- Отопление
- ОТОПЛЕНИЕ
- Смотреть что такое «ОТОПЛЕНИЕ» в других словарях:
- Общие сведения об отоплении
- Характеристика систем отопления
- Основные конструктивные элементы системы отопления (рисунок 1):
- Требования к системе отопления
- Классификация систем отопления
- Теплоносители в системах отопления
- Основные виды систем отопления
Отопление
Значение слова Отопление по Ефремовой:
Отопление — 1. Процесс действия по знач. глаг.: отопить, отоплять.
2. Система нагревания помещений. // Устройство для нагревания помещений.
Отопление в Энциклопедическом словаре:
Отопление — искусственный обогрев помещений для поддержания температуры,отвечающей условиям теплового комфорта (напр., 18-20С в жилых помещениях),а иногда и требованиям технологического процесса. Под отоплением понимаюттакже системы, выполняющие эти функции. Основные виды: водяное, воздушное,печное, электрическое, лучистое (в т. ч. панельное).
Значение слова Отопление по словарю медицинских терминов:
Отопление — техническая система, обеспечивающая нагревание воздуха и ограждений закрытых помещений с целью поддержания заданной температуры воздуха.
Значение слова Отопление по словарю Ушакова:
ОТОПЛЕНИЕ
отопления, мн. нет, ср. 1. Действие по глаг. отопить-отоплять-отапливать (спец.). ? Искусственное нагревание жилого помещения. Снять комнату с освещением и отоплением. Расходы на отопление. 2. Способ устройства такого нагревания. Паровое отопление. Центральное отопление. Дровяное отопление.
Определение слова «Отопление» по БСЭ:
Отопление — искусственный обогрев помещений в холодный период года с целью возмещения в них теплопотерь и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта, а иногда и требованиям технологического процесса. Под О. понимают также устройства (системы), выполняющие эту функцию.
Тепловой комфорт чаще всего определяют температурой в помещениях. Так, например, в жилых помещениях наиболее благоприятной считается температура 18-20°C, в раздевальных помещениях бань 23°C и т. д. При этом весьма важна равномерность распределения температур в помещении в горизонтальном и вертикальном направлениях; она зависит от вида отопительных приборов и их расположения, а также от теплозащитных свойств наружных ограждений и возможности проникновения через них в помещение наружного воздуха.
Мощность отопительной системы (по действующим в СССР нормам) должна обеспечить возмещение теплопотерь в помещениях при наружной температуре в отопительный период, равной средней температуре наиболее холодной пятидневки в данном населённом пункте. Для Москвы, например, эта температура равна — 26°C, для Якутска — 52°C, для Ташкента — 13°C.
В производственных помещениях промышленных предприятий при постоянном выделении тепла от технологического оборудования мощность отопительного устройства может быть соответственно уменьшена. Физиологические процессы жизнедеятельности человеческого организма также связаны с образованием тепла и выделением его (преимущественно лучеиспусканием и конвекцией) в окружающую среду. Это тепло передаётся воздуху и ограждениям (стенам, полу, потолку), участвующим в создании микроклимата помещений. Все составляющие теплопотерь в помещениях, как и тепловыделение в них (от технологического оборудования, людей, электрического освещения, солнечной радиации и т. п.), непрерывно изменяются. Поэтому количество тепла (определяемое разностью между теплопотерями и тепловыделением), подаваемого в помещение системой О., должно регулироваться. Наибольший эффект регулирования подачи тепла даёт автоматизация отопительной системы, при которой учитываются не только выделяемое тепло и теплопотери в помещении, но и тепловая инерция. Регулирование осуществляется также с помощью регулировочных кранов, устанавливаемых на отопительных приборах.
Различают системы О. центральные и местные. В системах центрального О. тепло вырабатывается за пределами отапливаемых помещений (котельная, ТЭЦ), а затем транспортируется по трубопроводам в отдельные помещения, здания. Центральные системы О. подразделяются по виду теплоносителя (водяное, воздушное, паровое О. и др.). Наибольшее распространение (преимущественно в жилых, общественных и в некоторой части промышленных зданий) получило Водяное отопление с различными отопительными приборами.
