Что такое система панельно лучистого отопления

ПАНЕЛЬНО-ЛУЧИСТОЕ ОТОПЛЕНИЕ

1. Чем отличается панельно-лучистое отопление от конвективного?

Конвективное отопление характерно тем, что температура внутреннего воздуха выше, чем температура окружающих конструкций (средняя радиационная температура ).

> ,

При лучистом отоплении температура ограждающих конструкций выше, чем температура внутреннего воздуха

Термин «лучистое отопление» обычно используют, когда применяются плоские горизонтальные или вертикальные греющие панели.

2. Как подразделяются системы панельно-лучистого отопления?

Системы панельно-лучистого отопления подразделяются:

а) по температуре поверхности панели:

— низкотемпературные – до 70 о С;

— среднетемпературные – до 250 о С;

— высокотемпературные – до 900 о С.

б) по виду теплоснабжения

Местные системы имеют панели или отражательные экраны со средней и высокой температурой. Энергоносителями для них являются электрический ток и дымовые газы.

Центральные системы пользуются панелями и отражательными экранами со средней и низкой температурой. Они имеют централизованное теплоснабжение с теплоносителями водой и воздухом (в редких случаях – паром).

3. Где размещаются греющие панели?


Панели располагаются в полу, потолке, наружных стенах и перегородках (рисунок 16).

1 – потолочное; 2 – стеновое; 3 – перегородочное контурное; 4 – напольное;

5 – подоконное; 6 – плинтусное; 7 – перегородочный регистр

Рисунок 16 — Размещение греющих панелей в помещении

4. Какие преимущества и недостатки у панельно-лучистого отопления?

Достоинства:

— Этот вид отопления по сравнению с другими создает в помещении более благоприятный микроклимат. Комфортное состояние наступает при температуре примерно на 2 о С ниже, чем при конвективном отоплении. Это дает экономию тепловой энергии;

— Кроме того, при снижении температуры несколько повышается относительная влажность и это благоприятно сказывается на самочувствии людей;

— Встроенный панели гигиеничны, на них нет осаждения пыли и ослаблен ее разнос;

— Низкий расход металла;

— При заводском изготовлении панелей уменьшаются затраты труда на монтаж системы отопления.

Недостатки:

— Неремонтопригодность. При засорении труб зачастую прочистка их невозможна и приходится замоноличенные трубы обрезать, создавая новую систему отопления;

— Сложность регулирования теплоотдачи;

— Некоторое увеличение капитальных затрат (по сравнению с конвективным отоплением) в связи с пониженной температурой теплоносителя.

5. Почему заложенная в панель труба дает больше теплоты, чем открытая?

Тепловой поток с поверхности отопительного прибора возрастает при устройстве оребрения (за счет увеличения поверхности нагрева). Такой прием называется эффектом оребрения.

В случае нанесения на поверхность трубы слоя другого материала, например, бетона, возникает аналогичный эффект оребрения. Поэтому, труба, замоноличенная в панель будет отдавать больше теплоты, чем открыто проложенная.

Однако, если заглубление трубы в бетон будет значительным, то бетон начнет выполнять роль изоляции и эффект оребрения уничто- жится. На рисунке 17 изображена труба с наложенным слоем другого материала


.

1 – стенка трубы; 2 – слой оребрения

Рисунок 17 – Схема оребренной трубы

Значение d3, при котором тепловой поток будет максимальным называется критическим диаметром. Его величина зависит от теплопро-

водности. Для железобетона он равен 0,24 м, для шлакобетона — 0,03 м.

Отсюда вывод: для панельных систем отопления нужно применять тяжелый бетон, у которого высокая теплопроводность.

Рисунок 18 – Плоская панель с замоноличенными трубами

На рисунке 18 изображена панель с замоноличенными трубами, по которым протекает теплоноситель. Тонкими линиями обозначен критический диаметр. И, как видно из рисунка, эффект оребрения зависит от расстояния между трубами, обозначенным буквой «а».

