Датчики расхода для отопления

Как работает теплосчетчик, принцип работы и устройство счетчика тепла

Что такое теплосчетчик

Теплосчетчик — это прибор учёта потреблённого тепла. С помощью этого устройства можно сэкономить свои деньги, так как вы будете платить не по сомнительным нормативам, а только за тепло, которое потребили сами. Никаких переплат.

Как среди множества моделей изделия выбрать ту, которая подойдет именно вам? Важно не упустить ни одной детали: оценить место установки, проанализировать конструкцию тепловых сетей, изучить особенности монтажа индивидуального изделия, заключить договор с со специализированной компанией, занимающейся обслуживанием устройства. Из-за возможных сложностей некоторые люди так и не решаются приобрести счетчик отопления.

Несмотря на многообразие моделей, отличающихся параметрами и устройством, имеющих преимущества и недостатки, принцип работы индивидуального счетчика отопления одинаков. Это изделие, измеряющие температуру, а также расход воды на входе и выходе трубопровода объекта теплоснабжения.

Состав теплосчетчика

Состав счетчика отопления достаточно прост. В изделие входит:

Вычислитель количества теплоты

Датчики избыточного давления

Центральный компонент прибора — тепловычислитель. Основные преимущества данных вычислителей:

Удобны в использовании.

Вычислители наделены выходами для подключения компьютера, модема или принтера. Это обеспечивает дистанционное получение данных по потреблению тепла и параметрам теплоносителя.

Принцип работы теплосчетчика

Принцип работы индивидуального изделия построен на вычислении величины тепла при помощи данных, которые поступают от датчика расхода теплоносителя и двух датчиков температуры. Измеряется количество воды, проходящее через систему отопления. Также учитывается разница между температурой на входе и температурой на выходе.

Количество теплоты рассчитывается по следующей формуле:

Q = G * (t1 — t2), гКал/ч, где:

G — массовый расход воды, т/ч;

t1,2 — температура на входе и выходе, °С.

На вычислить поступают все данные с датчиков. Затем происходит обработка полученной информации. После определения значения потребления тепла вычислитель записывает данные в архив. Потребленное тепло отображается на дисплее устройства. Не составит труда снять показания прибора.

Точность теплосчетчика и его погрешности

Ни один точный прибор не застрахован от погрешностей. Теплосчетчик не стал исключением. Суммарная погрешность при измерении тепла состоит из погрешностей:

Допустимая погрешность теплосчетчиков, установленных в квартирах, составляет не более 10%. Однако эта цифра может быть выше. На увеличение реальной погрешности измерений по сравнению с базовой оказывают влияние следующие возможные факторы:

Неправильный монтаж, который не соответствует требованиям производителя. Особенно часто эта проблема встречается у людей, которые воспользовались услугами нелицензионной организации. В этом случае изготовитель не берет на себя обязательства по гарантии.

Амплитуда температуры на входе и на выходе теплоносителя не достигает 30 градусов.

Трубы плохого качества, жёсткая вода с механическими примесями, которая используется непосредственно в теплоносителе.

Когда расход теплоносителя составляет значение ниже установленного минимального, которое зафиксировано в технических характеристиках прибора.

В чем измеряется потреблённое тепло

Потребленное тепло измеряется в гигакалориях (Гкал). Данная единица измерения примеряется уже достаточно давно. Однако она принадлежит к внесистемным. Теплосчетчики, которые производят в европейских странах, расчёт тарифа потреблённого тепла вычисляют в ГигаДжоулях (система СИ). Иногда встречается и общепринятая международная внесистемная единица измерения кВт*ч (kWh).

Затруднений при расчете платы за отопление, связанных с различием систем измерений ресурсоснабжающих организаций, возникнуть не должно. С помощью специального коэффициента одну единицу измерения можно с лёгкостью перевести в другую.

