газовыми нагревателями, электрическими тэнами и т. п.
По способу поддержания температуры (обеспечение комфорта пользователя) системы ГВС могут быть:
- Бесциркуляционными, которые состоят только из подающих трубопроводов. Основной недостаток таких систем — остывание воды в трубопроводах при перерывах в потреблении. Открывая кран, например, утром, потребитель получает воду с пониженной температурой и начинает сливать эту воду в канализацию до того, как вода в кране прогреется. Системы без циркуляции являются наиболее простыми по устройству и дешевыми по первоначальной стоимости.
- Циркуляционные системы. В таких системах, находящаяся в трубах горячая вода непрерывно циркулирует, проходя через котел или теплообменник. В системах с поверхностными подогревателями циркуляция, как правило, обеспечивается центробежными насосами. В отдельных случаях циркуляция воды в системах горячего водоснабжения может обеспечиваться действием гравитационных сил.
2. Противопожарный водопровод. Создаётся в рамках системы пожарной безопасности, его предназначение – подача воды в систему водяного пожаротушения и наружные гидранты.
3. Производственное водоснабжение. Создаётся для подачи воды, используемой в технологических процессах.
4. Поливочное водоснабжение. Применяется для полива клумб и зеленых насаждений, а также для мойки территории двора, тротуаров, оборудования и полов.
Практически для всех видов водоснабжения, наружный водопровод доставляет воду по магистралям из распределительной сети города, а внутренний – поставляет воду по всему зданию (объекту), границей между ними является водосчетчик.
Системы канализации бывают:
Внутренняя канализация. Её задача – отвод сточных вод, образование которых происходит во время выполнения хозяйственно-бытовых работ или в результате санитарно-гигиенической деятельности человека.
Ливневая канализация. Применяется для отвода атмосферных осадков.
Автономная канализация. Предназначена для очистки сточных вод «на месте» для дальнейшего сброса их в водоемы хозяйственного назначения или грунт.
Автоматизация горячего водоснабжения
Как было упомянуто, горячее водоснабжение может быть централизованным и местным.
В местных системах горячего водоснабжения подогрев воды осуществляют локально, в газовых водонагревателях или колонках, с учетом того, что каждый нагреватель имеет собственную систему автоматики, разрабатывать интегрированную систему автоматизации нет смысла, достаточно обеспечить хорошую теплоизоляцию трубопроводов и вывести (при необходимости) данные о работе установки на пульт управления зданием.
В системах централизованного отопления или водоснабжения, автоматизации подлежит все технологическое оборудование: циркуляционные насосы, клапаны и вентили трубопроводов, оборудование теплообменников и радиаторов, подогреватели и т.п. Проект автоматизации ГВС разрабатывается совместно с проектом автоматизации ИТП.
Основная цель автоматизации систем ГВС – поддержание в системе заданного давления и температуры, кроме того автоматизация систем горячего водоснабжения выполняет следующие задачи:
- Повышения надежности теплоснабжения и горячего водоснабжения потребителей;
- Уменьшение зависимости от «человеческого фактора», возможность эксплуатации без постоянного присутствия оперативного персонала
- Оптимизации отпуска и потребления тепла, снижения коммунальных расходов;
- Снижения затрат электрической энергии в насосных установках;
- Увеличения ресурса работы и облегчение эксплуатации технологического оборудования;
- Контроля состояния технологического оборудования и технологических параметров;
- Оперативной передачи предупредительной и аварийной информации на диспетчерский пункт.
Автоматизация холодного водоснабжения
Автоматизация систем холодного водоснабжения предназначена для поддерживания постоянного давления в системе, не зависящего от давления на входе и расхода воды. К щитам автоматики подключают такое оборудование как реле давления, контроллеры сухого хода, манометры, пусковые и защитные автоматы насосов, блоки питания, поплавковые выключатели и т.п.
В результате автоматизации, в системах ХВС удается снизить расход воды, повысить ресурс работы оборудования и уменьшить эксплуатационные расходы, снизить затраты на электроэнергию, а также уменьшить возможность возникновения аварийных ситуаций.
Автоматизация систем водоотведения (канализации)
Автоматизация системы водоотведения предполагает контроль выполнения относительно небольшого количества процессов, связанных с контролем работы за насосами, и заполнения дренажных приямков. В большинстве случаев, алгоритм работы системы универсален – при заполнении приямка, включить насос, при отсутствии воды в приямке, выключить насос. Дополнительно на пост диспетчера передается информация о работоспособности оборудования. Основные задачи системы автоматизации канализации:
- Управление в автоматическом режиме и отображение состояния (ВКЛ-ВЫКЛ-АВАРИЯ) двигателей КНС и очистных сооружений;
- Визуализация показаний датчиков уровня жидкости в дренажных приямках;
- Возможность ручной блокировки отдельного насоса на время проведения технического обслуживания или в автоматическом режиме в случае аварийной ситуации;
- Автоматический запуск насосной станции после аварийных ситуаций при восстановлении питающего напряжения или подачи стоков;
- Поэтапный запуск насосов и снижение пиковых электрических и механических нагрузок на систему.
