- Электрические настенные радиаторы для отопления дома и дачи. Как выбрать?
- Где используют электрорадиаторы отопления?
- Какие бывают виды электрорадиаторов?
- Настенные электрические конвекторы
- Электрические каменные радиаторы
- Инфракрасные настенные обогреватели
- Настенные масляные батареи: хуже всех?
- Вывод
- Радиаторы для светодиодов: расчет площади, выбор материала, изготовление своими руками
- А зачем он нужен?
- Материалы изготовления радиаторов
- Алюминиевые
- Медные
- Керамические
- С применением термопластика
- Особенности охлаждения мощных светодиодов
- Расчет площади радиатора
- Точный расчёт
- Приблизительная формула
- Радиатор для светодиода своими руками
- Дешевые теплоотводчики для любительских самооделок
Электрические настенные радиаторы для отопления дома и дачи. Как выбрать?
Здравствуйте, дорогие читатели портала StroiDomEconom.RU! В данной статье вы узнаете: какие существуют настенные электрические радиаторы отопления, какой вариант лучше всего подойдет для отопления дома или дачи, на что следует обращать внимание при выборе отопительного электроприбора?
Где используют электрорадиаторы отопления?
В настоящее время все больше обладателей загород н ых построек обращают свой взор на настенные электрические радиаторы отопления. Такому высокому спросу способствуют несколько причин:
- Отсутствие газоснабжения
- Дорогостоящая проводка газа на участок
- Высокая стоимость подключения электрокотла
- Сложность установки водяных систем отопления
Общим преимуществом всех электрических батарей является их простота:
- Легко монтировать самому
- Простое подключение к электросети, нет дорогостоящих работ
- Не требуется отдельных помещений (котельных)
- Нет проблем с заморозкой системы
- Нет сложного и дорого ремонта, сломанный прибор легко заменить на новый
Ниже мы постараемся показать вам преимущества каждого варианта отопительных приборов.
Какие бывают виды электрорадиаторов?
Электрические батареи делят в зависимости от вида их материала или типа нагревательного элемента, который они используют за основу обогрева:
- Конвекторы
- Каменные радиаторы
- Инфракрасные обогреватели
- Масляные батареи
Нужно понимать, что не все вышеперечисленные агрегаты подойдут для постоянного отопления!
Настенные электрические конвекторы
Принято считать, что такие модели работают по принципу естественной циркуляции воздуха. Правда ли это?
Да, но только отчасти. Все дело в том, что для здоровой естественной циркуляции воздуха необходимы вертикальные ребра и расстояние между ними не менее 10 мм.
Если расстояние между вертикальными секциями менее 10 мм, то скорость потока воздуха сильно замедляется, практически останавливается, а у конвекторных моделей вообще отсутствуют какие либо секции!
Из-за того, что воздушные потоки замедляются, скорость обогрева помещения также замедляется.
Конвекторы представляют из себя жестяной корпус, снизу которого располагается отверстие для захода холодного воздуха, а сверху “жабры” для выхода нагретого. Внутри расп о ложен нагревательный элемент, нагревающий воздушную массу, проходящую через него.
Стоит заметить, что нагревательный элемент с высокой температурой находится в открытом состоянии, что ведет к сжиганию частиц пыли в воздухе, вследствие чего выделяется угарный газ.
- Доступная цена
- Легкая установка
- Частые поломки нагревательных элементов
- Значительное потребление электричества
- Сушит воздух и сжигает пыль, у чувствительных людей могут появиться головные боли
- Плохая конвекция, из-за чего на некоторые приборы ставят вентиляторы
- Не подходит для постоянного обогрева помещения
Электрические каменные радиаторы
Рассматривая виды отопительных электроприборов, мы не могли пройти мимо электрических радиаторов из камня. Линейку данной продукции выпускает отечественный производитель под брендом Heat Stone. Подробно изучив данную тематику, мы узнали много нового и интересного в сфере электроотопления и спешим поделиться с вами!
Посмотрите видеообзор отопления каменными радиаторами Heat Stone
Каменные батареи выглядят как привычные всем трубчатые или чугунные радиаторы. Они имеют те самые секции, о которых мы говорили выше и расстояние между каждым ребром около 20 мм, что создает очень хорошую естественную конвекцию. Если выставить руку над батареей, то можно почувствовать, как сильно горячий воздух дует вверх. Это обеспечивает максимально быстрый прогрев помещения.
