Водоподготовка для ГВС
Компания «Комплексные решения» осуществляет полный комплекс работ по подбору, проектированию и монтажу систем водоподготовки для ГВС и ХВС.
Чтобы получить бесплатное технико-коммерческое предложение достаточно:
- Прислать результаты анализа воды на электронную почту info@kr-company.ru. В письме указать необходимое количество и требования к очищенной воде;
- Или позвонить по телефону 8 (800) 222 80 97
- Либо Заказать анализ воды в нашей аккредитованной лаборатории.
Практически всё водоочистное оборудование предназначено для холодной воды, т.к. под воздействием высоких температур многие детали конструкции могут деформироваться, а фильтрующие материалы потерять свою эффективность. Однако очистка также часто требуется и для горячей воды.
Основные проблемы ГВС
Системы ГВС многоквартирных домов, как правило, относятся к открытому типу. То есть водоразбор горячей воды ведётся непосредственно из тепловой сети. Качество воды в такой схеме обязательно должно соответствовать питьевой. Однако в условиях повышенной температуры состав горячей воды имеет свои специфические особенности:
- Коррозионные процессы. Естественные коррозионные процессы в системе ГВС из-за воздействия высоких температур сами по себе проходят более интенсивно, чем в ХВС. Кроме того коррозию усиливает растворённый в воде кислород и углекислота, способствующе также образованию воздушных пробок в системе. На некоторых участках можно встретить смешанный монтаж чёрнометаллических труб с оцинкованными. Вследствие создания гальванической пары происходит ускоренное разрушение противокоррозионного покрытия.
- Образование отложений. Обычно вода, попадающая в системы ГВС, обязательно проходит стадию умягчения во избежание образования накипи на внутренних поверхностях оборудования и трубопровода. Однако, шлам или отложения, образуются в процессе осаждения продуктов коррозии и остаточных минеральных соединений. Постепенно они приводят к зарастанию трубопровода и ухудшению циркуляции воды.
- Механические примеси. Частицы нерастворимых механических примесей существенно ухудшают качество горячей воды: образуют мутность, ухудшают её цветность, привкус и запах.
Обеспечение качества воды в системах ГВС
Любая вода, поступающая в централизованные системы водоснабжения, проходит полную очистку и дезинфекцию на станциях водоканала. Но такие меры не способны уберечь её от вторичного загрязнения продуктами коррозии и отложений. Поэтому всё чаще стали использоваться специальные установки доочистки горячей воды.
Ввиду того, что основные загрязнения в системе ГВС относятся к нерастворимым фракциям, необходимо обеспечить тонкую механическую очистку воды. Особенностью фильтров для горячей воды является то, что каждая деталь должна быть сконструирована из термостойких материалов, например, нержавеющей стали. Современный рынок предлагает не самый широкий выбор – в основном это дисковые или сетчатые магистральные фильтры. Их недостатком является то, что они способны задерживать только крупные примеси, размером до 20 мкм, пропуская все основные загрязнения. Существуют также картриджные системы, заключённые в металлические корпуса. Они обеспечивают более тонкую очистку воды – до 1 мкм. Однако требуют частой замены фильтрующих элементов (примерно раз в 1-3 месяца) и экономически не выгодны.
Специалисты компании «Комплексные решения» предлагают для доочистки горячей воды использовать фильтры с промывными титановыми мембранами . Они позволяют обеспечить максимально тонкую очистку воды – 0,1 мкм и способны задерживать абсолютно все нерастворимые примеси и даже бактерии (размер самой маленькой из них 0,2-0,3 мкм). В зависимости от необходимой производительности одна или несколько мембран помещаются в корпус из нержавеющей стали. За счёт структурированного титанового покрытия все загрязнения задерживаются только на поверхности мембран. Промывка фильтрующих элементов производится в течение нескольких секунд очищенной водой. После этого все накопленные примеси сбрасываются в канализацию. Титановые мембраны не поддаются износу, деформации, воздействию высоких температур и агрессивных сред. Срок службы составляет более 10 лет без замены фильтрующих элементов.
