Двигатель стирлинга для систем отопления

Тепловой насос на базе двигателя стирлинга

Тепловые стирлинг насосы — пожалуй правильный шаг в развитии сберегающих технологий. Они позволяют не только экономить электроэнергию или сжигаемое топливо, но и оказывают минимальные негативные эффекты на окружающую нас среду. А представляют они собой обычный холодильник из двигателя Стирлинга .

Принцип работы прост. Если к двигателю стирлинга приложить механическую энергию, то т.н. горячий цилиндр будет охлаждаться, а холодный нагреваться, преобразуя низко потенциальное тепло (из охлаждаемой части) в тепло с более высокой температурой. Температура этой охлаждённой части может опускаться до -273°С (теоретически). Практически же удаётся легко достигать значений -190°С и ниже.

Если «насильно» нагревать охлаждённую часть цилиндра, то горячая сторона будет ещё больше нагреваться, пытаясь преобразовать тепло, подводимое к охлаждённому участку. Это называется перенос тепла от «источника» к «потребителю». Получается, что мы ещё больше отбираем тепло у холодного источника, делая его ещё холоднее и передаём это тепло к потребителю, делая его ещё горячее. Это даёт нам прекрасную возможность использовать низко потенциальную энергию (воздух, вода, грунт, сточные воды и т.п.) для нагревания чего либо. Например, температура грунта является практически постоянной величиной. В средней полосе России она колеблется от 4 до 8 градусов. Т.е. нагревая замерзающую часть цилиндра теплотой, запасённой в земле, мы можем температурой в горячей части двигателя обогревать своё жилище. Вкратце это и есть суть теплового насоса из Стирлинга и вообще любого теплового насоса.

Тепловой насос Стирлинга

На сегодняшний день на базе двигателя Стирлинга практически не производят тепловых насосов для бытовых нужд. Их преимущественно делают при помощи компрессоров с газами, обладающими способностью сжижаться при невысоких давления. Это различные марки фреонов, аммиак, углекислота и т.п.

Эффективность теплового насоса характеризуется коэффициентом трансформации энергии (переноса тепла). Для быстрой оценки можете воспользоваться калькулятором т.н. КПД ( здесь ). Для примера, температура грунта равна 4°С, а температура для нагрева требуется 70°С. По калькулятору мы получаем эффективность преобразования почти 420%. Это означает, что приложив 1 кВт энергии для переноса тепла от низко потенциального источника (в нашем случае от грунта), мы получим выделение 4,2 кВт тепловой энергии. Заметьте, чем меньше разница температур, тем больше эффективность. А те, кто снова задумался над вечным двигателем, советую прочитать пост Некоторые заблуждения относительно Двигателей Стирлинга .

На практике же всё не так уж радужно. У каждого устройства есть как свои достоинства, так и свои недостатки. У тепловых насосов есть много различных потерь, которые в сумме очень существенно снижают эффективность устройства.

  1. Потери в электродвигателе. Механическое усилие осуществляют обычно электрическими двигателями. Их КПД у самых мощных экземпляров достигает 95%. У менее мощных эта величина редко превышает 80%.
  2. При переходе газа в жидкость и при переходе из жидкости в газ рабочее тело безвозвратно тратит приложенную для этого процесса энергию.
  3. Трение в поршневой группе. Для повышения компрессии приходится вводить различные схемы уплотнений. Это заставляет тратить нашу прилагаемую энергию не только для осуществление сжатия рабочего тела, но и на преодоление силы трения уплотнений.
  4. Тепловые потери. Используемые материалы имеют теплопроводность. Там где нужно сберегать тепло, они его «сбрасывают» в окружающую среду, там где нужно его сбрасывать, они делают это не так быстро как хотелось бы. То же самое касается и холодной части теплового насоса.
  5. Гидравлические потери. Каждый газ или жидкость имеют свою вязкость. Это свойство рабочего тела заставляет нас тратить энергию на преодоление вязкости. А при увеличении скорости движения рабочего тела силы на преодоление вязкости возрастают в экспоненциальной форме. Гидравлические потери заложены и в перекачке жидкости по контуру низко потенциального тепла и по нагреваемому контуру.
  6. Механические потери. Конструкция любого двигателя не является совершенством. Неуравновешенность и дисбалансы в движимых частях также негативно влияют на КПД механической части компрессоров.
Читайте также:  Теплые полы инфракрасные затраты

В общем и целом все эти суммарные потери в тепловых насосах называют степень термодинамического совершенства и обозначают это коэффициентом h. Для устройств мощностью до 3 кВт h = 0,35 максимум. В более современных и дорогих разработках удаётся значительно увеличить это значение. Это значит, что для нашего примера (где мы получили 420% эффективности) реальная эффективность будет максимум 147% (420*0,35). Для более мощных установок h=0,5 . Т.е. и эффективность здесь будет на уровне 210%. На практике же редко используют такие высокие температуры нагревания. Обычно не выше 55°С. При такой температуре теоретическая эффективность будет 543%, а реальная эффективность для маломощного теплового насоса составит около 200%. Т.е. затратив 1 кВт электроэнергии вы получите 2 кВт тепла. Также для увеличения эффективности следует стремиться к увеличению температуры источника тепла (грунта, воды, воздуха). Из-за низких температур земли во многих широтах нашей страны не выгодно использовать тепловые насосы для обогрева жилища, особенно на территориях с вечной мерзлотой.

