- Водоснабжение и водоотведение жилого дома — диплом по строительству
- Тезисы:
- Похожие работы:
- Дипломная работа: Водоснабжение города и промышленных предприятий
- МИКХиС, ИсиЭ, ВВ-97-059, 03, ДП.
- Перечень графического материала
- Расходы воды на хозяйственно–бытовые нужды предприятия складываются из расхода на хозяйственно–питьевые нужды рабочих и расхода на принятие душа.
- Норму расхода воды на хозяйственно–питьевые нужды принимаем на одного рабочего в смену:
- Расчетное количество воды на наружное пожаротушение и число одновременных пожаров для жилой застройки принимаем в соответствии с [1, табл.5 , примеч.5].
- Смены
- Хозяйственно-питьевое водопотребление
- Расход воды пользование душем, м 3
- Всего в смену, м 3
- В горячих цехах, м 3
- В холодных цехах, м 3
- Промышленное предприятие №1
- Итого:
- Промышленное предприятие №2
- Итого:
- Количество пожаров и расходы на один пожар определены в 2.1.5. : Qпож =3*45=135 л/с
- Принимаем 3 растворных бака, каждый емкостью 3,4 м 3 . Высота слоя раствора h = 1 м, в плане 1,7х 2 м 2 .
- Принимаем 2 расходных бака, каждый емкостью 6,8 м 3 . Высота слоя раствора 2 м, размер в плане 2 х 1,7 м 2 .
- P — суточная потребность в реагенте, т/сут;
- Смесительные устройства предназначены для перемешивания обрабатываемой воды с реагентами. Смесительные устройства принимают не менее 2.
- 5.5.8.. Определение потерь напора при промывке фильтра
- Для интесификации хода коагулянта и обесцвечивания, а также для улучшения санитарного состояния сооружений рукомендуется проводить хлорирование воды.
- 9.2 Характеристика инженерной сети
Водоснабжение и водоотведение жилого дома — диплом по строительству
|
Тезисы:
- На тему: «Водоснабжение и водоотведение жилого дома».
- Писарик М.Н. Водоснабжение и канализация жилого здания.
- Система водоснабжения включает в себя холодный и горячий водопроводы.
- Внутренняя система водоотведения проектируется для отвода сточных вод из зданий.
- Городская сеть водоотведения диаметром 250 мм.
- Системы внутреннего водоснабжения зданий. Строительные нормы проектирования.
- Следовательно, выбираем стояки водоотведения с d=150 мм.
- ТКП 45-4.01-52-2007 (02250) Системы внутреннего водоснабжения зданий.
- Белоусова Г. Н. Инженерное оборудование жилого здания.
- Калицун В. И. и др. Гидравлика, водоснабжение и канализация—М.:Стройиздат.
Похожие работы:
147 Кб / 15 стр / 2324 слов / 13832 букв / 23 дек 2014
12 Кб / 16 стр / 2326 слов / 15711 букв / 30 сен 2014
626 Кб / 34 стр / 3719 слов / 21736 букв / 5 сен 2015
4 Кб / 6 стр / 357 слов / 2412 букв / 10 фев 2015
120 Кб / 18 стр / 2857 слов / 14806 букв / 14 сен 2014
20 Кб / 23 стр / 3841 слов / 23250 букв / 2 окт 2012
60 Кб / 14 стр / 1349 слов / 9400 букв / 23 июл 2015
643 Кб / 33 стр / 4365 слов / 28036 букв / 14 фев 2011
55 Кб / 33 стр / 6705 слов / 44297 букв / 3 мар 2014
13 Кб / 20 стр / 2645 слов / 15570 букв / 7 апр 2015
Дипломная работа: Водоснабжение города и промышленных предприятий
Название: Водоснабжение города и промышленных предприятий Раздел: Рефераты по экологии Тип: дипломная работа Добавлен 04:53:49 10 февраля 2010 Похожие работы Просмотров: 507 Комментариев: 9 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать | |
Для нормальных условий эксплуатации рассчитывается по формуле:
где n – число секций водозабора;
и для аварийных условий:
где Р — допускаемое уменьшение подачи воды в аварийном режиме, принимается для системы водоснабжения I категории подачи воды — 30% [1, п.4.4];
Площадь водоприемных отверстий (брутто) одной секции водозабора (оборудованной решетками) определяется по формуле:
где Qр – расчетный расход одной секции, м 3 /с;
vвт – средняя скорость втекания в водоприемные отверстия с учетом требований для рыбозащиты принимается: для русловых затопленных водоприемников vвт = 0,2 м/с, для рек со скоростями не менее 0,4 м/с, [1, п.5.94];
ηст — коэффициент стеснения площади водоприемного отверстия стержнями сороудерживающей решетки, определяется по формуле:
где d – толщина стержней, 6 мм;
а – расстояние между стержнями, 50 см;
ηз — коэффициент засорения решетки, 0,8;
Для принятого размера водоприемного отверстия число отверстий (количество решеток) в каждой секции берем –4.
Согласно [11, прил.1, табл. п 1.1], принимается характеристика сороудерживающих решеток:
· размеры водоприемных отверстий:
ширина — b = 600 мм;
высота — h = 800 мм;
· внутренние размеры рам решеток соответствуют размерам водоприемных отверстий;
· размеры рам решеток по наружному обмеру:
Скорость втекания воды в водоприемное отверстие определяется по формуле:
Площадь водоочистных сеток , располагаемых под наинизшим расчетным уровнем воды в береговом сеточном колодце, определяется для плоских сеток по формуле:
где Qр – расчетный расход одной секции, м 3 /с;
vвт –допускаемая скорость течения воды в ячейках сеток: для плоских сеток принимается: Vc = 0,3 м/с [4, п.2.10];
ηст -коэффициент стеснения отверстия проволокой сетки, определяемый по формуле:
ηст = а 2 /(а+d) 2 =3,5 2 /(3,5+1) 2 =0,6
где, а – расстояние между проволоками сетки в свету, 3,5 мм;
d – диаметр проволоки, 1 мм;
Согласно [4, прил.1, табл.П1.2] принимается две плоских водоочистных сеток:
· с размерами: ширина — 1250 мм;
высота — 1500 мм.
При выбранных размерах сетки расчетная скорость течения воды в сетке определяется по формуле:
Глубина погружения сеточного полотна под расчетный уровень воды определяется по формуле:
При всех уровнях волы в колодце, больших минимального, процеживание воды будет происходить через большую площадь сетки и с меньшей скоростью течения воды через нее. Вследствие этого повышается сороизвлекающая способность сеток и обеспечивается лучшая очистка воды.
Потери напора в плоских сетках согласно [4, п.2.10] принимаются: hc = 0,15 м.
Уровень воды в береговом колодце пеерд сеткой и после нее определяется по формуле:
А / = Мин УВ – Σh 1-2 = 72,5-0,33=72,15м
В / = А / — hс =72,15-0,15= 72,0 м
где Мин УВ – минимальный расчетный уровень воды в реке;
Σh 1-2 – сумма потерь напора при течении воды от 1 до 2 сечения – от водоприемника до водоочистной сетки;
где hр – потери напора в решетке, 0,05м;
hв – потери напора в водоприемнике, 0,08м;
hсам – потери напора в самотечном водоводе, м;
Σhм.с – потери напора в местных сопративлениях водовода:
ζ — коэффициент местных сопротивлений, равный [4, прил.3]:
0,1 — для тройника на протоке;
0,05 – для полностью открытой задвижки;
1,0 — при вытекании воды под уровень;
q — ускорение свободного падения, м/с;
hс – по эксплутационным данным для плоских сеток , 0,15 м;
Отметку днища берегового колодца определяем по формуле:
Принято Дн = 69,5 м
где Нс – высота сетки;
hп – глубина приямка для сбора осадка, 0,5 м;
h1 – допускаемое погружение отверстия всасывающего водовода, определяется: 1,5*Dв = 1,5*0,78=1,2 м,
Dв – диаметр отверстия воронки всасывающего водовода диаметром dвс :
h2 – расстояние от низа воронки до дна, принимается: h2 = 0,8* Dв =0,8*0,78=0,6 м;
h3 – высота слоя бетона для образования приямка и откосов для сползания осадка к приямку, принимается:
Расчет водоводов ( самотечных, всасывающих и напорных) выполняется применительно к нормальным и аварийным условиям эксплуатации.
Диаметр водоводов принимается по [3] при расчетном расходе воды в одной секции водозабора для нормальных условий эксплуатации:
Qр = 0,27 м 3 /с; D = 600 мм.
Скорости течения воды в водоводах при нормальных условиях эксплуатации принимаются по [4, табл.2.5]: 1,02 м/с — в самотечных водоводах и 1,29 м/с — во всасывающих.