Целесообразность применения водоподготовки для систем ГВС
Конечно, организация водоподготовки и доочистки ГВС требует определённых материальных затрат, особенно при массовом потреблении воды в системах ЖКХ. Однако обеспечение высокого качества горячей воды в результате приводит к существенной экономии электроэнергии и расхода холодной воды. Кроме того, качественная водоподготовка ГВС способна обеспечить снижение риска возникновения аварийных ситуаций, затрат на ремонт и замену труб.
Специалисты компании «Комплексные решения» устанавливают надёжные, эффективные и экономичные системы водоочистки и водоподготовки для систем ХВС и ГВС любого типа. В работе применяется оборудование из комплектующих от лучших европейских и отечественных производителей. За счёт чего, установкам не требуется постоянное сервисное обслуживание и присутствие специально обученного персонала.
Обращайтесь, мы даём гарантию на качество очищенной воды.
Как получить бесплатное технико-коммерческое предложение
- Привезите воду для анализа в офис нашей компании
или отправьте результаты анализа воды нам на почту info@kr-company.ru с кратким пояснением, в каких объемах требуется очищенная вода - Позвоните нам по многоканальному телефону 8(800) 222-80-97
и получите консультацию специалиста
Оставьте свой номер телефона
и мы бесплатно перезвоним Вам
Обработка воды в системах горячего водоснабжения
9.1. Показатели коррозионной активности горячей воды
Коррозионная активность горячей воды составляет основное отличие в условиях эксплуатации систем ГВ от систем холодного водоснабжения. Рассмотрим основные показатели этой активности.
Индекс насыщения воды CaCO3 («индекс Ланжелье»).
где pH — водородный показатель воды;
pHs — водородный показатель воды при ее равновесном насыщении CaCO3.
Если индекс насыщения положительный, это означает коррозионную пассивность воды, поскольку на поверхности трубопроводов будет образовываться карбонатная пленка. Если J
· карбонатная жесткость (временная) £ 1,5 мг-экв/кг;
· водородный показатель 8,3-8,5;
· содержание железа £ 0,3 мг/кг;
· свободная углекислота должна отсутствовать.
10. Способы обработки воды для систем ГВ
В открытых системах вода отбираемая на ГВ из теплосети полностью подготовлена на источнике теплоты и дополнительной обработки не требует. Водопроводная вода, используемая для ГВ в закрытых системах, в зависимости от ее исходного качества должна подвергаться противокоррозионной и противонакипной обработке. Разрешается не обрабатывать водопроводную воду только в системах ГВ, охватывающих одно здание.
Противокоррозионная обработка производится в виде деаэрации (дегазации), обескислороживания или обработки ингибиторами коррозии.
Деаэрация — выделение из воды растворенных газов путем доведения до температуры кипения. По давлению в рабочем объеме различают деаэраторы повышенного давления (до 6 кгс/см 2 ), атмосферного типа и вакуумные. В системах ЦГВ применяются деаэраторы двух последних типов.
В атмосферные деаэраторы подаются вода с температурой на 2-3 °С ниже температуры насыщения при рабочем давлении. Доведение воды до кипения производится путем прямого смешения с паром в головке деаэратора. Выделяемые газы удаляются вместе с выпаром.
В вакуумном деаэраторе вода имеет температуру около 70 °С. В результате вакуумирования вскипание воды и деаэрация происходят при этой температуре. Деаэрацию разрешается не производить при суммарном расходе воды на ГВ до 50 т/ч.
Обескислороживание ставит целью удаление из воды только О2. Для этого используются вещества, легко связывающие кислород в воде. Возможно электрохимическое и химическое (реагентное) обескислороживание но последнее в системах ГВ не применяется.
1. Электрохимическое обескислороживание в аппаратах с железоалюминиевыми электродами. Анодами являются перфорированные алюминиевые пластины , а катодами — железные пластины. На электродах поддерживается постоянное напряжение 8-12 В. На анодах протекает электрохимический процесс окисления алюминия, связывающий кислород. Последовательное соединение аппаратов позволяет получить высокую степень обескислороживания. Эксплуатация заключается в поддержании требуемых электрических параметров и удалении образующегося Al(OH)3. Недостаток метода — расход дорогого алюминия (1,12 мг Al на 1 мг О2).