Стирлинг для отопления

Что нас манит в производстве холодильников на основе двигателей Стирлинга? В первую очередь мы лишаемся некоторых недостатков, а именно потери на испарение и конденсацию. Двигатель стирлинга работает по циклу Карно, а это самый эффективный цикл преобразования тепловой энергии. Также различные технологические ухищрения могут повысить степень термодинамического совершенства. К примеру — конфигурация двойная гамма . Она почти в двое может снизить потери на трение. Вместо фреонов и других опасных рабочих тел в стирлингах мы можем использовать любой безопасный газ: воздух, углерод, азот, гелий и водород. Конечно расплатой за это будет высокие значения давлений рабочих газов, доходящих до 100 атмосфер и больше.

Многие компании, производящие бытовые холодильники и тепловые насосы пытались и пытаются сделать эффективный, надёжный и безопасный холодильник Стирлинга и даже в 2004 году фирма LG сделала громкое заявление, что вот вот начнёт производство холодильников на основе этого самого эффективного устройства. Но как-то до сих пор они не появились. А посему становится ясно, что удел изобретению г-на Стирлинга это узкоспециализированное применение. Применение, где финансовая сторона не играет определяющей роли, а важны надёжность, высокая эффективность и универсальность.

А кому интересны данные темы, предлагаю подписаться на новые статьи (в правом сайтбаре).

Бег по кругу, или Опять все тот же Стирлинг?

Продолжаются попытки коммерческого использования в Европе двигателя Стирлинга в бытовых системах для выработки электроэнергии.

Ученые из Университета Эрлангена – Нюрнберга им. Фридриха-Александра (FAU) в Баварии за последние несколько лет разработали комбинированную установку микро-ТЭС, состоящую из топки с кипящим слоем и двигателя Стирлинга номинальной электрической мощностью 5 кВт.

Проведено длительное тестирование установки при различных режимах работы и с использованием разных материалов (песка и других) для кипящего слоя. Максимальный КПД по электроэнергии составил 15%, а КПД установки выше 90%.

Читайте также:  Как правильно выбрать отопление с твердотопливным котлом

Предельно допустимые нормы выбросов СО и эмиссия мелкодисперсных частиц (пыли) оказались ниже норм, установленных в ФРГ Федеральным законом о защите окружающей среды от экологически вредных выбросов BImSchV (сокр. от Bundesimmissionsschutzverordnung).

Длительная работа при полной нагрузке доказала успешность вышеописанной концепции использования двигателя Стирлинга с топкой с кипящим слоем. Помимо достижения высокой эффективности микро-ТЭС, значительно уменьшилось зашлаковывание теплообменных поверхностей и коррозионные процессы.

В 2019 году в рамках проекта BioWasteStirling перешли от лабораторных тестов описанной микро-ТЭС к практическим шагам – так называемым полевым испытаниям. В этом проекте наряду с FAU принимают участие компании SWW Wunsiedel Frauscher и Thermal Motors. При полевых испытаниях должна быть обеспечена надежная работа микро-ТЭС в течение длительного времени и подтверждены на практике результаты всех проведенных ранее лабораторных испытаний и тестов. В случае успеха, в котором разработчики из Университета FAU нисколько не сомневаются, планируется коммерциализировать проект микро-ТЭС на основе топки с кипящим слоем и двигателя Стирлинга и довести его до серийного производства.

Стоит напомнить, что в ЕС, и в частности в ФРГ, более 10 лет ряд производителей экспериментировали с внедрением двигателя Стирлинга в малой энергетике. Для генерации электрической и тепловой энергии его использовали в комбинации с пеллетной горелкой, газовыми и твердотопливными (на щепе, дровах и другой твердой биомассе) котлами, солнечными коллекторами и газовыми генераторами. К примеру, фирма Qalovis GmbH использовала двигатель Стирлинга производства США в сочетании с газогенератором прямого процесса с неподвижным слоем, представляющим собой вертикальную шахту, в которую сверху загружается топливо, дутье подается в нижнюю часть, а генераторный газ отводится сверху, то есть газы движутся по шахте газогенератора в направлении, противоположном подаче топлива. На выходе получили 36 кВт электроэнергии и 120 кВт тепловой энергии. При такой комбинации, в отличие от классической схемы ТЭС (газогенератор и поршневой двигатель), не требуется многоступенчатая и дорогостоящая очистка генераторного газа.

Немецкий производитель котлов Viessmann предлагает микроТЭС с двухпоршневым двигателем Стирлинга Viessmann-Vitotwin, смонтированную в одном компактном корпусе с газовым котлом Vitodens 200-W. Электрическая мощность этой станции равна 1 кВт при КПД 15%, а тепловая – 5 кВт. Общий КПД установки 85%, ее вес 100 кг.