Принятый диаметр самотечных труб проверяем на незаиляемость транспортируемыми по водоводу мелкими наносами, по формуле:
где, v – средняя скорость течения воды в водоводе, м/с;
v* — динамическая скорость, принимается:
v* = 0,007*v = 0,007*1,02=0,0714 м/с;
А – параметр, принимаемый 9;
d – средневзвешанный диаметр наносов, 25мм;
ρ – средняя мутность воды в период половодья, 1,3 кг/м 3 ;
ω – гидравлическая крупность, 11,6 мм/с;
Потери напора в водоводах (по длине) определяются по формуле:
где, i — пьезометрический уклон, определяемый согласно [3];
L — длина водовода, м;
Потери напора в самоточном водоводе (по длине) равны:
h = 0,00209 * 72 = 0,15 м
Потери напора во всасывающем водоводе (по длине) равны:
hвс = 0,00421* 19 = 0,08 м
Наивысшая допустимая отметка оси насоса определяется по формуле:
где, Мин УВ — отметка миним. расчетного уровня воды в реке, м;
10-∆hg – приведенная высота атмосферного давления и допустимый кавитационный запас насоса, м;
Shп – сумма потерь напора при движении воды в сооружениях от водоприемных отверстий до насоса при аварийных условиях эксплуатации (т.е. потери напора в решетке, водоприемнике, самоточном водоводе, на местных сопротивлениях водовода, в сетке, во всасывающем водоводе, на местных сопротивлениях всасывающего водовода), м;
V 2 /2q — скоростной напор во всасывающем патрубке насоса:
V 2 /2q = 2,78 2 /2*9,81 = 4м
Потери напора на местных сопротивлениях во всасывающем водоводе определяются по формуле:
ζ — коэффициент местных сопротивлений, равный [4, прил.3]:
0,4 – длявходной воронки;
0,4 – для перехода;
0,05 — для полностью открытой задвижки;
Принимаем ось насоса на отметке 76,5 м.
Неразмывавающая скорость течения воды при проверке неразмываемости дна и определении крупности камня для крепления определяем по формуле:
где, d0 – средневзвешанный диаметр отложений дна русла или каменного крепления, 0,3 мм;
H – глубина потока, м;
4.6. Описание конструктивных решений
Двухсекционный водоприемник с двусторонним втеканием воды имеет в плане удобообтекаемую форму. Корпус водоприемника выполнен сварным из машиностроительной стали. Самотечные водоводы проходят через водоприемник и заглушены с внешней стороны. Заглушки могут быть сняты для очистки самоточных водоводов. К самотечным водоводам присоединены вертикальные стояки, заглушенные в верху.
Водоприемные отверстия размером 0,6 х 0,8 м по четыре в каждой секции расположены с обоих сторон водоприемника и соединены со стоками косыми сужающимися коробами. Форма коробов за отверстиями обеспечивает плавное движение воды с непрерывным увеличением скоростей течения.
Глава 5. Очистные сооружения
5.1.Выбор схемы и состава очистных сооружений
Сравнивая показатели качества воды источника с требованиями ГОСТ 2874-82 показывает, что она не удовлетворяет этим требованиям по цветности и мутности.
Осветление и обесцвечивания воды производится коагулированием, в качестве реагента применяется сернокислый алюминий Al2 (SO4 )3 .Этот процесс предусматривает реагентное хозяйство, а также смесители.
Для снижения интенсивности запаха и вкуса предусматривается предварительное хлорирование (если больше 2 баллов)
Для обеззараживания воды также применяется хлорирование (вторичное), которое осуществляется перед поступлением воды в резервуары чистой воды.
Учитывая состав воды и производительность станции в качестве основных сооружений принимаем горизонтальные отстойники и скорые фильтры.
5.2. Определение расчетной производительности очистной станции
Производительность очистной станции определяется по формуле:
Qоч.соор. мах = α*(Qмах.сут +Qдоп )=1,15*(42421+1458)= 50242 м 3 /сут
где, α –коэффициент, учитывающий расход воды на собственные нужны станции и зависящий в основном от промывки фильтров. Принимаем равным 1,15 при повторном использовании промывной воды в размере 10% от расхода воды, подаваемой потребителям, и при сборе концентрированной мутной воды в размере 5% [1,п.6.6]
Qдоп –расход воды на трехчасовое тушение пожара, определен в главе 5 и равен 1458 м 3 /сут;
5.3. Расчет сооружений реагентного хозяйства
Употребляемые при обработке воды реагенты вводятся в виде порошков или гранул (сухое дозирование) либо в виде водных растворов или суспензий (мокрое дозирование). Оба способа дозирования требуют организации на водоочистном комплексе реагентного хозяйства.
Реагентный блок разработан на два основных реагента: коагулянта и флокулянта. Хлорирование воды обеспечивается подачей хлорной воды от отдельно стоящей хлораторной.
Отделение коагулянта запроектировано в составе: баков растворных и расходных., насосов – дозаторов, а также воздуходувкой. Под растворными баками предусмотрены поддоны, что позволяет осуществлять контроль за утечками раствора – коагулянта из баков. В растворных баках концентрацию раствора коагулянта следует принимать до 20 %, а в расходных баках – 10-12%.
Внутренняя поверхность баков покрывается специальной изоляцией.
Отделение ПАА состоит из склада и помещения для приготовления раствора ПАА определенной концентрацией.
Для расчетов сооружений реагентного хозяйства необходимо определить дозы применяемых реагентов. В качестве коагулянтов, для устранения повышенной цветности и мутности, используют сернокислый алюминий.
где, Ц – цветность исходной ходы, 60 град
В соответствии [1.табл.16] дозу реагента берем мах, при этом учитывая нашу мутность воды:
Для улучшения хлопьеобразования при недостаточной щелочности исходной воды проводят подщелачивание воды (в качестве коагулянта используют сернокислый алюминий, а для ускорения процесса добавляем гашеную известь). Дозу подщелачивания определяем по формуле:
где : ек – эквивалентный вес безводного коагулянта; для сернокислого алюминия он равен 57;
Щ0 – щелочность исходной воды (карбонатная жесткость),мг-экв/л;
Кщ — коэффициент для извести = 28;
в – процентное содержание чистого продукта в техническом реагенте для глинозема очищенного 42 %;
T – время хранения коагулянта , 30 суток;
h – высота слоя коагулянта, 2 м;
γ – объемный вес коагулянта, 1 т/м 3 ;
Размер склада в плане принимаем 8 x 9 м 2 (при высоте слоя коагулянта 2,1 м)
Проверим площадь склада на возможность доставки коагулянта на очистные сооружения большегрузными 60-тонными железнодорожными вагонами. Принимаем: грузоподъемность вагона G = 6т; число одновременно прибывших вагонов N = 1; время, на которое необходимо иметь запас реагента на складе к моменту поступления новой партии, Т0 = 10 сут
где G–грузоподъемность большегрузного железнодорожного вагона, 60т;
N – количество одновременно прибывающих вагонов,1;
T – время на которое необходимо иметь запас реагента на складе, к моменту поступления новой партии, принимаемое равным 10 сут. при доставке железнодорожными вагонами;
Принимаемая площадь склада удовлетворяет требованиям приема большегрузного вагона.
По мере необходимости коагулянт со склада подается в растворные баки, где получается 20% раствор. После 4-5 часового отстаивания раствор перепускают в расходные баки, где он разбавляется до концентрации 10-12%. Емкость растворных баков:
где qчас – часовая производительность станции, 1689 м 3 /ч;
n – время полного циклаприготавления раствора коагулянта 10-12 ч ;
враст — концентрация раствора коагулянта, 20%;
Площадь растворного бака:
где h – высота слоя раствора, 1 м
Принимаем 3 растворных бака, каждый емкостью 3,4 м 3 . Высота слоя раствора h = 1 м, в плане 1,7х 2 м 2 .
Емкость расходных (рабочих) баков:
где Wрасх – емкость расходного бака;
Wраст – емкость растворного бака;
враст – концентрация раствора коагулянта в растворном баке, 20%;
врасх — концентрация раствора коагулянта в расходном баке, 10-12%;
Площадь расходного бака:
где h — высота слоя раствора , 17-2 м;
Принимаем 2 расходных бака, каждый емкостью 6,8 м 3 . Высота слоя раствора 2 м, размер в плане 2 х 1,7 м 2 .
Количество растворных баков не менее трех и расходных баков не менее двух. Высотное расположение их должно обеспечить самотечный перелив растворов из растворных в расходные баки. Баки изготавливаются из монолитного или сборного железобетона. Растворные баки в нижней части проектируем с наклонными стенками под углом 15 0 к горизонтали для очищенного коагулянта. Для опорожнения баков и сброса осадка принимаем трубопровод диаметром не менее 150 мм
Внутренняя поверхность растворных и расходных баков должна быть защищена от коррозирующего действия раствора коагулянта при помощи кислотостойких материалов.
Днища расходных баков имеет уклон к сбросному водопроводу диаметр которого не менее 100 мм.