2. Электрохимическое обескислороживание в сталестружечных фильтрах. Вода при температуре 50-60 °С пропускается через засыпку стальных или чугунных стружек. Поверхность стружек должна быть чистой. С этой целью их предварительно промывают раствором NaOH, а при сильном загрязнении — слабыми растворами HCl или H2SO4 с последующей промывкой горячей водой. На поверхности стружек протекает электрохимическое окисление железа, что выражается в связывании 1 мг кислорода за счет 2,4 мг Fe. Срабатывание стружек допускается до 50%, поэтому загружаются фильтры из расчета 5 мг стружек на 1 мг кислорода. Недостаток метода — загрязнение воды окислами железа. После сталестружечных фильтров обязательно устанавливаются фильтры-осветлители.
Обработка воды ингибиторами коррозии. Наиболее распространено использование в качестве ингибиторов трисиликата натрия Na2O×3SiO2 (техническое жидкое стекло) или магномассы CaMg(CO3)2 (доломит; двойная углекислая соль кальция и магния). Эти реагенты связывают углекислоту, повышая тем самым показатель рН воды и снижая ее агрессивность по отношению к металлу. Кроме того на внутренней поверхности трубопроводов образуется защитная пленка — соответственно силикатная или карбонатная.
Противонакипная обработка воды в системах ЦГВ используется преимущественно магнитная. Вода пропускается через аппарат, создающий магнитное поле в напряженностью 95-120 кА/м. Скорость воды »1 м/с, время обработки — 2-3 с. Магнитное поле может создаваться как постоянными магнитами, так и электромагнитами.
Хотя сама жесткость воды при магнитной обработке не уменьшается, проявление этой жесткости коренным образом изменяется. Нагревание воды перестает сопровождаться выпадением солей на стенках трубопроводов. Более того, ранее образовавшиеся отложения постепенно разрушаются. Магнитные свойства постепенно ослабевают. Однако системы ГВ характерны именно постоянным расходованием воды и контуры релаксации в них не требуются.
Система ГВС служит для подготовки и подачи горячей воды к санитарно-техническим приборам, технологическому оборудованию и включает в себя: установку для приготовления горячей воды, внутридомовые разводящие и циркуляционные трубопроводы, водоразборные приборы. При закрытой системе теплоснабжения и отсутствии центрального теплового пункта необходимо устанавливать подогреватель ГВС в местном тепловом пункте здания.
Системы горячего водоснабжения могут быть местные и централизованные.
В местных системах горячую воду приготовляют на месте ее потребления в газовых водонагревателях или колонках, индивидуальных нагревателях и т. д., рассчитанных на одну квартиру.
В центральных системах воду приготовляют в одном центре, из которого она транспортируется по трубам к потребителям.
Центральные системы горячего водоснабжения могут быть:
¾ с приготовлением горячей воды в водогрейных или паровых котлах, установленных в местных котельных;
¾ с приготовлением горячей воды в центральных тепловых пунктах (ЦТП) по закрытой схеме;
¾ с непосредственным водоразбором из тепловых сетей.
Централизованные системы приготовления горячей воды в водогрейных котлах применяют для одного или небольшой группы зданий. Недостаток такой системы — выделение шлама на внутренней поверхности котлов, поэтому такие системы применяют ограниченно. Для небольшой группы зданий применяют паровые котлы, пар из которых поступает в змеевик емкостного водоподогревателя, где конденсируется, нагревая воду, а конденсат через конденсатопровод поступает обратно в котел.
Водоподготовка в системах ГВС
Опубликовано: 17 июня 2010 г.
М. Иванов, к. х. н.
Вода в системе горячего водоснабжения (ГВС) должна соответствовать качеству, регламентируемому СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества». В то же время условия работы и организация систем ГВС иные, чем в случае с холодным питьевым водоснабжением. С этим связан целый ряд специфических требований, предъявляемых к устройству и работе данных систем. Они сформулированы в таких нормативных документах, как СанПиН 4723-88 «Санитарные правила устройства и эксплуатации систем централизованного горячего водоснабжения», РД 34.37.506-88 «Методические указания по водоподготовке и водно-химическому режиму водогрейного оборудования и тепловых сетей», СП 41-101-95 «Проектирование тепловых пунктов» и др.
