ЭЛЕКТРОННЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ОТОПЛЕНИЯ
Привет всем жителям и гостям нашего сайта Радиосхемы! Сегодня хочу рассказать вам о своём нехитром устройстве, но сначала не много предыстории. Живу я в небольшом посёлке городского типа, в обыкновенном блочном двухэтажном доме, с центральным отоплением. И так как отопление отключают очень рано, а включают слишком поздно, то приходится греться в это время обогревателем. Мощности последнего на всю квартиру не хватает, а для одной комнаты (спальни) много. В итоге к утру становится не выносимо жарко, если дверь закрыта, а если открыта – холодно. Эта ситуация и сподвигла меня на изготовление терморегулятора.
Так как я потихоньку начал изучать микроконтроллеры, то решено было использовать их в достижении своей цели. Поскольку это намного упрощает схему устройства, по сравнению с дискретными элементами. Мозгом регулятора стал широко распространённый МК Atmega8 в DIP корпусе, за отображение информации отвечает LCD дисплей 1602, датчик температуры DS18B20. Плюс добавлено пару кнопок для настройки и двухцветный светодиод диаметром 10 мм. для визуального контроля.
Силовая часть состоит из реле (выдерживающего ток нагрузки) и управляющего транзистора, который помимо того ещё и является согласователем уровней напряжения. Потому что для питания МК нужно пять вольт, а реле двенадцать вольт. Источником питания является не большой трансформатор на двенадцать вольт, из отслужившего свой срок электронного счётчика, и интегральный стабилизатор L7805.
Печатную плату проектировать не стал, в виду малой сложности схемы, и собрал всё на монтажной плате. Дисплей, кнопки, датчик и светодиод закрепил термоклеем. Плату за трансформатор приклеил на двухсторонний скотч. Всё собрал в нашедшемся в закромах корпусе, предварительно покрасив его из баллончика краской.
Код был написан в программе CodeVisionAVR 2.05.0, закоментированный исходник и прошивка прилагаются.
Схема регулятора температуры отопления
Забыл один нюанс, на схеме не указан гасящий резистор для светодиода. У меня стоит один на минусовой ножке, так как цвета меняются по очереди — одного хватит.
В исходнике можно поменять интервал температур и использовать по своему усмотрению, так же можно изменить гистерезис. В данном проекте он составляет +/- 0,5 градуса. Также можно изменить время работы подсветки дисплея (установлено 30 секунд, с плавным затуханием). По всем возникающим вопросам можно обратиться на форум или в личку. Собрал и испытал устройство Артём Богатырь, Россия — Тёмыч.
Форум по обсуждению материала ЭЛЕКТРОННЫЙ ТЕРМОРЕГУЛЯТОР ДЛЯ ОТОПЛЕНИЯ
Простая транзисторная схема робота следующего по нарисованной линии. Без микроконтроллеров и дорогих деталей.
Класс A — схема самодельного УМЗЧ высокого качества на полевых MOSFET транзисторах.
Усилитель мощности звука на транзисторах, из радиоконструктора DJ200. Проверка работы схемы.
Простой терморегулятор своими руками
Огромное количество электрических приборов, используемых в быту и промышленности, основывают свою работу на определении уровня температуры окружающей среды. Измерительный элемент в них представляет собой датчик температуры, срабатывающий при нагревании или охлаждении до установленного уровня. Их можно приобрести в большинстве магазинов, ими комплектуются духовки, контроллеры и прочие устройства, но гораздо интереснее изготовить терморегулятор своими руками.
Пример простого терморегулятора
Далее мы рассмотрим принцип действия и варианты изготовления такой самоделки.
Немного теории
Любой терморегулятор конструктивно включает в себя три основных блока:
Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:
Рис. 1. Датчик из полуплеча резисторов
На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.
На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.
Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:
Рис. 2. Принципиальная схема терморегулятора
Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.
При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.
Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.
Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:
- для контроля работы электрического отопления по температурным показаниям в помещении;
- для установки уровня температуры в самодельном инкубаторе;
- при подключении теплого пола для контроля его работы;
- для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
- для паяльных станций или ручных паяльников;
- в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
- в духовках, печах как бытового, так и промышленного назначения.
Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.
Обзор схем
В зависимости от типа элементов, входящих в состав терморегулятора, различают механические и цифровые терморегуляторы. Работа первых основана на срабатывании реле, вторые имеют электронный блок, управляющий процессами. Примеры работы нескольких схем рассмотрим далее.
Рис. 3. Схема терморегулятора №1
На приведенной схеме измерение происходит за счет резисторов R1 и R2, при температурных колебаниях переменный резистор R2 изменит величину падения напряжения. После чего через усилитель терморегулятора, представленный парой транзисторов, начнется протекание электротока через катушку реле K1.
