Длина контура отопления однотрубная система

Однотрубная система отопления: типы и схемы

Несмотря на сравнительную сложность и громоздкость водяной системы отопления (СО), именно она чаще всего применяется для обогрева частных и муниципальных жилых домов. Для такой популярности есть одна, но очень веская причина: идеальное соотношение цена – эффективность – экономичность. Наиболее простая, из всех возможных, схема системы отопления – однотрубная, которая и будет подробно рассмотрена в этой публикации.

Устройство и принцип работы

Любая водяная СО основана на теплообмене между теплоносителем (водой, рассолом, антифризом), который циркулирует по контуру, и воздухом обогреваемого помещения. В зависимости от архитектуры обогреваемого помещения, существует два варианта подачи воды к батареям: по лежакам (горизонтальному магистральному трубопроводу) и вертикальным стоякам.

Принцип действия горизонтальной однотрубной системы отопления следующий: теплоноситель циркулирует в магистральной трубе, образующей собой замкнутый контур, который начинается и заканчивается в теплогенераторе. Именно к одной магистральной линии и подключено все необходимое для работы СО оборудование.

Основные схемы разводки

Все типы разводки могут быть реализованы, в зависимости от способа перемещения теплоносителя по контуру.

  • Гравитационные. Другими словами, теплоноситель движется по контуру самотеком.
  • С принудительной циркуляцией.

Для того чтобы понять конструкцию, все плюсы и минусы каждого способа, необходимо рассмотреть устройство и принцип работы простейшей гравитационной СО.

Данная СО состоит из: теплогенератора (1), магистрального трубопровода (2; 3; 4; 5; 6), к которому подключаются батареи и атмосферного или мембранного расширительного бака (7), компенсирующего тепловое расширение теплоносителя.

Котел разогревает воду, которая поднимается по стояку вверх, а оттуда опускается к радиаторам. Охлажденный в батареях теплоноситель возвращается в котлоагрегат для дальнейшего использования. Как видно, в данном варианте не предусматривается никакого устройства для перемещения теплоносителя. В гравитационных СО для создания давления в контуре используется так называемый разгонный коллектор или стояк. На схеме он обозначен цифрой 4.

Для правильной работы необходимо, чтобы высота разгонного коллектора над первым радиатором в контуре, была не менее полутора метров.

Чтобы теплоноситель перемещался самотеком по контуру, одного разгонного стояка мало: необходим уклон магистрали. Нормальный уклон должен составлять 5° или 0,01 метр (10 мм.) на 1 погонный метр трубы. Должно быть соблюдено условие возвышения последнего радиатора в контуре, над теплогенератором.

Совет! Чтобы не было застоя теплоносителя, следует руководствоваться следующим правилом: чем выше последний радиатор в контуре над котлом, тем лучше. Несмотря на это, данное значение не должно превышать 3 м.

Что еще влияет на работу такой СО: длина контура, диаметр магистрального трубопровода и ответвлений, и способ подключения радиаторов.

На рисунке показаны четыре основных способа монтажа радиаторов в однотрубном контуре: «а» и «б» — последовательное подключение; «и» и «г» — параллельное магистральной трубе подключение. Как понятно из рисунка, нормальный самотек теплоносителя может обеспечить только схема с нижним последовательным подключением радиаторов (а). На практике, данный способ имеет все недостатки, которые присущи однотрубной СО.

Для улучшения теплообмена схема подключения батарей была модернизирована (б): такой способ установки радиаторов способствует более равномерному прогреву всех секций батарей (радиаторов, регистров и пр.). Есть у этого способа и недостатки: такое подключение практически не эффективно при движении воды самотеком; создается еще больший перепад температуры теплоносителя, между первой и последней в контуре батареей. Решить первую проблему поможет установка в контур циркуляционного насоса.

На практике, устанавливать нужно не только насос. Для спуска воздуха из батарей на них необходимо установить автоматические воздухоотводчики или краны Маевского.

Данная разводка уже не будет являться гравитационной, поэтому уклон трубопровода можно не соблюдать.

Если предполагается монтаж СО с закрытым расширительным бачком (10), то лучшим место его монтажа является обратная ветка магистрали, в любом удобном для установки месте. При использовании в данной схеме закрытого применяется группа безопасности (11), состоящая из подрывного клапана, прибора, для контроля за давлением и устройства для отвода воздуха.