Нагревательный элемент находится внутри камня и абсолютно изолирован от окружающего пространства, тем самым не происходит сжигание пыли, а пожаробезопасность возведена на высший уровень первого класса!
Каменные батареи Heat Stone обогревают помещение преимущественно конвекционным способом, но, в добавление к этому, они излучают инфракрасное длинноволновое излучение, схожее с тем, которое испускает человек. При длительном нахождении под такими лучами у человека происходит улучшение самочувствия. Подробнее в нашей статье “вред инфракрасного отопления для здоровья”.
Чаще всего каменные радиаторы используют для основного отопления дома или дачи, так как стоимость их подключения в разы меньше по сравнению с газом или электрокотлом. Также, высокая надежность такой системы отопления заключается в том, что даже если один прибор, вдруг, выйдет из строя, то остальные радиаторы не прекратят свою работу. Это особенно важно, когда за окном мороз, а система отопления, несмотря на неполадки, продолжает работать.
- Простая установка
- Экономичная и энергосберегающая система отопления с терморегулятором, камень долго остывает, не тратя электроэнергию
- Надежность, система отопления не выходит из строя
- Стоимость подключения отопления в разы меньше, чем электрокотел или газ
- Нет труб, воды, котельной
- Не замерзает
- Можно оставлять без присмотра
- Цена выше по сравнению с конвекторами
Инфракрасные настенные обогреватели
Инфракрасные приборы представляют собой панель с теплообменником внутри. Такие обогреватели обогревают инфракрасным излучением, из чего площадь таких устройств должна быть больше, чем, например, у кварцевого обогревателя, который вряд ли сможет что-нибудь согреть.
Инфракрасники также производят приятное для человека длинноволновое излучение. Но конвекция таких приборов будет сравнима с обычным конвектором, потому что у них нет секций, но им это и не нужно, так как их основной способ обогрева — инфракрасное излучение, с чем они прекрасно справляются.
- Приятное тепло
- Приемлемая цена
- Простой монтаж
- Не походит для основного отопления
- Плохая конвекция
- Заметное потребление электричества
Настенные масляные батареи: хуже всех?
Масляные батареи мы внесли в этот список только для того, чтобы обезопасить вас от этих обогревателей. Мы считаем, что такие электроприборы даже не могут стоять в одном ряду с вышеперечисленными по некоторым причинам, которые нам известны из практики:
- Пожароопасны
- Не надежны
- Не терпят интенсивных работ
Вам может показаться, что мы неправы. Ведь у многих из вас есть такие обогреватели, и многих из вас они ни разу не подводили, и кто-то из вас скажет: “Да у меня такая батарея на даче уже 10 лет стоит и до сих пор работает!”. И все, что вы скажете будет верно, но только с субъективной точки зрения.
С объективной точки зрения, большая часть пожаров от электрообогревателей приходится именно на долю масляных.
Их корпус часто подвергается разгерметизации и протечки масла. Как только уровень масла опускается ниже нагревательного элемента и оголяет его, он начинает набирать пожароопасную температуру, и появляется опасность возгорания масла.
Поэтому, такие обогреватели нельзя оставлять без присмотра, а тем более использовать как основное отопление. Но в защиту этих моделей можно сказать то, что они действительно хорошо обогревают, так как имеют многочисленные секции и греют преимущественно конвекционным способом.
Если вы все же решились купить масляный обогреватель, то мы рекомендуем использовать его как дополнительное тепло для вашего помещения и только под присмотром человека.
- Низкая цена
- Быстро обогревает помещение
- Мобильность (чаще используются с колесиками на ножках)
- Пожароопасны
- Ненадежны
- Требуется надзор человека
- Много потребляет
- Не подходит как основное отопление
Вывод
Мы постарались подробно и с объективной точки зрения описать каждый вид радиаторов, о которых сегодня рассказали в этой статье. В следующих статьях мы обязательно раскроем тему электроотопления подробнее. Если у вас остались вопросы по данной статье или какие-то возражения на наши вышесказанные слова, то смело пишите свои отзывы о прочитанном в комментариях под этой статьей, мы обязательно ответим на ваш вопрос или возражение и вместе найдем объективное решение общих проблем. Спасибо, что дочитали до конца!
Радиаторы для светодиодов: расчет площади, выбор материала, изготовление своими руками
Заявленный срок службы светодиодов исчисляется десятками тысяч часов. Чтобы достичь столь высокого показателя, не ухудшив при этом оптические характеристики, мощные светодиоды необходимо использовать в паре с радиатором. Данная статья позволит читателю найти ответы на вопросы, связанные с расчётом и выбором радиатора, их модификациями и факторами, влияющими на отвод тепла.