Отсюда вывод: при малом расстоянии между трубами снижается эффект оребрения.

6. Каково оптимальное расстояние между трубами?

Расстояние между трубами в панели называется шагом труб. Шаг зависит от вида помещения и его теплопотерь. Диапазон шага колеблется в пределах от 50 до 600 мм. Чаще всего применяется шаг 150, 200 и 300 мм.

В случае напольных панелей при малых теплопотерях, составляющих не более 50 Вт/м 2 , допускается шаг 300 мм. В помещениях с большими теплопотерями (при тепловой нагрузке более 80 Вт/м 2 ) и помещениях с повышенными требованиями к равномерности температуры поверхности пола шаг принимается равным 150 мм. В промежуточных случаях часто применяется переменный шаг укладки – вдоль наружных стен он меньше, чем вдоль внутренних (см.рисунок 26 ).

Количество рядов труб с уменьшенным шагом определяется в процессе проектирования.

Шаг в 200 мм характерен для аквапарков, бассейнов и крупных промышленных помещений [6].

7. Где рекомендуется устраивать панельно-лучистое отопление?

Панельно­-лучистое отопление применяют:

— в жилых зданиях;

— в помещениях детских дошкольных учреждений;

— в операционных, родовых, наркозных и тому подобных помещениях лечебно­-профилактических учреждений;

— в помещениях и вестибюлях (теплые полы) об­щественных зданий;

— для обоrревания основных помещений вокзалов, аэропортов, aнrapoв, высоких цехов производственных зданий;

— по­мещений катеrорий Г и Д (кроме помещений со значительным влаrовыделением);

— в производственных помещениях с особыми требованиями к чистоте (производство пищевых продуктов, сборка точных приборов и т.п.).

8. Как распределяется лучистый поток между ограждениями помещения?

Распределение лучистого потока показано в таблице .

Читайте также:  Панели инфракрасного отопления степ

Если излучение попадает на какое-либо из ограждений, то оно частично поглощается, частично отражается. Поверхность, поглотившая лучистый поток создает вторичное излучение. Таким образом, все ограждения повышают свою температуру и становятся своеобразными отопительными приборами.

Таблица 1 – Распределение лучистого потока от отопительной

панели между ограждениями помещения (в долях единицы)

Системы лучистого отопления и охлаждения

В последнее время в связи со строительством офисов больших площадей со свободной планировкой рабочих пространств появилась необходимость в применении систем отопления и охлаждения помещений, позволяющих трансформировать системы обеспечения микроклимата так же свободно, как и изменять планировку офиса. Появление современных стеклопакетов с высоким сопротивлением теплопередаче позволило убрать отопительные приборы из-под оконных проемов; требования к качеству микроклимата помещения и к энергосбережению возросли. Системы лучистого отопления и охлаждения получили новый виток развития. Теплые полы и излучающие панели, охлаждающие потолки и «балки» – все это не только современная альтернатива традиционным системам отопления, охлаждения и кондиционирования воздуха, но и оборудование, имеющее в своей основе иной принцип обеспечения комфорта в помещении, когда нагрев или охлаждение воздуха происходит за счет не только конвекции, но и излучения.

Достаточно распространенные в странах Северной Европы системы лучистого отопления и охлаждения обозначили отход от традиционных водяных и воздушных систем и сегодня представляют оригинальную европейскую методику. Хотя у данных систем тоже есть свои недостатки, они обеспечивают комфорт, в большей степени соответствующий характеру теплообмена человека.

Имеющиеся сегодня инженерные решения на основе систем лучистого отопления и охлаждения позволяют более рационально, по сравнению с традиционными, выстраивать архитектурный облик здания и интерьеры помещений. Теплоноситель (как правило, вода), используемый в таких системах, имеет умеренную температуру как для отопления, так и для охлаждения, отсюда оптимальные условия для работы конденсационных котлов и тепловых насосов, солнечных коллекторов, высокий уровень энергетической эффективности и экологической безопасности.