Забор раствора коагулянта из растворных и расходных баков предусматриваем с верхнего уровня.
Ввод раствора реагента производится в суженный участок напорного водовода, подающего воду на очистные сооружения.
В случае невозможности самотечного перепуска растворов реагентов предусматривается их перекачка кислотостойкими насосами марки 1,5х-6Д-1-41. Время перекачки принимаем 0,5 ч. Тогда производительность насоса равна: qнас = 3,4 / 0,5 = 6,8 м 3 /ч
5.4.2. Расчет производительности воздуходувок
Для интенсификации процессов растворения коагулянтов и перемешивание раствора в растворных и расходных баков предусматривается подача сжатого воздуха, подаваемого по воздухопроводам от воздуходувок.
Производительность воздуходувок определяется по формуле:
где iрас – интенсивность подачи воздуха в растворном баке, 8-10 л/сек м 2 ;
iрасх — интенсивность подачи воздуха в расходном баке, 3-5 л/сек м 2 ;
Fраст – площадь растворного бака, м 2 ;
Fрасх – площадь расходного бака , м 2 ;
Принимаем 2 воздуходувки марки ВК-3 — одну рабочую и одну резервную.
По площади баков воздух распределяется при помощи дырчатых винипластовых труб, уложенных под решетками растворных и по дну расходных баков отверстиями вниз, на расстоянии 0,4-0,5 м друг от друга. Скорость выхода воздуха из отверстий принимается 20-30 м/сек при диаметре отверстий 3-4 мм.
5.4.3. Расчет отделения полиакриламида
Отделение ПАА состоит из склада и помещения, где располагаются установки для растворения и дозирования ПАА. ПАА поставляется в полиэтиленовых мешках емкостью 40 кг, упакованные в ящики.
Для приготавления 1% раствора ПАА принимаем установку УРП-2м производительностью 14 м 3 /сут. Принимаем одну рабочую и одну резервную установки.
Площадь склада для сухого хранения ПАА:
где k – коэффициент, учитывающий расширение площади за счет проходов, k = 1,2;
P — суточная потребность в реагенте, т/сут;
где Д – доза реагента, 0,5 мг/л;
Qсут.пол – расчетная производительность станции , м 3 /сут;
в – процентное содержание чистого продукта в техническом реагенте для глинозема очищенного 8-10 %;
T – время хранения коагулянта , 30 суток;
h – высота слоя коагулянта, 1-1,5 м;
γ – объемный вес коагулянта, 1 т/м 3 ;
Размер склада в плане принимаем 2 x 4 м 2 (при высоте слоя ПАА 1 м)
Проверим площадь склада ПАА на возможность доставки всей партии раегента автосамосвалами. Принимаем: грузоподъемность самосвала G = 5т; число одновременно прибывших самосвалов N = 1; время, на которое необходимо иметь запас реагента на складе к моменту поступления новой партии, Т0 = 2-3 сут
Принимаемая площадь склада удовлетворяет требованиям приема большегрузного самосвала.
Емкость расходных баков:
где qчас – часовая производительность станции, м 3 /ч;
n – время полного цикла приготавления раствора коагулянта 10-12 ч ;
вПАА — концентрация раствора коагулянта, 1-0,5%;
γ – объемный вес коагулянта, 1 т/м 3 ;
Принимаем 2 растворных бака ПАА размерами в плане 1 х 1 м 2 , высота 2,4 м, емкость по 2 м 3 . Расход раствора полиакриламида равен:
где t – 8-10 часов;
Для дозирования принимаем насосы-дозаторы марки НД 160/10 производительность qнас = 0,16 м 3 /ч, напор 100м.
5.5. Расчет основного технологического оборудования
5.5.1. Расчет вихревого вертикального смесителя
Смесительные устройства предназначены для перемешивания обрабатываемой воды с реагентами. Смесительные устройства принимают не менее 2.
Вертикальные вихревые смесители применяют для станций обработки воды с крупнодисперсной взвесью, а также при использование подщелачивания реагентов. При расчете смесительных устройств время пребывания воды в смесителе принимается от 1-2 мин.
Вертикальный смеситель принимают в виде цилиндрического резервуара с конической нижней частью при угле наклона 30-45 0 .
Принимаем 2 вертикальных смесителя с расходом воды в каждом из них.
Расход на 1смеситель:
qсм = qч.пол /n = 2093/2 = 1046,5 м 3 /час = 291 л/сек
где: t – время пребывания воды в смесителе, 1-2 мин;
Площадь цилиндрической части смесителя:
где: v – скорость восходящего движения воды (90-100 м/час или 30-40 мм/сек)
Диаметр цилиндрической части смесителя:
Высота конической части смесителя:
где d – диаметр входной конической части смесителя, определяется по qсм [л/сек] и скорости движения воды к смесителю, принимаемая от 1,2-1,5 м/сек по таб.Шевелева, d = 550 мм = 0,55 м;
α – угол наклона стенок в конической части смесителя, принимаем 30-45 0 ;
Объем конической части смесителя:
Объем цилиндрического смесителя:
Определяем высоту цилиндрической части смесителя:
Высоту верхней части смесителя в соответствии [6.п.6.45], принимается от 1-1,5 м, по расчету берем 1,5 м.
Определим полную высоту смесителя:
где 0,5 – превышение строительной высоты над уровнем воды в смесительном устройстве;
5.5.2. Расчет камеры хлопьеобразования встроенной в горизонтальный отстойник со слоем взвешенного осадка
Камеры хлопьеобразования предназначены для протекания физико-химических процессов, обусловливающих образование крупных хлопьев гидроокиси алюминия, на которых абсорбируются примеси находящиеся в воде. Камеры хлопьеобразования всегда устраиваются при использовании первой стадии осветления (осаждения) в отстойниках. Их следует устанавливать примыкающими или встроенными в отстойники. Для наиболее полного протекания процесса хлопьеобразования необходимо осуществлять перемешивание обрабатываемой воды за счет специальных перегородок, изменения направления движения воды, а также механическое перемешивание.
Расчет камеры хлопьеобразования осуществляется после расчета горизонтального отстойника.
5.5.3.. Расчет горизонтального отстойника
Отстойники применяют для предварительного осветления воды перед поступлением ее на скорые фильтры.
Горизонтальный отстойник представляет собой прямоугольный, железобетонный резервуар. Дно отстойника должно иметь продольный уклон не менее 0,005 в направлении, обратном движению воды. Мутность воды – 400 мг/л.
Расчет горизонтального отстойника начинается с определения суммарной площади отстойника:
где — коэффициент объемного использования отстойника; 1,3;
q – расчетный расход воды, м 3 /час;
u0 – скорость выпадения взвеси,задерживаемой отстойником для мутных вод принимается по [1,табл.18] -0,6мм/с.
где Hср – средняя высота зоны осаждения, 3-3,5;
vср – средняя горизонтальная скорость движения воды, принимаем по СНиП в зависимости от мутности воды : 9-12 мм/сек;
где b–ширина одной секции отстойника, согластно [1,п.6.68] принимается равной 6м;
Полная высота отстойника:
где Носв – зона осветления, 3-3,5;
Нз.н – зона накопления;
Объем зоны накопления:
где q – расчетный расход воды, м 3 /час;
С0 – содержание взвеси поступающих в отстойник с учетом введения реагентов;
где М – наибольшая мутность исходной воды;
k – коэффициент принимаемый для Al2 (SO4 )3 =0,5;
Дк – доза коагулянта;
Ц – цветность исходной воды;
В – содержание взвеси при введении извести;
Ндоп – превышение уровня воды в отстойнике при отключении одного из них на ремонт – 0,5 м;
Сбор осветленной воды из отстойников осуществляется системой горизонтально расположенных дырчатых труб или желобов. Трубы (желоба) размещаются на участке 2/3 длины отстойника вдоль оси коридора, считая от задней торцевой стенки. Расстояние между осями труб (желобов) не более 3 м.
Для гидравлического удаления осадка из отстойников в течение 20-30 мин устраивается система из перфорированных труб или коробов, укладываемых по дну отстойников по продольной оси. Расстояние между осями труб не более 3 м.
Определим расход, приходящийся на трубу:
qтр = qотс / 2 = 349/2 = 174 м 3 /ч = 48 л/с
по таб.Шевелева определим диаметр трубы:
v= 0,5-0,8 → d=250 мм
Система сбора осадка и отвода из отстойника.
Проектируются в виде дырчатых коробов, скорость движения осадка 1 м/с.