Широко применяется также (главным образом в общественных и промышленных зданиях) Воздушное отопление, существенное преимущество которого перед другими видами О. — возможность совмещения его действия с вентиляцией и кондиционированием воздуха. В жилых, общественных и некоторых видах промышленных зданий (с повышенными требованиями к чистоте воздуха) расширяется использование панельного отопления и лучистого отопления. Область применения парового отопления из-за присущих ему недостатков в современном строительстве значительно сократилась; при наличии пара как теплоносителя для О. чаще используется комбинированное (пароводяное) отопление, при котором вместо отопительного котла устанавливается работающий на пару водонагреватель.
В малоэтажных зданиях обычно применяются системы местного О., особенностью которого является совмещение генератора тепла с отопительным прибором. Весьма распространённый вид местного О.- Печное отопление. Однако оно постепенно вытесняется более совершенным и экономичным центральным О., а также другими видами местного отопления: газовым отоплением, электрическим отоплением (См. Электрическое отопление) и так называемым квартирным отоплением. Последнее отличается от системы центрального О. тем, что в нём генератор тепла обеспечивает теплом одну квартиру, его размещают, как правило, в кухне квартиры, причём генератор тепла часто выполняется в виде одного агрегата, совмещенного с плитой для приготовления пищи.
Для СССР О. имеет существенное значение, так как климат на большей части его территории характеризуется низкими температурами, обусловливающими длительный отопительный период. На О. только жилых и гражданских зданий расходуется около 30% всего добываемого твёрдого и газообразного топлива. Стоимость устройства О. обычно составляет 4-6% от всех затрат на сооружение объекта в целом. Стоимость эксплуатации О. в значительной степени определяется расходами на топливо, которое используется более эффективно при централизованном теплоснабжении городов и промышленных районов.
Отопительная техника имеет многовековую историю. Первые отопительные устройства были известны ещё в каменном веке. В начале нашей эры появились отопительные печи с отводом продуктов горения через дымовые трубы. Совершенствуясь, эти печи долгое время были основным видом О. Важный этап в развитии отопительной техники связан с возникновением центральных систем О. Наиболее ранней явилась система О., функционировавшая благодаря сети каналов, размещенных под полом, по которым пропускались дымовые газы из печи (см. Гипокауст). С 15 в. уже применялось воздушное О. с подачей в помещение воздуха, нагревавшегося при соприкосновении с поверхностями печи. Системы водяного и парового О. получили развитие в 19 в. К началу 20 в. относится создание лучистого и панельного О., развитие систем центрального О., теплофикации и централизованного теплоснабжения.
Лит.: Строительные нормы и правила, ч. 2, раздел Г, гл. 7. Отопление, вентиляция и кондиционирование воздуха. Нормы проектирования, М., 1964; Отопление и вентиляция, 2 изд., ч. 1, М., 1965; Семенов Л. А., Печное отопление, 3 изд., М., 1968.
И. Ф. Ливчак.
Отопленец Отопление Отопляемый
ОТОПЛЕНИЕ
Толковый словарь Ушакова . Д.Н. Ушаков. 1935-1940 .