Часть 1. Отопление излучающими панелями

При использовании систем лучистого отопления средняя температура в помещении обычно выше, чем температура воздуха, т. к. передача тепла осуществляется нагретыми поверхностями пола, потолка, стен большой площади либо их сочетанием.

Вследствие большой площади теплоотдающих поверхностей их температура близка к требуемой температуре в помещении и нет необходимости использовать воздух в качестве дополнительного способа нагрева помещения. Равные условия комфорта в помещении можно обеспечить при более низкой температуре воздуха, сократив расход тепла на подогрев вентиляционного воздуха. Основное отличие между традиционным и лучистым отоплением как раз и состоит в температуре воздуха. В жилом помещении с лучистым отоплением она всегда ниже в среднем на 2 °C: понижение температуры всего на 1 °C позволяет снизить потребление энергоресурсов в среднем до 7 %. При этом должно быть понятно, что величина экономии растет пропорционально отапливаемым объемам. То есть в помещениях очень большой площади – соборах, музеях и пр. – экономия энергии достигает 40–50 %. Если к тому же системы лучистого отопления использовать в комбинации с современными генераторами тепла, результаты по параметрам сезонной производительности просто потрясающие.

Что касается материалов, применяемых для изготовления излучающих панелей, на первом месте стоит медь – по показателям теплопроводности, меньшей высоте прокладки, высокой термостойкости и отсутствию проблем с осмосом. Пластмассовые материалы (полиэтилен, полибутилен и др.), в свою очередь, очень технологичны при монтаже, что позволяет значительно снизить его стоимость.

Рисунок 1.

Вертикальное распределение температуры от теплого пола близко к идеальному

Отопление теплыми полами

Отопление теплым полом обеспечивает практически безградиентное распределение температуры по высоте человека, при этом к ногам поступает тепла чуть больше, чем к голове.

Основным параметром при проектировании систем с теплым полом является температура его поверхности: известно, что при превышении определенных значений вероятно возникновение проблем физиологического характера, касающихся кровообращения нижних конечностей. По этой причине международными стандартами установлена максимальная температура теплого пола 29 °C при температуре внутреннего воздуха 20 °C. Для участков пола, где нахождение людей маловероятно, допускается максимальная температура поверхности пола 35 °C, в туалетных и ванных комнатах эта температура не может превышать 33 °C при температуре внутреннего воздуха 24 °C.

Рисунок 2.

Теплоотдача теплого пола. В целях предотвращения проблем с кровообращением нижних конечностей человека температура поверхности теплого пола не может превышать 29 °C

Теплоотдача пола с постоянной равномерной температурой рассчитывается по следующей формуле:

где q – тепловой поток поверхности пола, Вт/м 2 ;

tп – средняя температура поверхности пола, °C;

tв – средняя температура воздуха, °C.

Если tп = 29 °C и tв = 20 °C, тепловой поток составит:

q = 8,92 х (29 – 20) 1,1 = 100 Вт/м 2 .

Схема регулирования температуры воды на подаче в контур излучающей панели. Рекомендуется для систем малой и средней площади

Одной из причин, по которым в 1950-е и 1960-е годы отопление теплым полом было признано недостаточно надежным, были проблемы с регулированием, обусловленные, главным образом, высокой тепловой инерцией системы, что плохо подходило для обеспечения регулирования температуры воздуха.

Рисунок 4.

Теплоотдача излучающей панели в стене. Поскольку пользователи здесь непосредственно не контактируют с излучающей поверхностью панели, допускается более высокий уровень температуры поверхности, чем у теплого пола

Сегодня в результате улучшения теплозащиты зданий, оптимизации геометрической раскладки труб и практически повсеместного наличия теплоизоляции под цементной стяжкой обогревающие полы могут давать очень неплохие результаты по обеспечению регулирования температуры воздуха, вполне сопоставимые с параметрами других систем отопления.