Такая СО полностью работоспособна и имеет право на существование. Мало того, она успешно применяется для обогрева небольших одноэтажных помещений. Далее, будет рассмотрена модернизированная схема однотрубной системы отопления «Ленинградка».

Почему данную СО назвали «Ленинградка» — точно узнать невозможно. Одни источники утверждают, что именно эта схема была разработана и опробована в «Северной столице». Другие, что данное название было получено, как подтверждение экономичности этой системы обогрева. «Ленинградка» успешно применяется как в массовом, так и в частном строительстве.

Читайте также:  Что такое контур отопления пластинчатый теплообменник

Основной особенностью данной технологии является наличие перемычки между радиаторами (12). Именно такая конструкция позволяет более равномерно распределить тепло между батареями. Недостатком является невозможность отсечки и сложность в температурной балансировке каждой батареи.

При установке на каждый радиатор запорной арматуры (13), а в каждую перемычку балансировочного клапана (14), система отопления лишается этих недостатков. Для лучшей теплоотдачи можно использовать данную схему разводки с диагональным подключением батарей.

Данный модернизированный тип СО позволяет уже сделать ответвление на обогрев дополнительного помещения, или использовать ее для реализации обогрева небольшой двухэтажной постройки.

Проблема любой однотрубной системы в том, что проходя через все батареи вода достаточно сильно остывает, а это может привести к образованию на теплообменнике котла конденсата. Решить данную проблему поможет установка буферной емкости, или как его еще называют теплоаккумулятора. Схема однотрубной системы отопления с теплоаккумулятором показана на рисунке ниже.

Работать такая система будет следующим образом: После запуска котла вода будет циркулировать по «малому кругу» котел – теплоаккумулятор – котел, благодаря термостатическому клапану, установленному на подающий трубопровод после буферной емкости. После того как температура достигнет нужного значения, клапан открывается и подает нагретый теплоноситель на радиаторы.

Охлажденная вода будет поступать в теплоаккумулятор, смешиваться с нагретым теплоносителем. Так решается проблема низкой температуры обратки и появления конденсата на теплообменнике котлоагрегата.

Отопление с вертикальными стояками

Выше были рассмотрены возможные схемы с горизонтальной разводкой. Но для построек с несколькими этажами существуют и более рациональные варианты однотрубного отопления – вертикальные. Оборудование в них используется идентичное горизонтальным, разница только в конфигурации контура и его разводке.

Принцип действия схемы однотрубной системы отопления с верхней разводкой заключается в следующем: нагретая вода из котла поднимается по вертикальному стояку, где по распределительному трубопроводу поступает в вертикальные стояки и радиаторы. После охлаждения она возвращается в теплогенератор. Такая СО может оснащаться расширительным баком как открытого, так и закрытого типа. Движение воды по трубопроводу обеспечивает циркуляционный насос.

Существует три вида вертикальных стояков с верхней разводкой, которые различаются способом присоединения батарей:

А. Вертикальный стояк с односторонним присоединением радиаторов.
Б. Стояк с двухсторонним подключением батарей.
В. Стояк с опрокинутой циркуляцией.

Основным недостатком верхней разводки являются потери тепла при подаче воды к батареям.

На рисунке выше показана схема однотрубной системы отопления с нижней разводкой. Подающая и обратная ветка отопительного контура прокладывается в подвале или под полом первого этажа. Нагретый теплоноситель поступает из магистрали непосредственно в вертикальные стояки с радиаторами. Достоинство данной системы в том, что отсутствует выход трубопровода в чердачное помещение, а значит и минимизируются потери тепла при доставке теплоносителя к потребителю.

Плюсы и минусы

Опираясь на способы установки радиаторов, можно сделать собственные выводы:

  1. независимо от длины контура такая СО требует меньшего количества трубопровода, что положительно сказывается на стоимости монтажных работ;
  2. однотрубный обогрев предполагает достаточно простые варианты подключения, с которыми справится любой домашний мастер;
  3. может использоваться как в одноэтажных, так и многоэтажных постройках.

Рассматривая достоинства нельзя не упомянуть, как будет смотреться разводка такой СО по жилому помещению. Магистральная труба, по которой осуществляется подача воды в батареи и котлоагрегат – всегда проходит вдоль плинтуса пола. При желании ее можно скрыть фальшполами, «утопить» в стену, задекорировать и пр.