Водные проблемы ГВС
Нагрев воды для горячего водоснабжения происходит на оборудовании, имеющем незамкнутый контур. По мере необходимости в него поступает подпиточная вода.
Важной особенностью ГВС является то, что горячая вода в точке раздачи должна иметь определенную температуру. Открывая кран, потребитель не должен ждать, пока стечет остывшая вода. Эта задача обычно решается путем организации постоянной циркуляции воды через теплообменные аппараты с целью поддержания ее температуры в сетях в заданном интервале.
Кроме того, возникновение в системах ГВС застойных зон с относительно низкой температурой приводит к размножению микроорганизмов, в том числе – болезнетворных; отложения биологического происхождения отрицательно влияют на работоспособность сетей и оборудования.
С другой стороны, эксплуатация систем при повышенных температурах связана с активизацией процессов коррозии металлов. Продукты коррозии совместно с частицами биомассы и другими нерастворимыми примесями образуют отложения на поверхности трубопроводов и теплообменных аппаратов, сужая проход для воды и затрудняя ее нагрев.
В основном, наличие нерастворимых примесей связано с низким качеством подпиточной воды, которое во многих случаях определяют состояние источника, а также изношенность либо маломощность оборудования для водоподготовки.
Для подготовки воды систем ГВС используют те же приемы, что и во всех остальных случаях, о которых уже неоднократно рассказывалось на страницах журнала «Аква-Терм».
Нехимическая обработка
Чаще всего нарушение действующих нормативов по качеству воды для ГВС касается содержания растворенного кислорода: обычно оно составляет 0,1–0,17 мг/л, хотя допустимая концентрация – 40–60 мкг/л. В то же время присутствие в воде растворенного кислорода вызывает в системах ГВС более интенсивную коррозию труб, нежели при холодном питьевом водоснабжении.
Требуемой концентрации остаточного кислорода можно добиться деаэрацией. А присутствующий в воде в виде микропузырьков воздух удаляется с помощью сепараторов различной конструкции. Кроме усиления коррозии, воздух, скапливаясь в различных участках системы и образуя так называемые воздушные пробки, препятствует нормальному течению воды.
Коррозии металлов способствует и тот факт, что при массовом строительстве в системе ГВС часто используют трубы из черной стали совместно с трубами, имеющими оцинкованную поверхность. При их смешанном монтаже, вследствие образования гальванических пар, происходит ускоренное разрушение противокоррозионного покрытия. Отметим также, что оцинкованные трубы отечественного производства, выпускаемые по ГОСТ 3262-75*, имеют толщину цинкового покрытия в 30 мкм, срок службы которого составляет всего 1,5–2 года. Как правило, толщина покрытия оцинкованных труб зарубежного изготовления – 70–80 мкм.
Серьёзная для систем ГВС проблема – образование минеральных отложений на поверхности водогрейного оборудования, труб и сантехники. Для предотвращения этого в некоторых случаях на водогрейном оборудовании устанавливают ультразвуковые излучатели, препятствующие осаждению шлама на поверхности оборудования и трубопроводов. В дальнейшем он удаляется из системы путем фильтрования. Один из видов такого оборудования – аппараты марки «Зевсоник», предназначенные для защиты от накипи водогрейных котлов малой и средней мощности, а также различного теплообменного оборудования. Действие этих аппаратов основано на возбуждении интенсивных акустических импульсов. Применяются в системе ГВС и электрохимические антинакипные устройства, защитные катоды. Например, аппарат АЭА-Т, выпускаемый ОАО «Азов» (г. Дзержинск, Нижегородская обл.).
Ингибиторы и антинакипины
Большое распространение для предотвращения образования отложений и шлама в системах ГВС получило дозирование химических реагентов. Однако на их использование имеются ограничения, регламентированные величинами предельно допустимых концентраций этих реагентов в воде ГВС. Здесь следует руководствоваться «Перечнем материалов, реагентов и малогабаритных очистных устройств, разрешенных Государственным комитетом санитарно-эпидемиологического надзора РФ для применения в практике хозяйственно-питьевого водоснабжения».