Рисунок 5.

Модульная панель, выполненная из меди, для установки под штукатурку.

Система практична и монтируется в кратчайшие сроки

Для организации эффективного регулирования обогревающих полов необходим грамотный расчет циркуляционных колец, при котором в каждую излучающую панель (циркуляционное кольцо) должен поступать расчетный расход теплоносителя. Как правило, регулирование температуры теплого пола состоит в регулировании температуры воды на подаче в контур в зависимости от температуры наружного воздуха. Такое регулирование далеко не всегда может обеспечить комфортные условия в отдельных помещениях, поскольку центральное регулирование по датчику температуры наружного воздуха не позволяет учесть внутренние тепловыделения в отдельных помещениях. Более эффективно сочетание центрального регулирования с местными термоэлектрическими клапанами, устанавливаемыми на каждую панель и получающими сигнал от комнатного термостата. В этом случае центральное регулирование обеспечивает подачу теплоносителя с оптимальной, в соответствии с погодными условиями, температурой, а комнатные термостаты обеспечивают комфортные условия в каждом помещении с учетом внутренних тепловыделений.

Рисунок 6.

Теплоотдача потолочных излучающих панелей. Для жилых помещений рекомендуется перепад 10 °C между поверхностью активных элементов и температурой воздуха в помещении. Рабочие параметры и ограничения аналогичны параметрам теплых полов

Излучающие панели в стенах

Излучающие панели в стенах применяются, как правило, дополнительно к другим системам отопления, но могут использоваться и в качестве самостоятельной системы.

Поскольку пользователи не имеют непосредственного контакта с нагретой поверхностью панели, действующие европейские нормативы допускают температуру поверхности более 30 °C. Теплоотдача панелей выше, чем у обогревающих полов, и варьируется от 160 до 200 Вт/м 2 .

Монтаж панелей

Монтаж под штукатурку

Модульные блоки змеевика панелей монтируются непосредственно на стену обычным крепежом и покрывают штукатуркой слоем толщиной около 3,5 см.

Монтаж под облицовочные панели

Модульные блоки змеевика панелей монтируются на стену и закрываются гипсокартоном либо иной жесткой облицовкой.

Блоки змеевика крепятся посредством вертикальных либо горизонтальных осевых опорных штанг на слой теплоизолирующего материала, покрытого, как правило, алюминиевым листом.

Заделка в армированные бетонные панели

Модульные блоки змеевика крепятся к металлической арматуре, затем заливаются бетоном по традиционному методу. Готовая панель оставляется открытой либо штукатурится.

Температурная динамика в помещениях, оборудованных обогревающими панелями в стенах, достаточно плавная. Установлено, что при средней температуре 40 °C подаваемой в змеевик воды и температуре воздуха в помещении в пределах 19–20 °C доля излучения в теплоотдаче панелей составляет 80–85 %, доля конвекции – 15–20 %.

Другая особенность панелей в стенах – низкая тепловая инерция, которая (будучи обусловленной особенностями установки) в любом случае оказывается ниже, чем у теплых полов. Это обстоятельство приобретает особое значение для объектов, где теплоснабжение работает в переменном режиме. Следует, однако, признать, что в этом вопросе есть одна немаловажная особенность, которая оказывает влияние на выбор в пользу того или иного решения – в жилых помещениях, обставленных мебелью, эффективность обогревающих панелей в стенах существенно снижается.

Потолочные излучающие панели

Первые излучающие панели, которые появились на рынке отопительных систем, были потолочными.

В силу отсутствия прямого контакта излучающих панелей с человеком для них (как и для обогревающих панелей в стенах) допустимы более высокие значения температуры поверхности, нежели для теплых полов, что позволяет обеспечить достаточно высокую теплоотдачу, не создавая особого дискомфорта для пользователей.