Расход воды сбрасываемый вместе с осадком:
где Kp – коэффициент разбавления осадка, 1,5;
Wз.н — объем зоны накопления;
n — количество коробов в отстойнике, 2;
N0 – количество отстойников;
5.5.4.Расчет камеры хлопьеобразования
Площадь камеры хлопьеобразования:
где — скорость восходящего потока воды в камере, согластно [1,п.6.56] при осветлении мутных вод принимается равной 2 мм/сек;
Принимаем 6 камер (по числу горизонтальных отстойников [1,п.6.62]), тогда площадь одной камеры:
к
2
При ширине камеры вк = 6м (равной ширине отстойника)длина камеры:
к
к
к
Высоту камеры к принимаем равной высоте отстойника с учетом потерь напора в камере:
к
отс
пот
где: hп – потери напора в камере хлопьеобразования, согластно[1,п.6.219] принимаются равными 0,4 м;
Время пребывания воды в камере хлопьеобразования определяем по формуле:
к
к.х 60
что соответствует данным СниП 2.04.02-84(t ≥20 мин)
Расход воды приходящейся на каждую камеру:
Расход воды по каждой трубе:
тр
к
Распределение воды по площади камеры предусмотрено при помощи перфорированных труб с отверстиями, направленными горизонтально. В каждой камере размещают две – четыре перфорированной трубы на расстояниях не более 3 м; приняты две трубы.
Диаметр трубы определяем по расходу и скорости (таб.Шевелева):
v = 0.5-0.6 м/сек → d= 300 мм
Площадь отверстий диаметром 15-25 мм в стенках перфорированной распределительной трубы составляет 30-40 % площади ее поперечного сечения:
отв
Принимаем отверстия d = 25мм площадь
Число отверстий на каждой трубе:
отв
Отверстия располагаются в два ряда с шагом:
Из камеры в горизонтальный отстойник воду отводят над затопленным водосливом. Верх стенки водослива располагают ниже уровня воды в отстойнике на величину:
где: — скорость движения воды через водослив, 0,05 м/сек;
— ширина камеры, 6м;
За стенкой водослива устанавливают подвесную перегородку, погруженную на 0,25-0,33 высоты отстойника, чтобы отклонить поток воды книзу. Скорость между стенкой водослива и перегородкой должна быть не более 0,03 м/сек.
5.5.5. Расчет скорых фильтров
Фильтрованием называется процесс прохождения осветляемой воды через слой фильтрующего материала. Фильтрование, так же как и отстаивание, принимают для осветления воды, т.е. для задержания находящихся в воде взвешенных веществ. Вода после выхода из отстойников должна содержать не более 8-12 мг/л взвешенных веществ. После фильтрования мутность воды, предназначенной для питьевых целей, не должна превышать 2 мг/л.
Помимо взвешенных веществ фильтры должны задержать большую часть микроорганизмов и микрофлоры и понижать цветность воды до требований ГОСТ, т.е. до 20 0 .
Двухслойный безнапорный фильтр представляет собой резервуар, загруженный слоями антрацита (верхний слой) с крупностью зерен 0,8-1,8 мм и толщиной слоя 0,4 м и кварцевого песка (нижний слой с крупностью зерен 0,5-1,2 мм и толщиной слоя 0,7м), согластно [1,табл.21].
Суммарная площадь скорых фильтров:
где Т – время работы станции в течение суток = 24 ч.;
vр.н – расчетная скорость фильтрования при нормальном режиме, согласно [1,табл.21], 0,7 м/час;
n – количество промывок каждого фильтра за сутки, 2;
w – интенсивность промывки, 14-16 л/(с*м 2 );
t1 – продолжительность промывки, 0,12 ч;
t2 – время простоя фильтра в связи с промывкой, 0,33 ч;
Площадь одного фильтра:
, размер в плане 5,5х 6 м.
Скорость фильтрования воды при форсированном режиме составит:
где N1 – количество фильтров, находящихся в ремонте, N1 =1;
Поддерживающий слой из гравия имеет общую высоту 500мм и крупность зерен 2-40 мм [1,табл.22].
Потери напора в поддерживающих слоях при промывке фильтрующего слоя определяются по формуле:
где, Нп.с. — высота поддерживающего слоя, м;
Расчет распределительной системы фильтра.
В проектируемом фильтре распределительная система служит как для равномерного распределения промывной воды по площади фильтра, так и для сбора профильтрованной воды.
Интенсивность промывки принята w = 15 л/(сек*м 2 ), согластно [1,табл.23].Тогда количество промывной воды, необходимо для одного фильтра:
Диаметр коллектора распределительной системы определяют по скорости входа промывной воды dкол = 700 мм, что при расходе 495 л/сек соответствует скорости vкол =1,13 м/сек ( в начале коллектора рекомендуется vкол = 1-1,2 м/с).
Площадь дна фильтра, приходящаяся на каждое отверстие распределительной системы при расстоянии между ними m=0,27м (m = 0,25 – 0,35) и наружном диаметре коллектора Dкол =700 мм, составит:
а расход промывной воды, поступающей через одно отверстие,
Диаметр труб ответвлений принимаем dотв =80 мм (ГОСТ 3262-62), тогда скорость входа воды в отверстия будет v=1,7 м/с.
В нижней части ответвлений под углом 60 0 к вертикале предусматриваются отверстия диаметром 10-12 мм.
Отношение площади всех отверстий в ответвлениях распределительной системы ∑f0 к площади фильтра F принимаем равным 0,25-0,30%
При площади одного фильтра F=33 м 2 суммарная площадь отверстий составит:
При диаметре отверстий δ0 =14 мм, площадь отверстий f0 =1,54 см 2 . Следовательно, общее количество отверстий в распределительной системе каждого фильтра:
Общее количество отверстий на каждом фильтре при расстоянии между осями отверстий 0,25 м составит:
Количество отверстий, приходящихся на каждое ответвление 536/44=12шт
При длине каждого отверстия lотв =(6-0,7)/2=2,65 м шаг оси отверстий на ответвлении бедет равен:
где hз – высота слоя загрузки, [1,табл.21];
hпод.сл – поддерживающий слой гравия, [1,табл.22];
hв – высота слоя воды под поверхностью загрузки, 2м;
5.5.6. Система для сбора и отвода промывной воды
Для сбора и отведения промывной воды устраиваются три желоба. Расстояние между осями желобов составляет 2 м [1,п.б.111]. Поперечное сечение желоба принимается: верхняя часть – прямоугольная, нижняя – треугольная.
Ширину желоба определяем по формуле:
где Кж – коэффициент , принимаемый равным для пятиугольного желоба-2,1 [1,п.б.111];
qж – расход воды по желобу, м 3 /сек;
аж – отношение высоты прямоугольной части желоба к половине его ширины, от 1 до 1,5;
Определим число желобов : n = 6 / 2.2 = 3 шт ,тогда расстояние между осями желобов составит: 6 / 3 = 2 м ( рекомендуется не более 2,2 м)
Расход промывной воды, приходящейся на один желоб:
Высота прямоугольной части желоба: hпр = 0,75*B = 0,75*0,65=0,49 м
Полезная высота желоба: h = 1.25*B = 1.25*0,65 = 0,81 м
Конструктивная высота желоба ( с учетом толщины стенки) :
hк = h + 0.08 = 0,81 + 0,08 = 0,89 м. Скорость движения воды в желобе v = 0,61 м/сек.
Высота кромки желоба над поверхностью фильтрующей загрузки при Н=1,5м и относительном расширении фильтрующей загрузки е = 30% по формуле:
Расход воды на промывку фильтра:
где Тр – продолжительность работы фильтра между двумя промывками, равная
где Т0 – продолжительность рабочего фильтроцикла, 8 –12 ч;
t3 – продолжительность сброса первого фильтрата в сток;
w – интенсивность промывки;
N – количество фильтров, 10 шт;
5.5.7. Расчет сборного канала
Загрязненная промывная вода из желобов скорого фильтра свободно изливается в сборный канал, откуда отводится в сток.
Поскольку фильтр имеет площадь f = 33м 2 ‹ 40 м 2 , он устроен с боковым сборным каналом, непосредственно примыкающим к стенке фильтра. При отводе промывной воды с фильтра сборный канал должен предотвращать создание подпора на выходе воды из желобов.
Поэтому расстояние от дна желоба до дна бокового сборного канала должно быть не менее:
где qкан – расход воды в канале , 0,495 м 3 /сек;
bкан – минимальная допустимая ширина канала, согласно [1,П.6.112] принимается 0,7 м;
Скорость движения воды в конце сборного канала при размерах поперечного сечения fкан = 0,7*0,7=0,49 м 2 , составит vкан = qкан / fкан = 0,495/0,49=0,8 м/сек, что примерно отвечает рекомендуемой минимальной скорости, v = 0.8 м/сек.