Так, согласно Перечню, остаточное содержание в воде применяемого для защиты систем ГВС от коррозии и образования накипи цинкового комплексоната оксиэтилидендифосфоновой кислоты (ОЭДФК) не должно превышать 5,0 мг/л. А максимально допустимое остаточное содержание используемой в тех же целях оксиэтилидендифосфоновой кислоты – 0,6 мг/л.
Среди химических препаратов для обработки горячей воды есть как реагенты, обладающие узконаправленным – антикоррозионным или антинакипным – действием, так и комплексные, улучшающие качество воды сразу по нескольким параметрам.
Например, реагент коррекционной подготовки воды для водогрейных котлов Advantage К 350 фирмы Ashland (Финляндия) элиминирует коррозию металлов, снижает скорость образования отложений, связывает растворенный в воде кислород и поглощает углекислоту.
Комплексное действие реагента вызвано тем, что в его состав входят амины (диэтилгидроксиламин и 2-амино-, 2-метил-пропанол), щелочь (едкий калий) и синтетические полимеры. При дозировании в воду щелочь связывает свободную углекислоту, амины регулируют уровень рН и поглощают растворенный кислород, а присутствующие полимеры, создавая покрытие из тонкой пленки, препятствуют формированию отложений на внутренних поверхностях элементов системы.
В основе другого реагента фирмы Ashland – Drewgard 120 – смесь пирофосфата и гидроксида калия. Эта система также образует пленки, препятствующие протеканию негативных процессов на внутренних поверхностях трубопроводов и оборудования.
Как и в закрытых контурах, в системах открытого типа в качестве ингибиторов коррозии и минеральных отложений применяют реагенты на основе силиката натрия. В основном, эти препараты содержат натриевую соль кремневой кислоты и гидроокись натрия. Действие этой композиции также основано на ее пленкообразующих свойствах.
В системах ГВС силикатная обработка рекомендована для воды со средним значением коррозионной активности, то есть имеющим положительный индекс насыщения, при общей концентрации хлоридов и сульфатов менее 50 мг/л.
Для воды с высокой коррозионной активностью силикатная обработка может применяться лишь в случае, если индекс насыщения меньше 0 и больше –1,5, а суммарное содержание сульфатов и хлоридов находится в диапазоне 50–75 мг/л. При более высокой коррозионной активности применение силикатной обработки воды не продуктивно, особенно в случаях большого содержания сульфатов.
Среди хорошо зарекомендовавших себя реагентов силикатной обработки – «Силифос» фирмы ВК Giulini Chemie (Германия), в состав которого входят полифосфаты и силикаты.
В качестве антинакипинов широко применяются комплексоны – вещества, которые за счет содержащихся полярных групп взаимодействуют с осадками, переводя их в раствор. К ним относится уже упомянутый цинковый комплексонат ОЭДФК.
В результате действия многих видов химических реагентов при водоподготовке в системе ГВС образуются легкие взвеси, легкоудаляемые осадки. Однако и они могут причинить вред оборудованию и участвовать в формировании отложений на внутренней поверхности труб и оборудования.
Фильтры
Для удаления из горячей воды нерастворимых примесей используют фильтры механической очистки и гидроциклоны. В основном, эти устройства подобны тем, которые применяют в системах холодного водоснабжения (разумеется, с поправкой на более высокую температуру), но особенности очистки горячей воды после точек ввода следует рассмотреть отдельно.
Обычно непосредственно у потребителя ставится фильтр грубой очистки с размером ячейки сетки 400–500 мкм. Главное его назначение – защита водомеров и арматуры. Более тонкие фильтры в этом месте нецелесообразны, так как будут очень быстро забиваться. А вот после водомеров, как правило, устанавливают промывные фильтры, назначение которых – удалять большую часть взвешенных веществ. Чаще всего для этой цели применяют фильтры с порогом задержания от 20 до 100 мкм. Они надежно защищают запорную арматуру и смесители, но также требуют периодической чистки. Можно применять фильтры с программируемой автоматической промывкой, но они значительно сложнее и дороже.