В качестве недостатков однотрубной системы отопления можно отметить:

  • При последовательном подключении радиаторов достаточно сложно добиться на них одинаковой температуры, без применения дополнительного оборудования и увеличения площади теплообмена.
  • Такой тип обогрева с естественной циркуляцией можно использовать только для небольших помещений. Кроме того, не всегда есть возможность соблюдать обязательный уклон контура.

Совет! Сегодня, достаточно популярным стал обогрев помещений посредством водяных «теплых полов». Следует понимать, что однотрубное отопление для этого совершенно не подходит. Если еще на этапе проектирования отопительной системы предполагается организация теплого пола, то рекомендуется сразу обращать внимание на схемы двухтрубного отопления.

Особенности монтажа

Прежде всего стоит отметить, что любая система обогрева требует точного расчета, который следует доверить профессионалам. Этапы монтажа однотрубной системы отопления с естественной циркуляцией теплоносителя.

  • Установите теплогенератор. Именно с него начинается монтаж любой автономной отопительной системы.
  • Непосредственно от выхода котельной установки прокладывается вертикальный стояк, на который устанавливается атмосферный расширительный бак и разгонный коллектор.
  • Далее производится разметка мест расположения радиаторов. Не стоит забывать о высоте коллектора относительно радиаторов. Делайте разметку учитывая необходимые уклоны.
  • По разметке, соберите отопительный контур. Технология сборки зависит от материала используемых труб.
  • Установите на отводы магистральных труб фитинги и необходимую запорную арматуру для подключения батарей.
  • Установите на радиаторах воздухоотводчики.
  • Смонтируйте на байпасах (перемычках между радиаторами) шаровые краны для возможности балансировки работы системы.
  • Подключите к трубопроводу батареи выбранного типа и соответствующие вашей СО
Читайте также:  Блоки управления электрическими теплыми полами

Далее, необходимо произвести проверку целостности трубопровода при перекрытом расширительном баке. Если контур герметичен, то заполните его водой, рассолом или антифризом и произведите запуск котлоагрегата. После этого настройте работу СО балансировочными клапанами.

Совет: Если вы решили обустроить жилище более сложной системой отопления, то мы настоятельно рекомендуем обратиться к специалистам.

Расчет однотрубной системы отопления с примерами

Наверное, нет смысла подвергать сомнению утверждение, что автономный обогрев собственного жилища имеет ряд преимуществ перед централизованными системами отопления. Единственным недостатком можно считать достаточно большие первоначальные вложения, львиную долю которых составляет проведение гидравлического расчета однотрубной системы отопления. В этой публикации будет рассказано, как самостоятельно рассчитать однотрубную отопительную систему (СО) для небольшого помещения или частного дома.

Сбор данных и подготовительные расчеты

Прежде всего ответим, для чего нужен гидравлический расчет?

  1. Для эффективного обогрева всех помещений независимо от внешней и внутренней температуры воздуха.
  2. Для снижения эксплуатационных затрат, которые возникают в процессе работы отопительного оборудования.
  3. Для снижения затрат, связанных с приобретением оборудования и материалов. Это касается грамотного подбора диаметров трубопровода на каждом участке отопительной системы.
  4. Для снижения уровня шума, связанного с движением теплоносителя по контуру.
  5. Для стабильной работы отопительной системы.

Для того чтобы сделать расчет системы отопления (в этом повествовании будет говориться исключительно об однотрубной схеме с принудительной циркуляцией теплоносителя), необходимо получить следующие данные:

  • Необходимую мощность теплогенератора.
  • Мощность и количество радиаторов для каждого отапливаемого помещения.
  • Диаметр и протяженность отопительного контура.

Имея на руках искомые данные можно переходить к подбору циркуляционного насоса, расчетам количества теплоносителя, емкости расширительного бака и настройки группы безопасности. Теперь обо всем по порядку.

Расчет тепловой производительности котельной установки

Итак, вы решили создавать однотрубную систему отопления частного дома своими руками. Первое, что нужно сделать, чтобы узнать искомую величину мощности теплогенератора – это произвести расчет теплопотерь каждого отапливаемого помещения. Как известно, основные потери тепла исходят от:

  • Наружных стен.
  • Потолка.
  • Пола.
  • Окон.