Смотреть что такое «ОТОПЛЕНИЕ» в других словарях:
Отопление — поддержание в закрытых помещениях нормируемой температуры. Источник: ТСН 12 310 97 СО: Подземные сооружения 3.22 отопление : Искусственное нагревание помещения в холодный период года для компенсации тепловых потерь и поддержания нормируемой… … Словарь-справочник терминов нормативно-технической документации
ОТОПЛЕНИЕ — ОТОПЛЕНИЕ. В жилых комнатах температуру следует поддерживать не ниже + 18°, в кухнях + 15°, в ванных + 25°. Различают местное и центральное отопление. К местному относятся: печное комнатными печами (см. Печи отопительные), газовое… … Краткая энциклопедия домашнего хозяйства
ОТОПЛЕНИЕ — ОТОПЛЕНИЕ, обогревание жилых и других помещений с целью поддержания в них определенной t°. О. должно иметь технически правильное устройство и удовлетворять ряду сан. требований. Основные сан. требования ко всяким системам О. следующие: 1)… … Большая медицинская энциклопедия
отопление — Искусственное поддержание температуры воздуха в помещении на уровне более высоком, чем температура наружного воздуха [ГОСТ 22270 76] отопление Искусственный обогрев помещений с целью возмещения в них тепловых потерь и поддержания на заданном… … Справочник технического переводчика
отопление — нагревание, отопка Словарь русских синонимов. отопление сущ., кол во синонимов: 7 • вакуум отопление (1) • … Словарь синонимов
Отопление — – искусственный обогрев помещений с целью возмещения в них тепловых потерь и поддержания на заданном уровне температуры, определяемой условиями теплового комфорта для находящихся в помещении людей. [СТО НОСТРОЙ 2.15.3 2011] Отопление… … Энциклопедия терминов, определений и пояснений строительных материалов
ОТОПЛЕНИЕ — искусственный обогрев помещений для поддержания температуры, отвечающей условиям теплового комфорта (напр., 18 20С в жилых помещениях), а иногда и требованиям технологического процесса. Под отоплением понимают также системы, выполняющие эти… … Большой Энциклопедический словарь
ОТОПЛЕНИЕ — ОТОПЛЕНИЕ, я, ср. 1. см. отопить. 2. Система нагревания помещений, а также устройство для такого нагревания. Центральное о. Паровое о. Ремонт отопления. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
Отопление — Поддержание в закрытых помещениях нормируемой температуры со средней необеспеченностью 50 ч/г. Источник: СНиП 41 01 2003 EdwART. Словарь терминов и определений по средствам охранной и пожарной защиты, 2010 … Словарь черезвычайных ситуаций
ОТОПЛЕНИЕ — совокупность нагревательных устройств и систем, обеспечивающих обогрев жилых, производственных и др. помещений и поддерживающих в них комфортные температуры и санитарно гигиенические условия в холодный период года. Различают О. местное и… … Большая политехническая энциклопедия
Общие сведения об отоплении
В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным или лучистым.
Характеристика систем отопления
К конвективному относят отопление, при котором температура внутреннего воздуха поддерживается на более высоком уровне, чем радиационная температура помещения, понимая под радиационной усредненную температуру поверхностей, обращенных в помещение, вычисленную относительно человека, находящегося в середине этого помещения. Это широко распространенный способ отопления.
Лучистым называют отопление, при котором радиационная температура помещения превышает температуру воздуха. Лучистое отопление при несколько пониженной температуре воздуха (по сравнению с конвективным отоплением) более благоприятно для самочувствия человека в помещении (например, до 18-20 °с вместо 20-22 °с в помещениях гражданских зданий).
Конвективное или лучистое отопление помещений осуществляется специальной технической установкой, называемой системой отопления. Система отопления — это совокупность конструктивных элементов со связями между ними, предназначенных для получения, переноса и передачи теплоты в обогреваемые помещения здания.
Основные конструктивные элементы системы отопления (рисунок 1):
- теплоисточник (теплогенератор при местном или теплообменник при централизованном теплоснабжении) — элемент для получения теплоты;
- теплопроводы — элемент для переноса теплоты от теплоисточника к отопительным приборам;
- отопительные приборы — элемент для передачи теплоты в помещение.
Рисунок 1. Схема системы отопления: 1 — теплогенератор или теплообменник и основные типы теплообменных аппаратов ; 2 — подача топлива или подвод первичного теплоносителя; 3 — подающий теплопровод; 4 — отопительный прибор; 5 — обратный теплопровод.