5.5.8.. Определение потерь напора при промывке фильтра
Напор, под которым подается вода для промывки фильтра, должна быть не менее:
где Нг – геометрическая высота подъема воды;
где 1,5- высота загрузки;
0,7 – высота над поверхностью загрузки;
∑h – сумма потерь напора при промывки фильтра;
где hр.с – потери напора в отверстиях труб распределительной системы фильтра;
где а– отношение суммы площадей всех отверстий распределительной системы к площади сечения коллектора, 0,25;
vкол – скорость движения воды в коллекторе в м/сек;
vр.т – то же, в распределительных трубах в м/сек;
hф – потери напора в фильтрующем слое, 1м;
hп.с – потери напора в гравийных поддерживающих слоях;
hп.т – потери напора в трубопроводе;
hп.т = i*l =100*0,00649=0,65 м
при q = 435 л/сек, d = 600 мм и v = 1,77 м/сек гидравлический уклон i = 0,00649, общая длина трубопровода 100 м
hо.с – потери напора на образование скорости во всасывающем и напорном трубопроводах, 0,4 м;
hм.с – потери напора на местные сопротивления, 0,6 м;
5.5.9.Подбор насосов для промывки фильтра
Для подачи промывной воды в качестве 495 л/сек принято два одновременно действующих центробежных насоса марки 12НД с производительностью 720 м 3 /ч (200 л/с) каждый с напором 21 м, при скорости вращения n=960 об/мин. Мощность на валу насоса 48 кВт, мощность эл. двигателя 55 кВт, КПД насоса 0,87.
Кроме двух рабочих насосов принят один резервный агрегат.
5.5.10. Расчет отделения хлораторной
Для интесификации хода коагулянта и обесцвечивания, а также для улучшения санитарного состояния сооружений рукомендуется проводить хлорирование воды.
Д оза первичного хлорирования Дх1 = 4 мг/л;
Доза вторичного хлорирования Дх2 = 1 мг/л;
Определим суточный расход хлора: расход хлора для предварительного хлорирования воды при Дх1 = 4 мг/л равен:
расход хлора для предварительного хлорирования воды при Дх2 = 1 мг/л;
Общий расход хлора равен 8,4+2=10,4 кг/ч, или 250 кг/сут
Помещение хлораторной разделено глухой стенкой на две части (хлора торная и аппаратная) с самостоятельными запасными выходами наружу из каждой
В хлораторной устанавливают три вакуумных хлоратора ЛОНИИ-100 производительностью до 10 кг/ч с газовым измерителем. Два хлоратора являются рабочими, а один служит резервным.
В аппаратной кроме хлораторов устанавливаются три промежуточных хлорных баллона. Они требуются в больших установках для задержания загрязнений перед поступлением хлорного газа в хлоратор из расходных хлорных баллонов.
Число расходных хлорных баллонов:
где Sбак =0,5 – 0,7 кг/ч — съем хлора с одного баллона без искусственного подогрева при температуре воздуха в помещении 18 0 С.
Для уменьшения количества расходных баллонов в хлораторной устанавливаются стальные бочки – испарители диаметром D=0,746 м и длиной L =1,6 м. Такая бочка имеет емкость 500 л и вмещает до 625 кг хлора. Съем хлора с 1 м 2 боковой поверхности бочек составляет Sхл =3 кг/ч. Боковая поверхность бочки при принятых выше размерах составит 3,65 м 2 .
Таким образом, съем хлора с одной бочки будет
Для обеспечения подачи хлора в количестве 15,83 кг/ч нужно иметь 10,4/10,95=1 бочки испарителя. Чтобы пополнить расход хлора из бочки, его переливают из стандартных баллонов емкостью 55 л, создавая разрежение в бочках путем отсоса хлор газа эжектором. Это мероприятие позволяет увеличить съем хлора до 5 кг/ч с одного баллона и, следовательно, сократить количество одновременно действующих расходных баллонов до 10,5/5 2 шт
Всего за сутки потребуется баллонов с жидким хлором:
где: 55 л – объем одного баллона
В помещении хлораторной предусматриваются резервные баллоны в количестве 50% суточной потребности т.е. 2 баллона.
Основной запас хлора хранится вне очистной станции, на расходных складах, рассчитанных на месячную потребность в хлоре.
Доставка баллонов с расходного склада на очистную станцию производится автомашиной.
Вентиляцию хлораторной и склада предусматриваем общеобменную с 12 – ти кратным обменом воздуха в час.
Загрязненный воздух отсасывается из нижней зоны через подпольные каналы с решетками и выбрасывается в атмосферу через шахту, возвышающуюся на 5 м над крышей здания.
5.5.11. Расчет сооружений повторного использования воды.
Принято повторное использование промывной воды фильтров с кратковременным отстаиванием ее в аккумулирующих емкостях, предназначенных для приема залповых сбросов.
На одну промывку фильтра расход воды составляет:
где, t1 – продолжительность промывки, 7 мин;
Следовательно приняты две аккумулирующие емкости по 210 м 3 каждая.
Полагая, что повторно используется 80% промывной воды, а 20% воды сбрасывается с осадком в сток, определяем параметры насосной установки:
а) насос для перекачки осветленной воды на очистные сооружения:
где t – продолжительность перекачки, 30 мин=0,5ч [12, табл.43];
б) насос для перекачки шламовой воды из резервуара в канализацию:
где t – продолжительность перекачки, 15 мин=0,25ч [12, табл.43];
Для выполнения обеих операций принимаем четыре обнотипных насоса ( три рабочих и один резервный) марки 12Д-19-60 производительностью по 150 л/с, напором 15 м, скоростью вращения 1450 об/мин и КПД 0,8.
9.5.12. Песковое хозяйство.
Кварцевый песок, используемый в качестве загрузки фильтра, должен быть очищен от примесей и иметь определенный гранулометрический состав.
В установках пескового хозяйства предусматривается подготовка карьерного песка для первоначальной загрузки фильтров, так и для ежегодной его догрузки в размере 10% общего объема песчаного фильтрующего материала.
Объем песка,загружаемого в фильтры перед пуском станции из восьми фильтров площадью по 33 м 2 каждый и высотой фильтрующего слоя 1,2 м составит:
Готовая потребность в дополнительном песке (10%-ная догрузка):
Принимаем, что в карьерном сырье содержит 55% песка, пригодного для загрузки фильтра.
Тогда потребность в карьерном сырье перед пуском станции будет:
а годовая потребность в песке для его дозагрузки в фильтры:
Песковая площадка принята асфальтированная с размером в плане 26Х20 м.
Глава 6. Водопроводная сеть и водоводы
6.1. Общие сведения
Трассировка водопроводной сети обусловлена выполнением следующих основных правил:
1. Водопроводная сеть должна равномерно охватывать всех потребителей воды.
2. Сети водопровода должны иметь возможно наименьшую строительную стоимость, для чего подачу воды в заданные точки необходимо производить по кратчайшим направлениям, с тем чтобы обеспечить наименьшую длину водопроводных сетей.
3. Водопроводная сеть должна обеспечивать бесперебойность подачи воды потребителям, как при нормальной работе, так и при возможных авариях на отдельных участках.
На территории города главные магистрали водопроводной сети трассируем по основному направлению движения воды. Магистрали соединены перемычками, обеспечивающими перераспределение воды между магистралями при авариях.
Транзитные магистрали предусмотрены для транспортирования воды от точки питания сети к наиболее удаленным ее точкам, а так же в распределительную сеть.
6.2. Расчет водопроводной сети на случай максимального водозабора
6.2.1. Расчетная схема отбора воды.
Водопроводная сеть – кольцевая с водонапорной башней в начале сети; башня располагается на естественной возвышенности на отметке 107,3 м.
Максимальное водопотребление приходится на промежуток времеми с 21 до 22 часов. В этот час город потребляет 5,28% от Qсут.мах , т.е.2238,57 м 3 /ч = 622 л/с, в том числе предприятия:
Qпр№1 = 162 м 3 /ч = 45 л/с
Qпр№2 = 208 м 3 /ч = 58 л/с
Суммарное потребление воды предприятиями: Qпр = 103 л/с
Тогда расход воды, равномерно распределенного по территории города, составит:
Q = Qрасч – Qпр = 622 – 103 = 519 л/с
Удельный отбор, т.е. отдача воды сетью на 1 м ее длины, определяем по формуле:
где ∑l – сумма длин участков сети, м.
Путевые расходы воды по участкам сети:
или заменяя их узловыми расходами воды:
где lузл – сумма длин участков, приходящих к узлу.
Результаты определения узловых расходов приведены в табл. 6.1 и на рис.6.1.
Узловые расходы воды.
Номера участков, примыкающего к узлу
Сумма длин участков, примыкающих к узлу Sl
Определение расчетных расходов воды по участкам сети.
При начальном потокораспределении должны быть выполнены два основных требования:
1. обеспечение надежности работы сети путем распределения воды по основным параллельным магистралям примерно равными потоками, что, в свою очередь, обеспечивает взаимозаменяемость этих участков в случае аварии;
2. соблюдение баланса расходов воды в узлах, чтобы сумма всех расходов, приходящих к узлу, равнялась сумме расходов, вытекающих из этого узла, включая собственно узловой расход.
Начальное потокораспределение представлено на рис.6.1.
Определение диаметров труб участков сети.