Более доступный вариант организации удаления мельчайших механических примесей – фильтры со сменными картриджами с размером пор в диапазоне 1–20 мкм. Они имеют различную производительность, а срок их службы изменяется от 3 до 12 мес. Следует отметить, что такие малые размеры пор позволяют задерживать примеси железа в различных степенях окисления (Fe 3+ и Fe 2+ ), защищая фаянсовую и эмалированную сантехнику от рыжих подтеков. Картриджные фильтры для ГВС подобны тем, что используют для очистки холодной питьевой воды; различие лишь в материалах корпуса и собственно фильтра.
Биологическая безопасность
Помимо удаления механических примесей, качество воды в ГВС характеризует отсутствие биологической зараженности. Наиболее опасны легионеллы, которые особенно быстро размножаются в накопительных резервуарах, застойных зонах трубопроводов, а также при периодическом использовании горячей воды и отключении ГВС. Благоприятной средой для их размножения являются стоячие воды с температурой 25–45 °С.
Обычно эффективной дезинфекции вода подвергается на стадии подготовки. Однако любые нарушения в работе ГВС повышают опасность ее заражения. Наиболее распространенный способ борьбы с легионеллами – термическая обработка воды: нагрев воды до температуры 70–80 °С мгновенно приводит к полной дезинфекции воды от этого вида бактерий. При понижении температуры время обработки должно, соответственно, быть увеличено. Так, при 65 °С время обработки воды должно быть не менее 10, а при 60 °С – 20 мин. Недостаток метода заключается в том, что горячая вода, подаваемая потребителю, имеет более низкую температуру, а нагрев в местах установки нагревателей не исключает образования застойных зон.
Для борьбы с легионеллами предлагаются различные технические решения. Накопительные бойлеры всё чаще оснащают функцией автоматического периодического нагрева воды до температуры, обеспечивающей дезинфекцию; трубопроводы проектируются таким образом, чтобы в них не было места застойным зонам; в циркуляционных линиях устанавливают специальные термостатические клапаны, не допускающие опасного понижения температуры и т.д.
Распространенным методом дезинфекции является применение УФ-излучения. В процессе такой обработки не образуются токсичные продукты, не ухудшаются органолептические показатели воды. Различные системы обеззараживания воды отечественного и зарубежного производства не раз рассматривались в журнале «Аква-Терм». Применительно к теме данной статьи целесообразно коснуться модели Geno-Break производства фирмы Grunbeck (Германия). Эта установка одновременно обрабатывает воду ультрафиолетовым и ультразвуковым излучением. Ценность такого сочетания заключается в том, что кавитационное воздействие ультразвуковых сигналов позволяет уничтожать не только легионелл, но и их переносчиков – амеб, присутствие которых позволяет легионеллам избежать поражения при некоторых других видах обработки воды.
Имеются и другие способы борьбы с легионеллами, например, электрохимическое анодное генерирование ионов, которые обладают выраженным антисептическим действием серебра или меди. По утверждению некоторых специалистов, снижает опасность заражения легионеллами и использование медных трубопроводов.
При борьбе с легионеллами не следует исключать и применение химических препаратов, в частности, белильного щелока в концентрации свободного хлора не менее 10 мг/л, с продолжительностью обработки 1–2 ч. Однако при этом необходимо жестко соблюдать действующие нормы по присутствию в питьевой воде подобных реагентов. В этой связи, особо ценным представляется совместное применение гипохлорита натрия и УФ-облучениия, которое позволяет снизить концентрацию химического реагента.
Словарь терминов
Индекс насыщения – один из основных показателей состава воды, разработанный американским ученым В. Ланжерье. В соответствии со СНиП 2.04.02-84* «Водоснабжение. Наружные сети и сооружения» его числовое значение рассчитывается как разность значений pH обрабатываемой воды и воды при ее равновесном насыщении карбонатом кальция CaCO3. На практике первый из этих показателей определяется с помощью рН-метра, второй – по номограмме, исходя из значений содержания кальция ССа, общего солесодержания Р, щелочности Щ и температуры воды t. Вода с отрицательным индексом насыщения коррозионно-активна.
Статья опубликована в журнале «Аква-Терм» # 2(42) 2008