Перенос по теплопроводам может осуществляться с помощью жидкой или газообразной рабочей среды. Жидкая (вода или специальная незамерзающая жидкость — антифриз) или газообразная (пар, воздух, продукты сгорания топлива) среда, перемещающаяся в системе отопления, называется теплоносителем.
Система отопления для выполнения возложенной на нее задачи должна обладать определенной тепловой мощностью. Расчетная тепловая мощность системы выявляется в результате составления теплового баланса в обогреваемых помещениях при температуре наружного воздуха.
Текущие (сокращенные) теплозатраты на отопление имеют место в течение почти всего времени отопительного сезона, поэтому теплоперенос к отопительным приборам должен изменяться в широких пределах. Этого можно достичь путем изменения (регулирования) температуры и (или) количества перемещающегося в системе отопления теплоносителя.
Требования к системе отопления
Санитарно-гигиенические: поддержание заданной температуры воздуха и внутренних поверхностей ограждений помещения во времени, в плане и по высоте при допустимой подвижности воздуха, ограничение температуры на поверхности отопительных приборов;
Экономические: оптимальные капитальные вложения, экономный расход тепловой энергии при эксплуатации;
Архитектурно-строительные: соответствие интерьеру помещения, компактность, увязка со строительными конструкциями, согласование со сроком строительства здания;
Производственно-монтажные: минимальное число унифицированных узлов и деталей, механизация их изготовления, сокращение трудовых затрат и ручного труда при монтаже;
Эксплуатационные: эффективность действия в течение всего периода работы, надежность (безотказность, долговечность, ремонтопригодность) и техническое совершенство, безопасность и бесшумность действия.
Деление требований на пять групп условно, так как в них входят требования, относящиеся как к периоду проектирования и строительства, так и эксплуатации здания.
Наиболее важны санитарно-гигиенические и эксплуатационные требования, которые обусловливаются необходимостью поддерживать заданную температуру в помещениях в течение отопительного сезона и всего срока службы системы отопления здания.
Классификация систем отопления
Системы отопления по расположению основных элементов подразделяются на местные и центральные.
В местных системах для отопления, как правило, одного помещения все три основных элемента конструктивно объединяются в одной установке, непосредственно в которой происходит получение, перенос и передача теплоты в помещение. Теплопереносящая рабочая среда нагревается горячей водой, паром, электричеством или при сжигании какого-либо топлива.
Еще одним примером местной системы отопления могут служить отопительные печи, конструкции и расчет которых будут рассмотрены.
В местной системе отопления с использованием электрической энергии теплопередача может осуществляться с помощью жидкого или газообразного теплоносителя либо без него непосредственно от разогретого твердого элемента.
Центральными называются системы, предназначенные для отопления группы помещений из единого теплового центра. В тепловом центре находятся теплогенераторы (котлы) или теплообменники. Они могут размещаться непосредственно в обогреваемом здании (в котельной или местном тепловом пункте) либо вне здания — в центральном тепловом пункте (ЦТП), на тепловой станции (отдельно стоящей котельной) или ТЭЦ.
Теплопроводы центральных систем подразделяют на магистрали (подающие, по которым подается теплоноситель, и обратные, по которым отводится охладившийся теплоноситель), стояки (вертикальные трубы или каналы) и ветви (горизонтальные трубы или каналы), связывающие магистрали с подводками к отопительным приборам (с ответвлениями к помещениям при теплоносителе воздухе).
Примером центральной системы является система отопления здания с собственным тепловым пунктом или котельной, принципиальная схема которой не будет отличаться от схемы на рисунке 1, если отопительные приборы размещены во всех обогреваемых помещениях этого здания.
Центральная система отопления называется районной, когда группа зданий отапливается из отдельно стоящей центральной тепловой станции. Теплогенераторы, теплообменники и отопительные приборы системы здесь также разделены: теплоноситель (например, вода) нагревается на тепловой станции, перемещается по наружным и внутренним (внутри здания) теплопроводам в отдельные помещения каждого здания к отопительным приборам и, охладившись, возвращается на тепловую станцию (рисунок 2).