Максимальная надежность сети обеспечивается путем назначения равных диаметров в пределах каждого характерного сечения сети, что обеспечивает взаимозаменяемость транзитных магистралей.
Диаметры перемычек, осуществляющих переброску транзитных расходов воды при авариях на магистралях, назначаются конструктивно и принимаются равными диаметрам магистральных участков, следующих за данными перемычками.
Для водопроводной сети применяются чугунные водопроводные трубы (ГОСТ 21053-75).
Наивыгоднейшие диаметры участков сети вычисляется с помощью компьютера. Данные диаметры принимаются одинаковыми и для случая максимального водоразбора при пожаротушении.
Учитывая экономический фактор и предельно-допустимые значения скоростей течения воды подобраны экономически наивыгоднейшие диаметры труб участков сети.
Потери напора в трубах определяем по формуле:
h = S0 *L*Q 2 = S* Q 2
где S0 – удельное сопротивление трубопровода, При скорости движения воды в трубах 3
К установке принимаем типовую железобитонную башню, вместимостью бакаа которой – 1100 м 3 .
Размеры бака принимаем с таким расчетом, чтобы отношения высоты слоя воды к диаметру было в пределах 0,7. Тогда диаметр бака равен:
Д = 1,25 3 √ Wб = 1,25 3 √ 1088 = 13 м, а высота слоя воды Н = 9 м
7.3. Определение вместимости резервуаров чистой воды
Полная вместимость резервуаров чистой воды (в м 3 ) определяется по вормуле:
где Wрег.р – регулирующий запас воды;
Wпож.р – противопожарный запас;
Wф – запас воды на промывку фильтровпринимаем равным 2121 м 3 ,согластно расчету очистных сооружений;
Результаты расчетов Wрег.р приведены в табл. 7.2.
Вместимость резервуара чистой воды
Подача насосами 1-го подъема, %
Подача насосами 2-го подъема, %
Поступление воды в РЧВ
Расход воды из РЧВ
Остаток воды в РЧВ
Из таблицы видно, что наибольший остаток воды в РЧВ приходится на период с 23 до 24 часов и составляет 7,85 % Qсут.мах ., следовательно:
Неприкоснавенный противопожерный запас воды определяем из расчета подачи воды на тушение пожара в течение трехчасового периода наибольшего водопотребления по формуле:
где Qпож – расход воды на тушение наружных плжаров, Qпож = 135 л/с;
3* Qч.мах – расход воды на три смежных часа наибольшего водопотребления, т.е. с 20 до 22ч.
3* Qч.ср – приток воды в резервуар принимаем равным трем среднечасовым, т.е. 4,17% Qсут.мах .*3
Запас воды на собственные нужды очистных сооружений может быть принят в размере 5-8% от Qсут.мах ., следовательно:
Wф =42421*5/100=2121 м 3
Полная вместимость резервуара чистой воды:
Wр = 3030+2393+2121=8060 м 3
Принимаем два типовых железобетонных резервуара вместимостью 4030 м 3 каждый, с размерами в плане 30X30м, высота слоя воды – 4,5 м.
7.4. Определение напора насосов I подъема
Напор насосов I подъема определяется по формуле:
где Нг — геометрическая высота подъема воды насосами, м:
где Zос — уровень воды в смесителе очистной станции, м;
Zвз — минимальный уровень воды в береговом колодце, водозабора м;
hв — потери напора во всасывающих водоводах и во всасывающих коммуникациях насосной станции, принимаются равными 1,0 м [4, п.14.3];
hн — потери напора в напорных коммуникациях внутри насосной станции, принимаются равными 2 м [4, п.14.3];
1 — запас напора на излив воды из трубопроводов, м;
Потери напора в напорных водоводах (по длине) определяются по формуле:
где i — пьезометрический уклон, принимается при диаметре напорного водовода d=500 мм и расходе воды Q=270 л/с;
L – длина водовода, 600м;
Потери напора на местные сопротивления в напорных водоводах принимаются в размере 10% от потерь напора по длине:
Принимаются два рабочих и два резервных насоса марки Д 1250-65 , n = 980 об/мин. Характеристика насосов: Dр.к =460 мм;
8.5. Напор насосов II подъема.
Полный напор насосов определяется по формуле:
где Zвб — отметка поверхности земли у водонапорной башни, м;
Zрчв — отметка минимального уровня воды в резервуарах чистой воды при сохранении неприкосновенного запаса воды, м;
Нвб — высота водонапорной башни, м;
Нб — максимальная высота слоя воды в баке водонапорной башни, м;
hi — потери напора во всасывающих водоводах и коммуникациях насосной станции, соответствующих подаче насосной станцией в период максимального водоразбора, принимаются равными 1,5 м [4];
hн — потери напора в водоводах от насосной станции до водонапорной башни, определены в гл.7, и в напорных коммуникациях внутри насосной станции при расходах, соответствующих подаче насоса в период максимального водоразбора, принимаются равными 2 м [4, п.14.3].
В соответствии с [1] работа насосной станции II подъема должна быть проверена на подачу воды при тушении пожара.
Требуемый напор насосов в период тушения пожаров определяется по формуле:
где Нгп — геометрическая высота подъема воды при пожаротушении, т.е. разность отметок земли в расчетной (диктующей) точке пожара и минимального уровня воды в резервуарах чистой воды (отметка дна), м;
hвп — потери напора во всасывающих водоводах и коммуникациях насосной станции при пожаротушении, принимаются равными 1,5 м [4, п.14.3];
hнп — потери напора в напорных коммуникациях внутри насосной станции, принимаются равными 2 м, и по пути от насосной станции до расчетной точки (в водоводах и сетях) при пожаротушении, определены в гл.7;
Для обеспечения подачи расчетных расходов воды принимаются в часы максимального водопотребления два рабочих и два резервных насоса.
Принимаются насосы марки Д 1250-125 , n = 1450 об/мин .
Характеристика насосов: Dр.к =570 мм;
Глава 8. Автоматизация технологического процесса.
Автоматизация процесса коагулирования воды.
Одним из первых этапов процесса очистки воды является коагулирование. Иногда одновременно с коагулированием устраняется излишняя жёсткость воды путём подщелачевания её известью. В воду могут вводиться и другие реагенты (твёрдые, жидкие и газообразные) для устранения излишнего количества солей железа, марганца и кремния, а также для устранения привкусов и запахов.
В установках коагулирования воды автоматизируется управление механизмами внутристанционного транспортирования, дробления и дозирования реагентов. Дозирование реагентов производится в сухом виде или в виде водных растворов и суспензий.
Механизация и автоматизация разгрузки и внутристанционного транспортирования химических реагентов обеспечивает бесперебойную и более точную подачу реагентов, от чего зависит качество очистки воды; упрощает эксплуатацию сооружений; сокращают численность обслуживающего персонала; устраняют пыль в рабочих помещениях станции; снижают потери реагентов. В последние годы получает внедрение мокрое транспортирование коагулянта, значительно упрощающее автоматизацию реагентного хозяйства на очистных станциях.
При использовании на станциях сухого коагулянта его дозирование может осуществляться в сухом виде или после предварительного растворения в баках. Дозаторы (иногда их называют питателями) сухого коагулянта бывают объёмные и скоростные. Объёмные отмеривают равные порции коагулянта и регулируют число порций, вводимых в воду в единицы времени. Скоростные подают измельчённый коагулянт непрерывным потоком с заданной скоростью.
Сухое дозирование коагулянта не получило широкого внедрения, на водопроводных станциях обычно применяется мокрое дозирование. В этом
случае грубоизмельчённый коагулянт загружается в растворные баки, где получается раствор примерно 20%-ной крепости. Дальше в расходных баках крепость раствора доводится примерно до 10%, и в таком виде он поступает в дозирующее устройство.
Действие автоматических устройств для мокрого пропорционального дозирования реагентов в точном соответствии с количеством обрабатываемой воды может быть основано на изменении площади отверстия, через которое поступает раствор, пропорционально количеству обрабатываемой воды; на изменении напора, под которым вытекает раствор из какого-либо отверстия, пропорционально количеству воды; на объёмном отмеривании; на объёмном вытеснении. На многих водопроводных станциях построены установки для механизации и автоматизации загрузки, растворения и мокрого дозирования коагулянта, в основу которых положен автоматический дозатор системы Чейшвили-Крымского.
В установке принята периодическая загрузка баков сухим коагулянтом. При колебании концентрации раствора в определённых заданных пределах периодическая загрузка даёт наиболее рациональное решение. Одновременная загрузка коагулянта в баки, ёмкость которых рассчитана на суточный расход, требует громоздких сооружений и значительного расхода энергии на перемешивание раствора. Непрерывная загрузка коагулянта элеватором неприемлима, так как производительность элеватора не остаётся постоянной при различной крупности сухого коагулянта. Даже небольшое несоответствие между производительностью элеватора и расходом коагулянта в растворённом состоянии приведёт или к переполнению бака сухим коагулянтом, или к чрезмерному понижению концентрации.