Подходы к построению автоматизированной системы
В основу разработки автоматизированных систем (АС) положены следующие принципы:
- Принцип развития – возможность масштабирования и обновления. АС создается с учетом возможности постоянного совершенствования ее функций и возможности расширения;
- Принцип совместимости – обеспечение взаимодействия различных АС, в едином процессе при их совместном функционировании (для объектов жилищно-коммунального строительства этот принцип обеспечивает система интеллектуального здания);
- Принцип стандартизации и унификации предполагает, по возможности, применение типовых, унифицированных и стандартизированных схем и элементов функционирования АС;
- Принцип эффективности заключается в достижении рационального соотношения между затратами на создание АС и экономическим эффектом, получаемым при ее функционировании.
Проектирование систем автоматизации водоснабжения и водоотведения
Технология системы водоснабжения разделяет два этапа обработки воды — В технологическом процессе водоснабжения можно выделить два подпроцесса — подъем и подготовку воды, распределение и подачу. Исходя из этого, автоматизация водоснабжения заключается в:
- Автоматизации управлением насосными станциями подъема и водоочисткой (фильтры, расход, распределение по стоякам и др.);
- Автоматизация подачи и распределения воды в частях здания.
Целью управления при функционировании АСУ ТП водоснабжения является обеспечение гарантированного и комфортного водоснабжения потребителей с минимальными эксплуатационными затратами.
ХВС и ГВС являются сложными системами жизнеобеспечения, разработка которых включает в себя гидравлические расчеты, составления аксонометрических схем, выбора расположения и мощности насосного и водонагревательного оборудования, разработка алгоритмов взаимодействия элементов систем и управления ими.
Автоматизацию системы ВиК можно условно декомпозировать на три крупные подсистемы – хозяйственного питьевого водоснабжения, водомерного узла и системы дренажных приямков. Систему канализации
В проекте автоматизации предусматривают оборудование контроля работоспособности основного и резервного насосов, возможности отключения оборудования по сигналу от противопожарных систем, контроль параметров систем, описывают алгоритмы работы для рабочих режимов. Проект разрабатывается с учетом проекта ИТП.
Типовой проект может содержать:
- Общие данные;
- Структурные схемы, при необходимости;
- Задание на программирование системы;
- Функциональные схемы автоматизации для каждой из подсистем, на основе которых собираются щиты автоматизации;
- Схемы связи контроллеров системы автоматизации;
- Схемы внешних соединений для щитов автоматизации;
- Схемы связи со смежными системами автоматизации;
- Принципиальные электрические схемы щитов автоматизации, двигателей насосов или вентиляторов;
- Принципиальные схемы питания щитов автоматизации;
- План расположения оборудования и проводок систем автоматизации;
- Кабельные журналы;
- Монтажные схемы;
- Спецификации оборудования и проводок.
Экономический эффект от внедрения системы автоматизации
Экономический эффект за счет разработки систем автоматизации водоснабжения и канализации обуславливается, в основном экономией энергии на подогрев, оперативного определения мест тепловых потерь, диагностирования проблем при водоотводе. Основные факторы экономии:
- Снижение расхода электроэнергии на подъем и транспортирование воды, подачу воздуха на очистных сооружениях и др.;
- Снижение расходов на ремонт и техническое обслуживание оборудования;
- Снижение стоимости аварийно-восстановительных работ вследствие быстрого обнаружения и сокращения числа аварий;
- Уменьшение количества обслуживающего персонала.
Затраты на внедрение и эксплуатацию
Как свидетельствует практика, с внедрением автоматизации систем водоснабжения общепроизводственные расходы возрастают с 11 до 15 % за счет закупки и обслуживания на объекте нового оборудования.
Наряду с этим, расходы на ресурсы (электричество, отопление и т.д.) уменьшаются на 4%, сокращаются расходы на ремонт – с 25 до 10 % и на эксплуатацию объекта – с 50 до 20 %.
Стоимость одного кубометра воды по отношению к периоду до внедрения автоматики снижается на 45 %.
Системы управления электроэнергией. Контроль и автоматизированное управление работой системы. Подробнее »
В ближайшем будущем, появится возможность увеличения КПД солнечных панелей до 50%. Эффективность. Подробнее »
Руководство Филиала КОО «ЛОГРАР ЛИМИТЕД» выражает благодарность коллективу ООО. Подробнее »
КОО «ЛОГРАР ЛИМИТЕД» 1 сентября 2015
Уважаемый Ринат Шакирзянович! ООО «ФИНПРОЕКТ» выражает благодарность компании ООО. Подробнее »