Рисунок 2. Схема районной системы отопления: 1 — приготовление первичного теплоносителя; 2 — местный тепловой пункт; 3 и 5 — внутренние подающие и обратные теплопроводы; 4 — отопительные приборы; б и 7 — наружный подающий и обратный теплопроводы; 8 — циркуляционный насос наружного теплопровода
В современных системах теплоснабжения зданий от ТЭЦ или крупных тепловых станций используются два теплоносителя. Первичный высокотемпературный теплоноситель перемещается от ТЭЦ или тепловой станции по городским распределительным теплопроводамк цтп или непосредственно к местным тепловым пунктам зданий и обратно. Вторичный теплоноситель после нагревания в теплообменниках (или смешения с первичным) поступает по наружным (внутриквартальным) и внутренним теплопроводам к отопительным приборам обогреваемых помещений зданий и затем возвращается в цтп или местный тепловой пункт.
Первичным теплоносителем обычно служит вода, реже пар или газообразные продукты сгорания топлива. Если, например, первичная высокотемпературная вода нагревает вторичную воду, то такая центральная система отопления именуется водоводяной. Аналогично могут существовать водовоздушная, пароводяная, паровоздушная, газовоздушная и другие системы центрального отопления.
По виду основного (вторичного) теплоносителя местные и центральные системы отопления принято называть системами водяного, парового, воздушного или газового отопления.
Теплоносители в системах отопления
Движущаяся среда в системе отопления — теплоноситель — аккумулирует теплоту и затем передает ее в обогреваемые помещения. Теплоносителем для отопления может быть подвижная, жидкая или газообразная среда, соответствующая требованиям, предъявляемым к системе отопления.
Для отопления зданий и сооружений в настоящее время преимущественно используют воду или атмосферный воздух, реже водяной пар или нагретые газы.
Сопоставим характерные свойства указанных видов теплоносителя при использовании их в системах отопления.
Газы, образующиеся при сжигании твердого, жидкого или газообразного органического топлива, имеют сравнительно высокую температуру и применимы в тех случаях, когда в соответствии с санитарно-гигиеническими требованиями удается ограничить температуру теплоотдающей поверхности отопительных приборов. При транспортировании горячих газов имеют место значительные попутные теплопотери, обычно бесполезные для обогревания помещения.
Высокотемпературные продукты сгорания топлива могут выпускаться непосредственно в помещения или сооружения, но при этом ухудшается состояние их воздушной среды, что в большинстве случаев недопустимо. Удаление же продуктов сгорания наружу по каналам усложняет конструкцию и понижает кпд отопительной установки. При этом возникает необходимость решения экологических проблем, связанных с возможным загрязнением атмосферного воздуха продуктами сгорания вблизи отапливаемых объектов.
Область использования горячих газов ограничена отопительными печами, газовыми калориферами и другими подобными местными отопительными установками.
В отличие от горячих газов вода, воздух и пар используются многократно в режиме циркуляции и без загрязнения окружающей здание среды.
Вода представляет собой жидкую, практически несжимаемую среду со значительной плотностью и теплоемкостью. Вода изменяет плотность, объем и вязкость в зависимости от температуры, а температуру кипения — в зависимости от давления, способна сорбировать или выделять растворимые в ней газы при изменении температуры и давления.
Пар является легкоподвижной средой со сравнительно малой плотностью. Температура и плотность пара зависят от давления. Пар значительно изменяет объем и энтальпию при фазовом превращении.
Воздух также является легкоподвижной средой со сравнительно малыми вязкостью, плотностью и теплоемкостью, изменяющей плотность и объем в зависимости от температуры.
Сравним эти три теплоносителя по показателям, важным для выполнения требований, предъявляемых к системе отопления.