Читайте также:  Своими руками ветрогенератор для отопления

Как правильно передать показания

Хотя теплосчетчик имеет простой и понятный интерфейс, владелец прибора нередко сталкивается с проблемой передачи показаний. Некоторые пользователи квартир не понимают, как функционирует прибор учёта, как снимать и отправлять данные с дисплея.

Чтобы избежать возможных трудностей, нужно внимательно ознакомиться с паспортом изделия. В инструкции даны ответы на самые распространённые вопросы, подробно описаны характеристики теплосчетчика, а также тонкости, связанные с его обслуживанием.

Выделяют несколько способов съема показаний с прибора учёта:

Если у теплосчетчика жидкокристаллический дисплей, то необходимо визуально зафиксировать данные измерений. Для этого важно перейти в нужный раздел меню при помощи специальной кнопки.

ОРТО-передатчик. Он входит в базовую комплектацию устройств, произведенных в Европе. С помощью этого метода пользователь может перебросить на компьютер данные о функционировании теплосчетчика, а также распечатать их при необходимости.

Радиомодуль. Эта комплектующая деталь входит в состав некоторых устройств. При помощи беспроводного метода радиомодуль дистанционно передаёт данные. Когда приёмник попадает в зону функционирования сигнала, данные об измерениях показаний записываются и передаются в ресурсоснабжающую организацию. Часто приёмник закрепляют на машинах, оказывающих коммунальные услуги. Например, когда мусоровоз следует по заданному маршруту, он собирает показания с оказавшихся в радиусе действия приборов учёта.

M-Bus модуль. В отдельных приборах учёта входит в поставку. Цель M-Bus модуля — подключение теплосчетчика к сети централизованной системы по сбору показаний ресурсоснабжающими организациями. С помощью кабелей «витая пара» группу теплосчетчиков объединяют в слабо очную сеть. Далее присоединяют к концентратору, задачей которого является периодический опрос. Затем происходит формирование отчета, который и отправляется в ресурсоснабжающую организацию. Кроме того, данные можно вывести на экран компьютера.

Виды счетчиков тепла

Существуют следующие виды теплосчетчиков:

Тахометрический или механический.

Рассмотрим каждый вид более подробно.

Тахометрический или механический

Прибор с помощью вращающейся детали измеряет величину теплоносителя, который прошёл через сечение трубы. Активная часть устройства бывает турбинной, винтовой и в форме крыльчатки.

У тахометрических теплосчетчиков доступная цена. Несомненным плюсом устройства является простота в применении. Однако у этих приборов учёта есть и существенные недостатки. Тахометрические счетчики тепла крайне чувствительны к загрязнениям. Внутри механизма нередко оседает пыль, грязь, появляется ржавчина. Также не редки случаи гидроударов. Чтобы уменьшить загрязнение составляющих деталей, производитель разработал специальный магнито-сетчатый фильтр. У теплосчетчиков отсутствует способность сохранять данные, которые собраны за сутки.

Электромагнитный

Плюсом теплосчетчика является его высокая точность. Существенный недостаток — высокая цена. Состав прибора учёта:

В основе работы электромагнитного счетчика отопления лежит принцип прохождения через поток теплоносителя магнитного поля, которое даёт реакцию на его состояние. Устройству необходим тщательный уход. Электромагнитный теплосчётчик не будет работать с высокой точностью без регулярного обслуживания и периодической очистки.

Ультразвуковой

Данный вид приборов учёта используется в основном в качестве общедомового теплосчетчика. Среди ультразвуковых устройств выделяют следующие подвиды:

Спецификой ультразвуковых приборов учёта является то, что теплосчетчики работают по принципу генерации ультразвука, который проходит через воду. Передатчик генерирует сигнал. После того как сигнал прошёл через толщу воды, его улавливает приёмник. Основным условием высокой точности и отсутствия погрешностей ультразвукового теплосчетчика является достаточная чистота теплоносителя.

Вихревой

В основе работы вихревого теплосчетчика лежит принцип измерения величины и скорости вихрей. Преимуществом данного вида прибора учёта является то, что он менее чувствителен к загрязнением, чем остальные устройства. Однако вихревой счётчик отопления не терпит воздуха в системе. Данное устройство монтируют горизонтально, располагая его между двумя трубами.