А зачем он нужен?
Наравне с другими полупроводниковыми приборами светодиод не является идеальным элементом со 100% коэффициентом полезного действия (КПД). Большая часть потребляемой им энергии рассеивается в тепло. Точное значение КПД зависит от типа излучающего диода и технологии его изготовления. Эффективность слаботочных светодиодов составляет 10-15%, а у современных белых мощностью более 1 Вт её значение достигает 30%, а значит, остальные 70% расходуются в тепло.
Каким бы ни был светодиод, для стабильной и продолжительной работы ему необходим постоянный отвод тепловой энергии от кристалла, то есть радиатор. В слаботочных led функцию радиатора выполняют выводы (анод и катод). Например, в SMD 2835 вывод анода занимает почти половину нижней части элемента. В мощных светодиодах абсолютная величина рассеиваемой мощности на несколько порядков больше. Поэтому нормально функционировать без дополнительного теплоотвода они не могут. Постоянный перегрев светоизлучающего кристалла в разы снижает срок службы полупроводникового прибора, способствует плавной потере яркости со смещением рабочей длины волны.
Конструктивно все радиаторы можно разделить на три большие группы: пластинчатые, стержневые и ребристые. Во всех случаях основание может иметь форму круга, квадрата или прямоугольника. Толщина основания имеет принципиальное значение при выборе, так как именно этот участок несёт ответственность за приём и равномерное распределение тепла по всей поверхности радиатора.
На форм-фактор радиатора оказывает влияние будущий режим работы:
- с естественной вентиляцией;
- с принудительной вентиляцией.
Радиатор охлаждения для светодиодов, который будет использоваться без вентилятора, должен иметь расстояние между рёбрами не менее 4 мм. В противном случае естественной конвекции не хватит для успешного отвода тепла. Ярким примером служат системы охлаждения компьютерных процессоров, где за счёт мощного вентилятора расстояние между рёбрами уменьшено до 1 мм.
При проектировании светодиодных светильников большое значение уделяется их внешнему виду, что оказывает огромное влияние на форму теплоотвода. Например, система отвода тепловой энергии светодиодной лампы не должна выходить за рамки стандартной грушевидной формы. Этот факт вынуждает разработчиков прибегать к различным ухищрениям: использовать печатные платы с алюминиевой основой, соединяя их с корпусом-радиатором при помощьи термоклея.
Материалы изготовления радиаторов
В настоящее время охлаждение мощных светодиодов производят преимущественно на радиаторах из алюминия. Такой выбор обусловлен лёгкостью, низкой стоимостью, податливостью в обработке и хорошими теплопроводящими свойствами этого металла. Монтаж медного радиатора для светодиода оправдан в светильнике, где первостепенное значение имеют размеры, так как медь в два раза лучше рассеивает тепло, чем алюминий. Свойства материалов, которые наиболее часто используются для охлаждения мощных светодиодов, рассмотрим более детально.
Алюминиевые
Коэффициент теплопроводности алюминия находится в пределах 202–236 Вт/м*К и зависит от чистоты сплава. По этому показателю он в 2,5 раза превосходит железо и латунь. Кроме этого, алюминий поддаётся разным видам механической обработки. Для увеличения теплоотводящих свойств алюминиевый радиатор анодируют (покрывают в чёрный цвет).
Медные
Теплопроводность меди составляет 401 Вт/м*К, уступая среди других металлов лишь серебру. Тем не менее медные радиаторы встречаются намного реже алюминиевых, что обусловлено наличием ряда недостатков:
- высокая стоимость меди;
- сложная механическая обработка;
- большая масса.
Применение медной охлаждающей конструкции ведёт к увеличению себестоимости светильника, что недопустимо в условиях жёсткой конкуренции.
Керамические
Новым решением в создании высокоэффективных теплоотводов стала алюмонитридная керамика, теплопроводность которой составляет 170–230 Вт/м*К. Этот материал отличается низкой шероховатостью и высокими диэлектрическими свойствами.
С применением термопластика
Несмотря на то что свойства теплопроводных пластмасс (3–40 Вт/м*К) хуже, чем у алюминия, их главными преимуществами являются низкая себестоимость и лёгкость. Многие производители светодиодных ламп используют термопластик для изготовления корпуса. Однако термопластик проигрывает конкуренцию металлическим радиаторам в проектировании светодиодных светильников мощностью более 10 Вт.