Одним из санитарно-гигиенических требований является поддержание в помещениях равномерной температуры. По этому показателю преимущество перед другими теплоносителями имеет воздух. При использовании нагретого воздуха-теплоносителя с низкой теплоинерционностью — можно постоянно поддерживать равномерной температуру каждого отдельного помещения, быстро изменяя температуру подаваемого воздуха, т.е. Проводя так называемое эксплуатационное регулирование. При этом одновременно с отоплением можно обеспечить вентиляцию помещений.
Применение в системах отопления горячей воды также позволяет поддерживать равномерную температуру помещений, что достигается регулированием температуры, подаваемой в отопительные приборы воды. При таком регулировании температура помещений все же может несколько отклоняться от заданной (на 1 -2 °С) вследствие тепловой инерции масс воды, труб и приборов.
При использовании пара температура помещений неравномерна, что противоречит гигиеническим требованиям. Неравномерность температуры возникает из-за несоответствия теплопередачи приборов при неизменной температуре пара (при постоянном давлении) изменяющимся теплопотерям помещения в течение отопительного сезона. В связи с этим приходится уменьшать количество подаваемого в приборы пара и даже периодически отключать их во избежание перегревания помещений при уменьшении их теплопотерь.
Другое санитарно-гигиеническое требование — ограничение температуры наружной поверхности отопительных приборов — вызвано явлением разложения и сухой возгонки органической пыли на нагретой поверхности, сопровождающимся выделением вредных веществ, в частности окиси углерода. Разложение пыли начинается при температуре 65-70 °С и интенсивно протекает на поверхности, имеющей температуру более 80 °С.
При использовании пара в качестве теплоносителя температура поверхности большинства отопительных приборов и труб постоянна и близка или выше 100 °С, т.е. Превышает гигиенический предел. При отоплении горячей водой средняя температура нагретых поверхностей, как правило, ниже, чем при применении пара. Кроме того, температуру воды в системе отопления понижают для снижения теплопередачи приборов при уменьшении теплопотерь помещений. Поэтому при теплоносителе воде средняя температура поверхности приборов в течение отопительного сезона практически не превышает гигиенического предела.
Важным экономическим показателем при применении различных теплоносителей является расход металла на теплопроводы и отопительные приборы.
При использовании воды обеспечивается достаточно равномерная температура помещений, можно ограничить температуру поверхности отопительных приборов, сокращается по сравнению с другими теплоносителями площадь поперечного сечения труб, достигается бесшумность движения в теплопроводах. Недостатками применения воды являются значительный расход металла и большое гидростатическое давление в системах. Тепловая инерция воды замедляет регулирование теплопередачи приборов.
При использовании пара сравнительно сокращается расход металла за счет уменьшения площади приборов и поперечного сечения конденсатопроводов, достигается быстрое прогревание приборов и отапливаемых помещений. Гидростатическое давление пара в вертикальных трубах по сравнению с водой минимально. Однако пар как теплоноситель не отвечает санитарно-гигиеническим требованиям, его температура высока и постоянна при данном давлении, что затрудняет регулирование теплопередачи приборов, движение его в трубах сопровождается шумом.
При использовании воздуха можно обеспечить быстрое изменение или равномерность температуры помещений, избежать установки отопительных приборов, совмещать отопление с вентиляцией помещений, достигать бесшумности его движения в воздуховодах и каналах. Недостатками являются его малая теплоаккумулирующая способность, значительные площадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по их длине.
Основные виды систем отопления
В настоящее время в россии применяют центральные системы в основном водяного и, значительно реже, парового отопления, местные и центральные системы воздушного отопления, а также печное отопление в сельской местности. Приведем общую характеристику этих систем с детальной классификацией на основании рассмотренных свойств теплоносителей.
При водяном отоплении циркулирующая нагретая вода охлаждается в отопительных приборах и возвращается к теплоисточнику для последующего нагревания.