На примере рассмотрим теплопотери угловой комнаты, с размерами 6 х 3 метра, двумя окнами 1,5 х 1,2 м, и высотой потолков 2,5 м.

  1. Наружные стены (S1) = (6 х 2,5)+(3 х 2,5)-2 (1,5 х 1,2); S1= 15+7,5-3,6=18,9 м 2
  2. Окна (S2) = 2(1,5 х 1,2)= 3,6 м 2
  3. Пол (S3) = 18 м 2
  4. Потолок (S4) =18 м 2

Применяем формулу расчета теплопотерь (Q) = k; для наружных стен k = 62; для окон k = 135; для пола k = 35; для потолка k = 27. Подставляем необходимые значения.

  1. Q1 = 18,9 х 62 = 1171,8 Вт или 1,172 кВт;
  2. Q2 = 3,6 х 135 = 486 Вт или 0,486 кВт;
  3. Q3 = 18 х 35 = 630 Вт или 0,63 кВт
  4. Q4 = 18 х 27 = 486 Вт или 0,486 кВт;

Теперь суммируем все теплопотери для выявления необходимого количества тепла, которого необходимо для конкретного помещения = 2,774 кВт;

Те же действия необходимы для каждого отдельного помещения. Суммируя теплопотери можно сделать вывод о необходимой производительности котельной установки. Есть методика менее точная, но достаточно надежная и быстрая: необходимо использовать удельную мощность котлоагрегата рекомендованную в зависимости от региона.

Тепловую производительность котельной установки можно высчитать, используя Wк = Wуд х S/10; где:

Wк = мощность котлоагрегата;

Wуд = рекомендованная удельная мощность, представленная на рис.;

S/10 = площадь обогреваемого помещения на 10 м 3 .

Теперь, когда, есть данные о мощности котлоагрегата, необходимого для обогрева дома, можно приступать к чертежам контура отопительной системы, прикидывать место размещения радиаторов отопления.

Расчет количества и мощности батарей

Как в однотрубном подключение радиаторов отопления, так и в двухтрубных схемах, эффективность отопления конкретного помещения зависит не только от количества секций радиаторов, их конструкции, материала, из которого они изготовлены, площади поверхности и способа подсоединения к магистральному трубопроводу, но и от материала стен и способа утепления, теплопотерь в окнах и пр.

Воспользуемся рекомендованными данными, которые можно найти в специализированной литературе. 1 м 3 в кирпичном доме требует приблизительно 0.034 кВт тепла для поддержания комфортной температуры; в доме из СИП – панелей – 0,041 кВт; в кирпичном доме с утепленными: перекрытием, чердаком, несущими стенами, фундаментом – 0,02 кВт.

Для примера, рассмотрим подбор батарей для комнаты 18 м 2 с высотой потолков 2,5 м. в кирпичном доме. (0,034 кВт).

  1. Узнаем объем помещения: 18 х 2,5 = 45 м 3 .
  2. Рассчитываем, сколько необходимо тепловой энергии для данной комнаты: 45 х 0,034 = 1,53 кВт

Теперь нужно воспользоваться таблицей, с характеристиками батарей.

Читайте также:  Повышенные коэффициенты по отоплению

На рисунке показаны основные характеристики наиболее распространенных радиаторов. Исходя из представленных данных, лучшее соотношение характеристик и стоимости у алюминиевых батарей. Нам необходимы данные о мощности одной секции, нижняя граница которой равна 0,175 кВт.

  1. Делим полученный результат на мощность секции выбранного типа радиаторов и получаем количество секций: 1,53/ 0,175 = 8,74

Итог: для обогрева помещения 45 м 3 нам необходим алюминиевый радиатор, состоящий из 9 секций. Аналогичные расчеты проведите для каждой комнаты в доме.

Вычисления диаметра трубы для отопительного контура

Данная процедура является обязательной при расчете любой системы отопления. В однотрубных схемах – это еще и достаточно сложно сделать, так как теплоноситель все больше остывает в каждом последующем радиаторе. Для поддержания определенной температуры нужно на каждом последующем участке контура увеличивать скорость движения теплоносителя. Сделать это можно, уменьшая диаметр трубы, согласно необходимой тепловой мощности для каждого радиатора.