Особенности охлаждения мощных светодиодов
Как указывалось ранее, обеспечить эффективный отвод тепла от светодиода можно при помощи организации пассивного или активного охлаждения. Светодиоды мощностью потребления до 10 вт целесообразно устанавливать на алюминиевые (медные) радиаторы, так как их массогабаритные показатели будут иметь приемлемые значения.
Применение пассивного охлаждения для светодиодных матриц мощностью 50 Вт и более становится затруднительным; размеры радиатора составят десятки сантиметров, а масса возрастёт до 200-500 грамм. В этом случае стоит задуматься о применении компактного радиатора вместе с небольшим вентилятором. Этот тандем позволит снизить массу и размеры системы охлаждения, но создаст дополнительные трудности. Вентилятор необходимо обеспечить соответствующим напряжением питания, а также позаботиться о защитном отключении светодиодного светильника в случае поломки кулера.
Существует ещё один способ охлаждения мощных светодиодных матриц. Он состоит в применении готового модуля SynJet, который внешне напоминает кулер для видеокарты средней производительности. Модуль SynJet отличается высокой производительностью, тепловым сопротивлением не больше 2 °C/Вт и массой до 150 г. Его точные размеры и вес зависят от конкретной модели. К недостаткам стоит отнести необходимость в источнике питания и высокую стоимость. В результате получается, что светодиодную матрицу в 50 Вт нужно крепить либо на громоздкий, но дешёвый радиатор, либо на маленький радиатор с вентилятором, блоком питания и системой защиты.
Каким бы ни был радиатор, он способен обеспечить хороший, но не самый лучший тепловой контакт с подложкой светодиода. Для снижения теплового сопротивления на контактируемую поверхность наносят теплопроводящую пасту. Эффективность её воздействия доказана повсеместным применением в системах охлаждения компьютерных процессоров. Качественная термопаста устойчива к затвердеванию и обладает низкой вязкостью. При нанесении на радиатор (подложку) достаточно одного тонкого ровного слоя на всей площади соприкосновения. После прижима и фиксации толщина слоя составит около 0,1 мм.
Расчет площади радиатора
Существуют два метода расчёта радиатора для светодиода:
- проектный, суть которого состоит в определении геометрических размеров конструкции при заданном температурном режиме;
- поверочный, который предполагает действовать в обратной последовательности, то есть при известных параметрах радиатора можно рассчитать максимальное количество теплоты, которую он способен эффективно рассеивать.
Применение того или иного варианта зависит от имеющихся исходных данных. В любом случае точный расчёт – это сложная математическая задача с множеством параметров. Кроме умения пользоваться справочной литературой, брать необходимые данные из графиков и подставлять их в соответствующие формулы, следует учитывать конфигурацию стержней или рёбер радиатора, их направленность, а также влияние внешних факторов. Также стоит учитывать и качество самих светодиодов. Зачастую в светодиодах китайского производства реальные характеристики расходятся с заявленными.
Точный расчёт
Прежде чем перейти к формулам и расчётам, необходимо ознакомиться с основными терминами в области распространения тепловой энергии. Теплопроводность представляет собой процесс передачи тепловой энергии от более нагретого физического тела к менее нагретому. Количественно теплопроводность выражается в виде коэффициента, который показывает, сколько теплоты способен передать материал через единицу площади при изменении температуры на 1°K. В светодиодных светильниках все части, задействованные в обмене энергии, должны обладать высокой теплопроводностью. В частности это касается передачи энергии от кристалла к корпусу, а затем к радиатору и воздуху.
Конвекция – тоже процесс передачи тепла, который происходит за счёт движения молекул жидкостей и газов. Применительно к светодиодным светильникам принято рассматривать обмен энергией между радиатором и воздухом. Это может быть естественная конвекция, происходящая за счет естественного перемещения воздушного потока, или принудительная, организованная за счёт установки вентилятора.
В начале статьи указывалось, что около 70% потребляемой светодиодом мощности расходуется в тепло. Чтобы рассчитать радиатор для светодиодов, необходимо знать точное количество рассеиваемой энергии. Для этого воспользуемся формулой:
PТ – мощность, выделяемая в виде тепла, Вт;
k – коэффициент, учитывающий процент энергии, переходящей в тепло. Это величина для мощных светодиодов принимается равной 0,7-0,8;
UПР – прямое падение напряжения на светодиоде при протекании номинального тока, В;
IПР – номинальный ток, А.