Системы водяного отопления по способу создания циркуляции воды разделяются на системы с естественной циркуляцией (гравитационные) и с механическим побуждением циркуляции воды при помощи насоса (насосные). В гравитационной системе (рисунок 3, а) используется свойство воды изменять свою плотность при изменении температуры. В замкнутой вертикальной системе с неравномерным распределением плотности под действием гравитационного поля земли возникает естественное движение воды.
В насосной системе (рисунок 3, б) используется насос с электрическим приводом для создания разности давления, вызывающей циркуляцию, и в системе создается вынужденное движение воды.
Рисунок 3. Схемы системы водяного отопления: а — с естественной циркуляцией (гравитационная); б — с механическим побуждением циркуляции воды (насосная); 1 — теплообменник; 2 — подающий теплопровод (т1); 3 — расширительный бак; 4 — отопительный прибор; 5 -обратный теплопровод (т2); 6 — циркуляционный насос; 7 — устройство для выпуска воздуха из системы
По температуре теплоносителя различаются системы низкотемпературные с предельной температурой горячей воды ниже 70 °С, среднетемпературные от 70 до 100 °С и высокотемпературные выше 100 °С. Максимальное значение температуры воды ограничено в настоящее время 150°С.
По положению труб, объединяющих отопительные приборы по вертикали или горизонтали, системы делятся на вертикальные и горизонтальные.
В зависимости от схемы соединения труб с отопительными приборами системы бывают однотрубные и двухтрубные.
В каждом стояке или ветви однотрубной системы отопительные приборы соединяются одной трубой, и вода протекает последовательно через все приборы. Если каждый прибор разделен условно на две части («д» и «б»), в которых вода движется в противоположных направлениях и теплоноситель последовательно проходит сначала через все части «а», а затем через все части «б», то такая однотрубная система носит название бифилярной (двухпоточной).
В двухтрубной системе каждый отопительный прибор присоединяется отдельно к двум трубам — подающей и обратной, и вода протекает через каждый прибор независимо от других приборов.
При воздушном отоплении циркулирующий нагретый воздух охлаждается, передавая теплоту при смешении с воздухом обогреваемых помещений и иногда через их внутренние ограждения. Охлажденный воздух возвращается к нагревателю.
Системы воздушного отопления по способу создания циркуляции воздуха разделяются на системы с естественной циркуляцией (гравитационные) и с механическим побуждением движения воздуха с помощью вентилятора.
В гравитационной системе используется различие в плотности нагретого и окружающего отопительную установку воздуха. Как и в водяной вертикальной гравитационной системе, при различной плотности воздуха в вертикальных частях возникает естественное движение воздуха в системе. При применении вентилятора в системе создается вынужденное движение воздуха.
Воздух, используемый в системах отопления, нагревается до температуры, обычно не превышающей 60 °с, в специальных теплообменниках -калориферах. Калориферы могут обогреваться водой, паром, электричеством или горячими газами. Система воздушного отопления при этом соответственно называется водовоздушной, паровоздушной, электровоздушной или газовоздушной.
Воздушное отопление может быть местным (рисунок 4, а) или центральным (рисунок 4, б)
Рисунок 4. Схемы системы воздушного отопления: а — местная система; б — центральная система; 1 — отопительный агрегат; 2 — обогреваемое помещение (помещения на рис. Б); 3 -рабочая (обслуживаемая) зона помещения; 4 — обратный воздуховод; 5 — вентилятор; б -теплообменник (калорифер); 7 — подающий воздуховод.
В местной системе воздух нагревается в отопительной установке с теплообменником (калорифером или другим отопительным прибором), находящимся в обогреваемом помещении.
В центральной системе теплообменник (калорифер) размещается в отдельном помещении (камере). Холодный воздух подводится к калориферу по обратному (рециркуляционному) воздуховоду. Горячий воздух от калорифера перемещается вентилятором в обогреваемые помещения по подающим воздуховодам.