Общая схема установки приведена на листе N 8. Загрузка коагулянта производится в бункер 9 автомобилями-самосвалами. Далее коагулянт элеватором 8 подаётся в камеру 7, имеющую дырчатое дно. В эту камеру для растворения коагулянта подаётся вода. Подача воды регулируется дроссельным клапаном 5 с поплавковым устройством. Перемешивание раствора производится с помощью сжатого воздуха, подаваемого от воздуходувки 10 в сеть перфорированных труб, уложенных на дне бака 6. В условиях периодической загрузки коагулянта в камеру 7 концентрация забираемого из бака 6 раствора будет медленно повышаться или понижаться в определённых заданных пределах. Контроль концентрации раствора осуществляется ареометром 3 с электрическим индукционным датчиком 2. К датчику подключены вторичный прибор для измерения и регистрации концентрации коагулянта и контактная система, регулирующая работу элеватора 8. Ареометр измеряет концентрацию раствора в устроенном для этой цели баке 4.
Раствор из бака 6 забирается насосом 13 и подается через регулирующий вентиль с электроприводом 14 в трубопровод, по которому вода поступает из реки в смеситель 11. Перед регулирующим вентилем установлен тройник, через который часть раствора непрерывно подается в бак 4. А из него по переливной трубе раствор отводится в бак 7. Этим обеспечивается контроль концентрации рабочего раствора коагулянта перед подачей его в воду. Ввод раствора коагулянта в трубу под напором обеспечивает быстрое и полное перемешивание его с водой.
В состав дозатора входят равновесный электронный мост ЭМД-217 и датчик электропроводности 12, включающий две измерительные и одну компенсационную электролитические ячейки. К одной из измерительных ячеек подводится вода из трубопровода до введения в нее раствора коагулянта, а к другой – после введения коагулянта. Электропроводность воды, в которую введен коагулянт, больше, чем без коагулянта. Разность электропроводности воды в электролитических ячейках можно принять как добавочную электропроводность коагулянта и по ее величине определить количество коагулянта в воде. Компенсационная ячейка, включающая постоянное сопротивление, служит для устранения влияния измерений температуры воды. Происходит это путем обтекания постоянного сопротивления компенсационной ячейки водой из измерительной ячейки. Изменение температуры воды вызывает изменение постоянного сопротивления, что учитывается в электронном мосте.
Контактная система равновесного моста управляет работой электрифицированного вентиля 14. Вся контрольно-измерительная и управляющая аппаратура размещается на пульте 1. Для обеспечения бесперебойности работы установки предусмотрены два бункера, два растворных бака, два насоса и две воздуходувки.
Как видно из электрической схемы дозирующей части установки ( лист № 8), трансформатор Тр, питающий электролитические ячейки, имеет три вторичные обмотки. Средняя точка одинаковых обмоток соединена со средней точкой измерительных ячеек 1 и 2 через постоянное сопротивление R0 .
Отдельная обмотка трансформатора включена последовательно с компенсационной ячейкой 3 и реохордом Р электронного моста переменного тока ЭМД-127. К усилителю моста Ус подводится разность между напряжением на включенном в данный момент сопротивления реохорда Р и напряжением от сопротивления.
Автоматический дозатор поддерживает заданную дозу коагулянта с помощью автоматического электронного равновесного моста, имеющего систему контактов, которые замыкаются при отклонении стрелки, связанной с реохордом, от установленной (по шкале прибора) дозы коагулянта. Поскольку сопротивление включенного участка реохорда Р определяется положением скользящего по нему контакта, отклонение стрелки будет прямопропорционально количеству коагулянта в воде. Проходящей через измерительную ячейку 2.
Равновесный мост, действуя на электропривод регулирующего вентиля с помощью контактов регулятора, автоматически поддерживает заданную дозу коагулянта. Следовательно, для дозатора Чейшвили-Крымского не нужно постоянства концентрации раствора коагулянта. Изменение концентрации автоматически компенсируется большим или меньшим открытием регулирующего вентиля. Необходимо только, чтобы концентрация была выше некоторого предела, определяемого пропускной способностью устройств для подачи раствора коагулянта в воду.
Таким образом, при применении дозаторов этого типа отпадает необходимость в устройстве отдельных баков для приготовления раствора и отдельных расходных баков; достаточно иметь только один небольшой растворный бак. Однако надо обеспечить такие условия работы, чтобы скорость растворения коагулянта превышала его наибольший расход.
На Ленинградской главной водопроводной станции при непрерывном растворении оказался достаточным бак емкостью до 30 м 3 на 1 тонну коагулянта в 1 час, тогда как до автоматизации требовался бак вместимостью не менее 300 м 3 на такое же количество коагулянта.
Применяемый в схеме контактный ареометр имеет контакты, замыкающиеся при снижении концентрации раствора коагулянта ниже заданного предела. На плоту ареометра, плавающем в баке с раствором коагулянта, укреплена герметически закрытая катушка индукционной телеметрической системы. При изменении концентрации, а следовательно, и объемной массы раствора коагулянта изменяется взаимное расположение катушки и сердечника, что вызывает соответствующее изменение положения стрелки вторичного прибора, соединенного с индукционной катушкой ареометра. В качестве вторичного прибора используется Э-280 (указывающий) или Э-612 (регистрирующий). Электрическая схема ареометра включает задатчик и усилитель с поляризованным реле. Задатчик представляет собой обычный реостат с сопротивлением около 1500 Ом. Подвижной контакт задатчик устанавливается в такое положение, при котором распределение напряжения на секциях реостата получается таким же, как и распределение напряжения на секции индукционной катушки ареометра при заданной концентрации. В этом случае напряжение между средней точкой задатчика и средними точками катушки и вторичного прибора, подаваемое на вход усилителя, равно нулю. В случае понижения концентрации раствора коагулянта изменяется напряжение на индукционных катушках и на вход усилителя окажется поданным напряжение, под действием которого поляризованное реле замкнет свой контакт. Если же произойдет увеличение концентрации раствора коагулянта сверх заданной, то напряжение на входе усилителя будет иметь фазу, сдвинутую на 180 0 , вследствие чего поляризованное реле разомкнет контакты.
Пуск и установка элеватора осуществляется автоматически. При понижении концентрации раствора коагулянта в баке до заданного предела замыкаются контакты ареометра КА и включается реле пуска элеватора РЗ, которое своими контактами замкнет цепь магнитного пускателя одного из двух элеваторов в зависимости от положения переключат
Опыт применения дозатора коагулянта Чейшвили-Крымского показал, что этот дозатор может использоваться лишь при очистке воды невысокого
(до 150 … 200 мг/л) солесодержания, что является его существенным недостатком. К другим его недостаткам относятся большое запаздывание в регулировании, нарушение работы электролитических ячеек при отложении в них осадка, сложность принятой температурной компенсации. Для успешной работы дозатора необходимо квалифицированное обслуживание
Глава 10.Автоматизация технологического процессов.
Автоматизация процеса коагулирования воды.
Одним из первых этапов процесса очистки воды является коагулирование. Иногда одновременно с коагулированием устраняется излишняя жёсткость воды путём подщелачевания её известью. В воду могут вводиться и другие реагенты ( твёрдые, жидкие и газообразные) для устранения излишнего количества солей железа , марганца и кремния, а также для устранения привкусов и запахов.
В установках коагулирования воды автоматизируется управление механизмами внутристанционного транспортирования, дробления и дозирования реагентов. Дозирование реагентов производится в сухом виде или в виде водных растворов и суспензий.
Механизация и автоматизация разгрузки и внутристанционного транспортирования химических реагентов обеспечивает бесперебойную и более точную подачу реагентов, от чего зависит качество очистки воды; упрощает эксплуатацию сооружений; сокращают численность обслуживающего персонала; устраняют пыль в рабочих помещениях станции; снижают потери реагентов. В последние годы получает внедрение мокрое транспортирование коагулянта, значительно упрощающее автоматизацию реагентного хозяйства на очистных станциях.
При использовании на станциях сухого коагулянта его дозирование может осуществляться в сухом виде или после предварительного растворения в баках. Дозаторы ( иногда их называют питателями) сухого коагулянта бывают объёмные и скоростные. Объёмные отмеривают равные порции коагулянта и регулируют число порций, вводимых в воду в единицы времени. Скоростные подают измельчённый коагулянт непрерывным потоком с заданной скоростью.
Сухое дозирование коагулянта не получило широкого внедрения, на водопроводных станциях обычно применяется мокрое дозирование. В этом
случае грубоизмельчённый коагулянт загружается в растворные баки, где получается раствор примерно 20%-ной крепости. Дальше в расходных баках крепость раствора доводится примерно до 10%, и в таком виде он поступает в дозирующее устройство.