Очевидно, что допустимые максимальные значения температуры поверхности для потолочных панелей в значительной степени обусловлены высотой потолков. Для жилых помещений со стандартной высотой потолков рекомендуется перепад 10 °C между температурой поверхности панели и температурой воздуха в помещении.

Высокая тепловая инерция самых первых отопительных систем этого типа была вызвана тем обстоятельством, что панели встраивались в бетонные междуэтажные перекрытия. Подвесные излучающие потолки модульного типа отличаются низкой тепловой инерцией, простотой установки и – что немаловажно – чрезвычайной легкостью и безопасностью доступа для обслуживания.

Распределение температуры по вертикали в режиме отопления показывает, что излучающие потолки подходят скорее для охлаждения помещений в летний период. Как бы там ни было, системы такого рода представляют собой добротный функциональный компромисс между летним охлаждением и зимним отоплением и особенно подходят для предприятий сферы услуг, где модульность подвесных потолочных конструкций обеспечивает:

— неплохую гибкость, поскольку используемые соединения позволяют без труда реконструировать систему в случае перепланировки помещений;

— возможность интеграции других типов систем (освещения, противопожарной системы и пр.) без изменения внешнего вида и нарушения функциональности установленных панелей.

Заключение

В прошлом негативное влияние определенных факторов, а точнее поверхностный подход к решению функциональных проблем, свойственным излучающим панелям, приводило к известному скептицизму в отношении систем лучистого отопления. Однако сегодня – в связи с улучшением теплоизоляции зданий и системы регулирования температуры воздуха – системы лучистого отопления переживают второе рождение.

Большие поверхности систем лучистого отопления, нагреваемые до невысоких температур, обладают целым рядом преимуществ, среди которых выделяются:

— высокий тепловой комфорт;

— лучшее качество воздуха;

— практически полное отсутствие воздействия на окружающую среду;

То обстоятельство, что монтаж таких систем осуществляется, как правило, специализированными организациями, которые гарантируют функциональные проектные параметры, является залогом непрерывного роста числа излучающих панелей в сдаваемых объектах жилищного строительства.

В статье использованы материалы:

1. G. Redondi. Il riscaldamento a pannelli radianti // Costruire Impianti. 2003. № 1.

2. Ф. А. Миссенар. Лучистое отопление и охлаждение. М.: ГСИ, 1961.

3. В. Н. Богословский. Строительная теплофизика. М.: ВШ, 1970.

Системой обогрева – охлаждения в помещении должна быть создана благоприятная для человека тепловая обстановка. Самочувствие и работоспособность человека зависят от состояния физиологической системы терморегуляции организма, которая нормально функционирует при температуре около 36,6 °C. Для поддержания постоянной температуры организм человека непрерывно вырабатывает тепло, которое отдается окружающей среде. В зависимости от физиологического и эмоционального состояния человека, его одежды, возраста, вида выполняемой работы и индивидуальных особенностей организма количество тепла, выделяемого в окружающую среду, может быть различным.

Тепловой комфорт и энергетический баланс человека

Общий тепловой (энергетический) баланс человека (Вт) характеризуется следующим уравнением:

где D Qч – избыток (накопление) или недостаток тепла в организме;

Qч – теплопродукция организма (общее количество энергии, вырабатываемой организмом);

Q p ч – расход тепла (энергии) на механическую работу;

Q к ч – составляющая теплообмена человека конвекцией;

Q л ч – составляющая теплообмена человека излучением;

Q т ч – тепловая энергия, обусловленная теплообменом со средой посредством теплопроводности;

Q и ч – составляющая теплообмена человека за счет затрат тепла на испарение влаги;

Q ф ч – тепло, затрачиваемое на физиологические процессы (нагрев вдыхаемого воздуха, естественный обмен веществ и пр.).

Основным способом передачи тепла является теплообмен между кожными покровами человека и окружающей средой посредством теплопроводности, конвекции, излучения и потоотделения (поскольку впоследствии пот испаряется).