Расходомер теплоносителя в автономной системе отопления

В данной статье я буду рассматривать все процессы применительно к автономной системе отопления частного дома с автоматическим газовым котлом и приведу пример конструкции расходомера на базе бытового недорогого счетчика воды.

Читайте также:  Трехходовой клапан для теплых полов с терморегулятором

Расход теплоносителя (в моем случае воды) в системе отопления является одним из главных параметров, который влияет на поддержание заданного микроклимата в помещении при любых погодных условиях и наряду с другими параметрами определяет качество функционирования системы отопления в целом. Расход теплоносителя показывает какой его объем прошел через систему отопления за определенное время. Так как система отопления может быть разветвленной — например на первом и втором этажах дома может быть два независимых контура отопления — то расход теплоносителя мы будем рассматривать применительно к отопительному котлу. Необходимый номинальный расход теплоносителя рассчитывается на этапе проектирования системы отопления и в процессе ее эксплуатации должен оставаться неизменным. О методах расчета необходимого расхода теплоносителя я расскажу в отдельной статье, в которой будет приведен пример расчета простой системы отопления небольшого частного дома.

Возможно некоторым читателям более понятным будет термин скорость циркуляции теплоносителя или скорость потока теплоносителя в трубах, но скорость циркуляции в отличии от расхода зависит от сечения трубы и на разных участках системы отопления будет разной. Поэтому удобнее пользоваться таким понятием как расход.

Причины по которым расход теплоносителя может уменьшаться:

  • отложение накипи внутри теплообменника котла или засорение труб системы отопления, в результате чего увеличивается сопротивление потоку теплоносителя, а значит уменьшается его скорость и, как следствие, объем, прошедший через котел за определенное время, то есть расход;
  • засорение фильтров в системе отопления;
  • уменьшение производительности циркуляционного насоса из-за всевозможных неисправностей.

Признаки уменьшения расхода теплоносителя в действующей системе отопления:

  • котел начал часто включаться и выключаться;
  • теплоотдача в системе отопления уменьшилась, батареи прогреваются не полностью даже при установке максимальной температуры отопления на котле, как следствие температура в помещении может быть занижена;

Но указанные признаки могут иметь и другие причины, поэтому было бы неплохо контролировать уровень расхода теплоносителя в своей системе отопления. В таком случае необходим расходомер.

Расходомер на базе бытового счетчика воды.

В моей системе отопления в качестве теплоносителя используется вода. Для контроля расхода теплоносителя я использовал обычный бытовой счетчик воды, который установил на входе теплоносителя в котел (на обратке). При этом счетчик выступал в качестве индикатора, по которому было видно есть ли циркуляция в системе и примерно оценить ее скорость по вращению счетного механизма счетчика. Чтобы узнать расход необходимо было отсчитать по секундомеру определенное время и зафиксировать показания счетчика в начале и конце отрезка этого времени. Конечно это не удобно. Тогда я и задался целью встроить в счетчик дисплей и микроконтроллер, который бы сам считал расход. Таким образом и родилось описываемое ниже устройство.

Счетчик воды со снятым счетным механизмом

Принцип работы счетчика воды очень прост. В нижней герметичной части счетчика расположена крыльчатка, которая вращается за счет потока воды, протекающей через счетчик. На крыльчатке установлены магниты. Счетный механизм крепится сверху на герметичную часть и тоже имеет на одной из шестеренок магнит. Таким образом с помощью магнитного сцепления осуществляется передача вращения крыльчатки на счетный механизм.

Если расположить датчик Холла в месте расположения вращающихся магнитов (в основании счетного механизма) мы получим электрические импульсы, которые уже можно подсчитать микроконтроллером и вывести на дисплей. Вот и вся идея. Дальше, как говорится, дело техники.