Действие автоматических устройств для мокрого пропорционального дозирования реагентов в точном соответствии с количеством обрабатываемой воды может быть основано на изменении площади отверстия, через которое поступает раствор , пропорционально количеству обрабатываемой воды; на изменении напора, под которым вытекает раствор из какого-либо отверстия, пропорционально количеству воды; на объёмном отмеривании; на объёмном вытеснении. На многих водопроводных станциях построены установки для механизации и автоматизации загрузки, растворения и мокрого дозирования коагулянта, в основу которых положен автоматический дозатор системы Чейшвили-Крымского.
В установке принята периодическая загрузка баков сухим коагулянтом. При колебании концентрации раствора в определённых заданных пределах периодическая загрузка даёт наиболее рациональное решение. Одновременная загрузка коагулянта в баки, ёмкость которых рассчитана на суточный расход, требует громоздких сооружений и значительного расхода энергии на перемешивание раствора. Непрерывная загрузка коагулянта элеватором неприемлима, так как производительность элеватора не остаётся постоянной при различной крупности сухого коагулянта. Даже небольшое несоответствие между производительностью элеватора и расходом коагулянта в растворённом состоянии приведёт или к переполнению бака сухим коагулянтом, или к чрезмерному понижению концентрации.
Общая схема установки приведена на листе N . Загрузка коагулянта производится в бункер 9 автомобилями-самосвалами. Далее коагулянт элеватором 8 подаётся в камеру 7, имеющую дырчатое дно. В эту камеру для растворения коагулянта подаётся вода .Подача воды регулируется дроссельным клапаном 5 с поплавковым устройством. Перемешивание раствора производится с помощью сжатого воздуха, подаваемого от воздуходувки 10 в сеть перфорированных труб, уложенных на дне бака 6. В условиях периодической загрузки коагулянта в камеру 7 концентрация забираемого из бака 6 раствора будет медленно повышаться или понижаться в определённых заданных пределах. Контроль концентрации раствора осуществляется ареометром 3 с электрическим индукционным датчиком 2. К датчику подключены вторичный прибор для измерения и регистрации концентрации коагулянта и контактная система , регулирующая раб оту элеватора 8. Ареометр измеряет концентрацию раствора в устроенном для этой цели баке 4.
Раствор из бака 6 забирается насосом 13 и подается через регулирующий вентиль с электроприводом 14 в трубопровод, по которому вода поступает из реки в смеситель 11. Перед регулирующим вентилем установлен тройник, через который часть раствора непрерывно подается в бак 4. А из него по переливной трубе раствор отводится в бак 7. Этим обеспечивается контроль концентрации рабочего раствора коагулянта перед подачей его в воду. Ввод раствора коагулянта в трубу под напором обеспечивает быстрое и полное перемешивание его с водой.
В состав дозатора входят равновесный электронный мост ЭМД-217 и датчик электропроводности 12, включающий две измерительные и одну компенсационную электролитические ячейки. К одной из измерительных ячеек подводится вода из трубопровода до введения в нее раствора коагулянта, а к другой – после введения коагулянта. Электропроводность воды, в которую введен коагулянт, больше, чем без коагулянта. Разность электропроводности воды в электролитических ячейках можно принять как добавочную электропроводность коагулянта и по ее величине определить количество коагулянта в воде. Компенсационная ячейка, включающая постоянное сопротивление, служит для устранения влияния измерений температуры воды. Происходит это путем обтекания постоянного сопротивления компенсационной ячейки водой из измерительной ячейки. Изменение температуры воды вызывает изменение постоянного сопротивления, что учитывается в электронном мосте.
Контактная система равновесного моста управляет работой электрифицированного вентиля 14. Вся контрольно-измерительная и управляющая аппаратура размещается на пульте 1. Для обеспечения бесперебойности работы установки предусмотрены два бункера, два растворных бака, два насоса и две воздуходувки.
Как видно из электрической схемы дозирующей части установки ( рис. 143), трансформатор Тр, питающий электролитические ячейки, имеет три вторичные обмотки. Средняя точка одинаковых обмоток соединена со средней точкой измерительных ячеек 1 и 2 через постоянное сопротивление R0 .
Отдельная обмотка трансформатора включена последовательно с компенсационной ячейкой 3 и реохордом Р электронного моста переменного тока ЭМД-127. К усилителю моста Ус подводится разность между напряжением на включенном в данный момент сопротивления реохорда Р и напряжением от сопротивления.
Автоматический дозатор поддерживает заданную дозу коагулянта с помощью автоматического электронного равновесного моста, имеющего систему контактов, которые замыкаются при отклонении стрелки, связанной с реохордом, от установленной ( по шкале прибора) дозы коагулянта. Поскольку сопротивление включенного участка реохорда Р определяется положением скользящего по нему контакта, отклонение стрелки будет прямопропорционально количеству коагулянта в воде. Проходящей через измерительную ячейку 2.
Равновесный мост, действуя на электропривод регулирующего вентиля с помощью контактов регулятора, автоматически поддерживает заданную дозу коагулянта. Следовательно, для дозатора Чейшвили-Крымского не нужно постоянства концентрации раствора коагулянта. Изменение концентрации автоматически компенсируется большим или меньшим открытием регулирующего вентиля. Необходимо только, чтобы концентрация была выше некоторого предела, определяемого пропускной способностью устройств для подачи раствора коагулянта в воду.
Таким образом, при применении дозаторов этого типа отпадает необходимость в устройстве отдельных баков для приготовления раствора и отдельных расходных баков; достаточно иметь только один небольшой растворный бак. Однако надо обеспечить такие условия работы, чтобы скорость растворения коагулянта превышала его наибольший расход.
На Ленинградской главной водопроводной станции при непрерывном растворении оказался достаточным бак емкостью до 30 м 3 на 1 тонну коагулянта в 1 час, тогда как до автоматизации требовался бак вместимостью не менее 300 м 3 на такое же количество коагулянта.
Применяемый в схеме контактный ареометр имеет контакты, замыкающиеся при снижении концентрации раствора коагулянта ниже заданного предела. На плоту ареометра, плавающем в баке с раствором коагулянта, укреплена герметически закрытая катушка индукционной телеметрической системы. При изменении концентрации, а следовательно, и объемной массы раствора коагулянта изменяется взаимное расположение катушки и сердечника, что вызывает соответствующее изменение положения стрелки вторичного прибора, соединенного с индукционной катушкой ареометра. В качестве вторичного прибора используется Э-280 (указывающий) или Э-612 (регистрирующий). Электрическая схема ареометра включает задатчик и усилитель с поляризованным реле. Задатчик представляет собой обычный реостат с сопротивлением около 1500 Ом. Подвижной контакт задатчик устанавливается в такое положение, при котором распределение напряжения на секциях реостата получается таким же, как и распределение напряжения на секции индукционной катушки ареометра при заданной концентрации. В этом случае напряжение между средней точкой задатчика и средними точками катушки и вторичного прибора, подаваемое на вход усилителя, равно нулю. В случае понижения концентрации раствора коагулянта изменяется напряжение на индукционных катушках и на вход усилителя окажется поданным напряжение, под действием которого поляризованное реле замкнет свой контакт. Если же произойдет увеличение концентрации раствора коагулянта сверх заданной, то напряжение на входе усилителя будет иметь фазу, сдвинутую на 180 0 , вследствие чего поляризованное реле разомкнет контакты.
Пуск и установка элеватора осуществляется автоматически. При понижении концентрации раствора коагулянта в баке до заданного предела замыкаются контакты ареометра КА и включается реле пуска элеватора РЗ, которое своими контактами замкнет цепь магнитного пускателя одного из двух элеваторов в зависимости от положения переключат
Опыт применения дозатора коагулянта Чейшвили-Крымского показал, что этот дозатор может использоваться лишь при очистке воды невысокого
(до 150 … 200 мг/л) солесодержания, что является его существенным недостатком. К другим его недостаткам относятся большое запаздывание в регулировании, нарушение работы электролитических ячеек при отложении в них осадка, сложность принятой температурной компенсации. Для успешной работы дозатора необходимо квалифицированное обслуживание
Глава 9. Организация и планирование строительного производства
9.1 Задание на проектирование
Разработать документацию проекта производства работ (ППР) на строительстве участка от колодца № 9 до колодца № 13 протяженностью 2490 км в следующем составе: пояснительная записка, стройгенплан, сетевой график строительства.
9.2 Характеристика инженерной сети
Уровень строительства – летний;
Глубина промерзания грунта — 1,5 м;
Уровень грунтовых вод на 3,3м ниже поверхности земли;
Трубы чугунные, диаметрами 400, 350 и 250 мм.
9.3 Номенклатура и объемы строительно – монтажных работ
Перечень строительно-монтажных процессов, принимаемый в соответствии с технологической последовательностью выполнения работ и с параграфами единых норм и расценок, отображен в таблице № 9.1
Механизированное разработка траншей и котлованов одноковшовым экскаватором
Укрепление стенок траншеи и котлованов
Ручная зачистка дна траншей и котлована грунта