Пришло время посчитать количество препятствий, расположенных на пути прохождения теплового потока от кристалла к воздуху. Каждое препятствие представляет собой тепловое сопротивление (termal resistance), обозначаемое символом (Rθ, градус/Вт). Для наглядности всю систему охлаждения представляют в виде схемы замещения из последовательно-параллельного включения тепловых сопротивлений
Rθjc – тепловое сопротивление p-n-переход-корпус (junction-case);
Rθcs – тепловое сопротивление корпус-радиатор (case-surfase radiator);
Rθsa– тепловое сопротивление радиатор-воздух (surfase radiator-air).
Если предполагается устанавливать светодиод на печатную плату или использовать термопасту, то также нужно учесть их тепловые сопротивления. На практике значение Rθsa можно определить двумя способами.
Rθja – сопротивление p-n-переход-воздух;
Tj – максимальная температура p-n-перехода (справочный параметр), °C;
Ta – температура воздуха вблизи радиатора, °C.
Найти из графика «зависимость максимального теплового сопротивления от прямого тока».
По известному Rθsa выбирают стандартный радиатор. При этом паспортное значение теплового сопротивления должно быть немного меньше расчетного.
Приблизительная формула
Многие радиолюбители привыкли использовать в своих самоделках радиаторы, оставшиеся от старой электронной аппаратуры. При этом они не желают углубляться в сложные вычисления и покупать дорогие новинки импортного производства. Как правило, их интересует один только вопрос: «Какую мощность может рассеять имеющийся в наличии алюминиевый радиатор для светодиодов?»
Предлагаем воспользоваться простой эмпирической формулой, позволяющей получить приемлемый результат расчёта: Rθsa=50/√S, где S – площадь поверхности радиатора в см 2 .
Подставляя в данную формулу известное значение суммарной площади теплоотвода с учетом поверхности рёбер (стержней) и боковых граней, получаем его тепловое сопротивление.
Допустимую мощность рассеивания находим из формулы: Pт=(Tj-Ta)/Rθja.
Приведенный расчёт не учитывает много нюансов, влияющих на качество работы всей охлаждающей системы (направленность радиатора, температурные характеристики светодиода и пр.). Поэтому полученный результат рекомендуется умножать на коэффициент запаса – 0,7.
Радиатор для светодиода своими руками
Сделать алюминиевый радиатор для светодиодов 1, 3 или 10 Вт своими руками несложно. Сначала рассмотрим простую конструкцию, на изготовление которой потребуется около полчаса времени и круглая пластина толщиною 1-3 мм. По окружности через каждые 5 мм делают надрезы к центру, а получившиеся сектора слегка загибают, чтобы готовая конструкция напоминала крыльчатку. Для крепления радиатора к корпусу в нескольких секторах делают отверстия. Немного сложнее сделать самодельный радиатор для 10 ваттного светодиода. Для этого понадобиться 1 метр алюминиевой полосы шириной 20 мм и толщиной 2 мм. Сначала полосу распиливают ножовкой на 8 равных частей, которые затем складывают стопкой, просверливают насквозь и стягивают болтом с гайкой. Одну из боковых граней шлифуют под крепление светодиодной матрицы. С помощью стамески полосы разгибают в разные стороны. В местах крепления светодиодного модуля сверлят отверстия. На отшлифованную поверхность наносят термоклей, сверху прикладывают матрицу, фиксируя её саморезами.
Дешевые теплоотводчики для любительских самооделок
Специально для радиолюбителей, которые любят экспериментировать с разными материалами для отвода тепла и при этом не хотят тратить деньги на дорогостоящие готовые изделия, дадим несколько рекомендаций по поиску и изготовлению радиаторов своими руками. Для охлаждения светодиодных лент и линеек прекрасно подойдёт мебельный профиль из алюминия. Это могут быть направляющие для шкафов-купе или кухонная фурнитура, остатки которой можно купить по себестоимости в мебельном магазине.
Для охлаждения светодиодных матриц 3-10 Вт подойдут радиаторы из советских магнитофонов и усилителей, которых более чем достаточно на радиорынках каждого города. Также можно использовать запчасти от старой оргтехники.
Самодельное охлаждение для 50 Вт светодиода можно сделать из радиатора от неисправной бензопилы, газонокосилки, распилив его на несколько частей. Купить такие запчасти можно в ремонтных мастерских по цене лома. Конечно, про эстетические качества светодиодного светильника в этом случае можно забыть.