Посредством теплопроводности тепла передается настолько мало, что в общем расчете теплового баланса его можно не учитывать, поскольку такие поверхности тела человека, как ладони рук или ступни ног, чрезвычайно малы по сравнению с общей площадью тела, а в тех случаях, когда температура поверхности в точке контакта существенно отличается от температуры тела человека, как правило, используются защитные предметы одежды.

Общая теплопродукция организма Qч в основном зависит от степени тяжести выполняемой человеком работы.

Расход тепла на механическую работу Q p ч обычно составляет от 5 до 35 % от дополнительных тепловыделений, связанных с выполнением физической или умственной работы. Например, для работы средней тяжести, выполняемой стоя (Qч = 300 Вт), этот процент равен 20 и Q p ч = 0,2 (Qч – 100) = 40, где 100 Вт – тепловыделение в покое. Тепло, затрачиваемое на физиологические процессы, Q ф ч не превосходит 11,6 Вт, и в расчетах его можно не учитывать.

Если теплопродукция организма и потери тепла не сбалансированы, то в организме может наблюдаться накопление тепла D Qч, связанное с повышением температуры, или его дефицит, приводящий к переохлаждению организма. Система терморегуляции организма позволяет в определенных пределах обеспечивать баланс продуцируемого и теряемого теплом тела. Однако возможности терморегуляции весьма ограничены.

Значения коэффициента А в зависимости от скорости движения воздуха
Скорость воздуха, м/с А
≤ 0,2 0,5
0,2 – 0,6 0,6
0,6 – 1,0 0,7

В пределах значений температуры среды, соответствующих комфортным условиям, теплообмен происходит главным образом конвекцией и излучением. В условиях теплового комфорта теплообмен человека происходит посредством:

— скрытого тепла (потоотделения и дыхания) – 21 %;

Таким образом, основными параметрами среды в определении тепловлажностного комфорта являются: температура, влажность, подвижность воздуха и средняя температура окружающих поверхностей помещения.

Человек ощущает не столько температуру воздуха, сколько совокупность температур воздуха Тв и радиационную температуру помещения TR, что иначе называется «температура помещения» Tп.

В умеренной тепловой среде или при температуре (TR – Tв) j в воздуха в помещении, температурами поверхностей Тi, обращенных в помещение, расположение (относительно человека) и размеры которых определяют радиационную температуру помещений TR. Комфортное сочетание этих показателей соответствует таким оптимальным метеорологическим условиям, при которых сохраняется равновесие, отсутствует напряжение в процессе терморегуляции; в подавляющем большинстве случаев комфортное сочетание этих показателей положительно оценивается находящимися в помещении людьми. Допустимыми считаются такие метеорологические условия, при которых возникает некоторая напряженность процесса терморегуляции и может иметь место небольшая дискомфортность тепловой обстановки.

Первое условие комфортности

Комфортной будет такая общая температурная обстановка в помещении, при которой человек, находясь в середине помещения, будет отдавать все явное тепло, не испытывая перегрева или переохлаждения. На теплоощущения человека в определенной мере влияют радиационная температура, температура воздуха.

Второе условие комфортности

Это условие ограничивает интенсивность теплообмена при положении человека около нагретых и охлажденных поверхностей. Определяющей величиной в этом случае является интенсивность лучистого теплообмена (радиационный баланс на наиболее невыгодно расположенной и наиболее чувствительной к излучению части поверхности тела человека). К радиационному нагреву наиболее чувствительной оказывается поверхность головы. Радиационный баланс должен быть таким, чтобы каждая часть поверхности головы отдавала излучением окружающим поверхностям не менее 11,6 Вт/м 2 . При расположении излучающей панели в потолке наиболее невыгодным (а поэтому расчетным) будет положение человека непосредственно под центром панели. При расположении панели в стенах за расчетное принимают положение человека на расстоянии 1 м от нагретой поверхности.

Поделиться статьей в социальных сетях:

Читайте также:  Как правильно подобрать по площади радиаторы отопления
Оцените статью