Сделать вычисления можно по формуле Rср = β*?рр/∑L; Па/м, Получим среднее значение потери давления вследствие трения на 1 метр расчетного кольца СО. Далее, используя формулу, рассчитываем диаметр трубопровода для конкретного участка контура.

∆t° —разница температур теплоносителя между входом и выходом из котлоагрегата, °С
Q —количество тепла, необходимое на обогрев конкретного помещения
V — скорость теплоносителя, м/с

Несколько слов о скорости движения воды в системе. Чтобы отопление работало эффективно необходимо чтобы скорость движения теплоносителя была как можно выше. Однако, при этом увеличивается давление в системе и возникает шум от трения о поверхность трубопровода. Оптимальная скорость теплоносителя в горизонтальной однотрубной системе отопления должна находиться в пределах 0,3 – 0,7 м/сек. Медленнее – возможно завоздушивание; Быстрее – появляется шум.

Существуют таблицы, в которых можно выбрать необходимый диаметр труб. Для этого диаметра предлагается оптимальная скорость и расход теплоносителя. Рассмотрим пример подбора труб из армированного полипропилена для каждого участка отопительного контура с 6-ю радиаторами разной мощности.

Важно! В таблице указан внутренний диаметр трубы. Оптимальные результаты находятся в колонках, обозначенных синим цветом.

  1. На первом участке СО (от выхода котла до радиатора) мощность системы 15 кВт. Выбираем данные, соответствующие мощности из синих колонок. Подходит труба с внутренним диаметром 20 мм и 25 мм. Выбираем 20 мм (она дешевле). Скорость движения теплоносителя на этом участке будет 0,6 м/с; расход теплоносителя, через трубу такого диаметра при данной скорости – 659 кг/ч.
  2. Первый радиатор имеет мощность 3 кВт поэтому нагрузка на нем уже 15 – 3 = 12 кВт. В оптимальной зоне таблицы данное значение находится в зоне трубы 20 мм.
  3. На участке между первым и вторым радиатором: 12 кВт – 2,5 = 9,5 кВт; диаметр трубы 20 мм.
  4. На третьем радиаторе тепловая нагрузка падает уже до 9,5 – 2 = 7,5 кВт. Исходя из таблицы на этом участке требуется труба с 15 мм внутреннего диаметра.

Аналогично делается расчет трубопровода на всех участках СО.

Совет: Следует знать, что армированный полипропилен имеет несколько другие внутренние размеры, чем указано в таблице. Показанный нами пример внутреннего диаметра 20 мм реально имеет 21,2 мм. и маркировку ПП32, и соответственно внешний диаметр 32 мм.

Расчет объема расширительного бака

Для того чтобы рассчитать объем расширительного бачка мембранного типа следует знать количество теплоносителя, который находится в отопительном контуре. Зависимость такая: расширительный бак должен быть объемом в 10 % от количества теплоносителя.

Количество воды в СО рассчитывается по формуле: W = π (D 2 /4) L где:

  • π – 3,14;
  • D – внутренний диаметр участка трубопровода;
  • L – длина участка трубопровода (если весь контур выполнен из трубы одного диаметра, то считаем длину контура).

Например, внутренний диаметр трубопровода из армированного полипропилена – 21,2 мм = 0,021м; длина контура – 100 м. 3,14 х (0,021 2 /4) х 100 = 0.0345м 3 или 34,5 литра. От сюда вывод: при объеме теплоносителя в системе 34,5 л, в температурных пределах СО от 0 до 80°С и давлении в системе от 0,3 до 1 Бар, необходим расширительный бак, емкостью 3,5 л.

Чтобы рассчитать параметры циркуляционного насоса нужны данные о мощности котла, разница температур на входе и выходе котельной установки. Далее можно воспользоваться формулой Q = N /(t 2- t 1), где N – мощность котлоагрегата; T1 – температура теплоносителя на подающем патрубке, T2 – температура охлажденного теплоносителя на обратной ветке контура.

Совет: следует знать, что для построения грамотной однотрубной системы отопления, кроме полученных данных необходимо сделать расчет гидравлических сопротивлений, которые возникают на равнопроходных отводах, учесть гидравлические потери на точках сужения трубопровода, грязевике и обратном клапане (если предполагается). Данный расчет сделать самостоятельно достаточно просто, используя программы: «Гидравлические и тепловые расчеты» и HERZ. C. O. С.

Оцените статью