Датчик Холла, закрепленный в основании счетного механизма счетчика

В качестве дисплея был выбран светодиодный семисегментный двухразрядный индикатор. Расход теплоносителя было решено измерять в литрах в минуту. Объясню почему именно такая размерность. Я не буду вдаваться в теорию, но ориентировочно расход в литрах в минуту должен быть примерно равен мощности в кВт, отдаваемой котлом на нагрев воды. Например, если ваш котел отдает мощность 10 кВт, то расход теплоносителя должен составлять 10 литров в минуту, при этом разница температур на входе и выходе котла составит 15°С. Таким образом двух разрядов индикатора вполне хватит, что бы отображать расход воды от 1 л/мин и выше. Но, следует отметить, что если необходимо измерять расход теплоносителя больше 20 л/мин, то необходимо использовать счетчики с большим диаметром условного прохода, Ду-20 и выше. В моем опытном устройстве используется счетчик Ду-15.

Читайте также:  Смесь для систем отопления

В качестве устройства для вывода значений расхода теплоносителя на дисплей и подсчета импульсов с датчика Холла была выбрана плата Arduino nano V3. Данная плата содержит микроконтроллер со всей необходимой обвязкой и возможностью быстрого программирования, что очень удобно. Производительности данного микроконтроллера и платформы Arduino для реализации нужного нам алгоритма более чем достаточно.

Для установки всех электронных компонентов расходомера теплоносителя была разработана печатная плата с размерами, позволяющими закрепить ее в корпусе счетного механизма счетчика. Плата была разведена в программе Sprint Layout 5.0. Ниже на фото показана плата с установленными компонентами. Часть компонентов схемы установлено со стороны печатных проводников с обратной стороны платы. Сама плата закреплена на основании счетного механизма. Рядом для сравнения показан счетный механизм счетчика воды без корпуса.

На следующем фото показана обратная сторона платы и проводные соединения с датчиком Холла, который установлен на основании счетного механизма рядом с пластиковой шестеренкой. Как раз внизу данной шестеренки закреплен магнит, который и воздействует на датчик Холла.

Ну и дальше на фото сам расходомер теплоносителя в работе.

Ниже представлена принципиальная электрическая схема расходомера теплоносителя. Модуль А1 это плата Arduino nano.

Выше по тексту я упоминал датчик Холла. На схеме он обозначен как HS1. На самом деле это не «чистый» датчик Холла, а целая микросхема, которая имеет в своем составе датчик Холла, усилитель сигнала датчика, триггер Шмидта, выходной каскад с открытым коллектором и другие вспомогательные элементы. Благодаря всей этой схеме мы имеем на выходе микросхемы сигнал с двумя устойчивыми состояниями — 0 или 1. Микроконтроллер на плате Arduino nano запрограммирован таким образом, что считает переходы из низкого состояния сигнала в высокое (из нуля в единицу).

Для отображения чисел на двухразрядном семисегментном индикаторе используется режим динамической индикации. Для этого все сегменты двух индикаторов соединены параллельно, а выбор разряда осуществляется путем подачи на соответствующий вывод (D1 или D2) индикатора логической единицы (индикатор с общим анодом). Разряды засвечиваются поочередно с частотой, превышающей инерционность зрения человека. В результате мы видим цифры на обеих разрядах индикатора без мерцания.

Диод VD1 защищает устройство от переполюсовки питания. Я установил диод Шоттки для уменьшения потерь напряжения, но это не принципиально. Конденсаторы C1 и C2 улучшают устойчивость работы встроенного стабилизатора напряжения на плате Arduino nano и уменьшают наводки по питанию. Резисторы R1-R7 ограничивают статический ток сегментов индикатора на уровне примерно 5 мА. Так как у нас используется динамическая индикация, то средний ток сегмента будет меньше 5 мА. Данный индикатор очень яркий и хорошо светится даже при токах менее 5 мА.

Схема электрическая принципиальная расходомера теплоносителя автономной системы отопления

Для реализации нужного нам алгоритма работы расходомера был написан скетч в среде Arduino IDE.

Оцените статью