Во многих европейских странах также пробуют использовать двигатель Стирлинга в бытовых микро-ТЭС.

К сожалению, бурная деятельность некоторых производителей подобных микро-ТЭС в Европе закончилась банкротством. Прежде всего нужно упомянуть компанию Sunmachine, которая выпускала микро-ТЭС электромощностью 1,5–3 кВт и тепловой мощностью 4,5–10,5 кВт. Станция состояла из двигателя Стирлинга и пеллетной горелки.

Не пошла в серию и разработка компании SenerTec Dachs Stirling, хотя по индивидуальным заказам она готова производить микро-ТЭС с двигателем Стирлинга (1 кВт электроэнергии и 6 кВт тепловой энергии).

В 2012 году заявила о банкротстве компания Efficient Home Energy SL (EHE) – испанский производитель микро-ТЭС с двигателем Стирлинга. Примерно одна тысяча выпущенных компанией мини-ТЭС WhisperGen для частных малоэтажных домов были установлены по всей ФРГ. Однако после объявления о банкротстве ЕНЕ прекратила поставку запчастей, сервисное, гарантийное обслуживание и ремонт своих установок.

Читайте также:  Радиаторы отопления вдоль панорамного окна

Одной из основных причин несостоятельности некоторых компаний – производителей микро-ТЭС с двигателем Стирлинга – это, безусловно, очень высокая цена их установок: Dachs Stirling – почти € 18 тыс., а Sunmachine – € 26 тыс. И это всего за 1 кВт·ч и максимум 3 кВт·ч электроэнергии соответственно! Даже при закрепленной законодательством в странах ЕС возможности подачи выработанной на таких микростанциях электроэнергии в сеть, субсидиях и «зеленом тарифе» это все равно очень дорогое удовольствие, окупаемое за много лет.

Vitotwin 300W

Разработчики из FAU учли основные ошибки предшественников и, помимо вышеописанного технологического решения, установили оптимальную конечную мощность микро-ТЭС по электроэнергии 5 кВт. В перспективе при серийном производстве стоимость таких микро-ТЭС должна быть сопоставима с установками других компаний, генерирующими всего 1 кВт электроэнергии.

Напомним, что двигатель Стирлинга относится к классу двигателей с внешним подводом теплоты, в которых, в отличие от двигателя внутреннего сгорания (ДВС), горение происходит вне рабочих цилиндров. Работа этого двигателя построена на принципе изменения объема газа при нагреве и охлаждении в замкнутом пространстве цилиндра. Интересно, что изобрел его в ХIХ веке не механик или физик, а шотландский священник Роберт Стирлинг. История его изобретения уникальна: эти двигатели были забыты, но успешно пережили и паровые машины, и двигатели внутреннего сгорания и возродились уже в ХХ веке. Универсальной методики расчета двигателя Стирлинга нет, несмотря на то что изобретению уже более 200 лет. Практически все разработки этого двигателя становятся ноу-хау и коммерческой тайной.

Преимущества двигателя Стирлинга перед ДВС следующие: возможность использования топлива любого вида (внешний подвод тепла от любого источника); максимально простая конструкция – отсутствие клапанов, распредвала, системы зажигания, стартера – обеспечивает долговечность двигателя при непрерывной работе (от 10 до 20 лет до капремонта с техобслуживанием один раз в 2,5–3 года); отсутствие смазки, обеспечивающее существенную экономию при эксплуатации; экологичность за счет отсутствия выхлопа; низкий уровень шума. Кроме того, двигатель Стирлинга обратимый, то есть при подводе извне тепловой энергии на валу (маховике) получают механическую энергию, а при прокручивании вала – холод. Поэтому двигатели Стирлинга широко применяются в криотехнике.

Однако у изобретения Стирлинга есть существенный недостаток – высокая стоимость, обусловленная необходимостью использования термостойких сплавов и цветных металлов, их сварки и пайки, изготовления регенератора и пр. Для производства двигателей Стирлинга требуется высокотехнологичное оборудование и персонал высокой квалификации, что также значительно удорожает их. Высокие наукоемкость и технологичность производства, а также использование дорогостоящих материалов стали основными сдерживающими факторами широкого распространения двигателей Стирлинга. Но при неограниченном финансировании совсем другая картина: двигатели Стирлинга используются в энергоустановках на космических спутниках и кораблях и современных подвод­ных лодках.

Во многих российских регионах с децентрализованной энергетикой высокая стоимость двигателей Стирлинга не должна стать препятствием для их использования, поскольку там тарифы на электроэнергию, вырабатываемую дизель-генераторами, составляют до 40–60 руб./1 кВт·ч и выше, а топлива в виде древесных отходов более чем достаточно. Микро-ТЭС с двигателем Стирлинга можно использовать и там, куда слишком дорого или невозможно подавать электроэнергию.

В России в районах без централизованного электроснабжения проживает около 13% населения, то есть больше 19 млн человек. А централизованное электроснабжение обеспечено только на трети территории страны.

Оцените статью