Когда величина тока в соленоиде создаст магнитный поток достаточной силы, сердечник притянется и переключит контакты в другое положение. Недостатком такого терморегулятора является наличие магнитопроводящих частей, которые из-за гистерезиса вносят дополнительную поправку на температуру помимо измерительного органа.
Рис. 4. Схема терморегулятора №2
Данный терморегулятор, в отличии от механического термостата, не использует подключение реле, поэтому является более точным. Его применение оправдано в тех ситуациях, когда несколько градусов могут сыграть весомую роль, к примеру, при контроле температуры нагрева двигателя или в инкубаторе.
Здесь изменение температурного режима фиксируется резистором R5, благодаря которому терморегулятор изменяет электрические параметры работы. Для сравнения и усиления разницы поступающего с полуплеч электрического параметра применяется микросхема К140УД7.
Для контроля нагрузки в схеме устанавливается тиристор VS1, в данном примере терморегулятора ограничение составляет 150Вт, но при желании может подбираться и другой параметр. Но следует учитывать, что эксплуатация тиристора в качестве ключа приводит к его нагреванию, поэтому с увеличением мощности необходимо установить радиатор для лучшей теплоотдачи.
Создаем простой терморегулятор
При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.
Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.
Рис. 5. Схема простейшего терморегулятора
Для его изготовления вам понадобится:
- понижающий трансформатор с 220 на 12 В;
- шесть диодов (в рассматриваемом примере используются IN4007);
- конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
- микросхема для стабилизатора на 5В;
- транзистор (в рассматриваемом примере это КТ814А);
- стабилитрон с регулируемым параметром (TL431);
- резистивные элементы на 4,7; 160, 150 и 910 кОм;
- резистор с изменяемым сопротивлением на 150 кОм;
- термозависимый резистор 50 кОм;
- светодиод;
- электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
- кнопка и корпус.
Процесс изготовления состоит из таких этапов:
- При помощи паяльника соберите вышеперечисленные детали на печатную плату, как показано на схеме выше.
- После этого выведите измерительный орган для терморегулятора на открытое пространство, чтобы установить в нужную локацию.
Рис. 6. Выведите измерительный элемент
- Установите переменный резистор на жесткий каркас и нанесите градуировку температурных режимов для настройки прибора.
Рис. 7. Установите регулятор на каркас и нанесите градуировку
- На клеммник подключите шнур питания.
Подключите питающий шнур к клеммнику
В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.
- Подключите все отдельно размещенные элементы к плате и закройте корпусом.
После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.
Видео по теме
Терморегулятор для электрического котла
Описание простой и надежной схемы терморегулятора для системы отопления.
Российская зима сурова и холодна, и об этом знают все. Поэтому помещения, где находятся люди, должны отапливаться. Наиболее распространенным является центральное отопление либо индивидуальные газовые котлы.
Нередко возникают ситуации, когда ни то, ни другое не доступно: например в чистом поле стоит небольшое помещение насосной станции водопровода, и там круглосуточно дежурит машинист. Также это может быть караульная вышка или отдельно взятая комната в большом необитаемом здании. Таких примеров можно найти немало.
Во всех этих случаях приходится устраивать отопление при помощи электричества. Если помещение невелико, то вполне можно обойтись обычным масляным электрическим радиатором бытового назначения. Для комнаты побольше площадью около 15 — 20 квадратных метров чаще всего отопление устраивают водяное с помощью радиатора, сваренного из труб, который часто называют регистром.
Если пустить дело на самотек и не следить за температурой воды, то рано или поздно она просто закипит и дело может закончиться выходом из строя всего электрического котла, прежде всего его нагревательного элемента. Чтобы такого досадного случая не произошло, температура нагрева управляется терморегулятором.
Один из возможных вариантов подобного устройства и предлагается в данной статье. Конечно, нынешняя зима уже на исходе, но не следует забывать, что сани лучше всего готовить летом.
Функционально устройство можно разделить на несколько узлов: собственно датчик температуры, сравнивающее устройство (компаратор) и устройство управления нагрузкой. Далее следует описание отдельных частей, их схема и принцип работы.
Датчик температуры
Отличительной особенностью описываемой конструкции является то, что в качестве датчика температуры используется обычный биполярный транзистор, что позволяет отказаться от поиска и приобретения терморезисторов или датчиков различных типов, например ТСМ.
Работа такого датчика основана на том, что, как и у всех полупроводниковых приборов, параметры транзисторов в немалой степени зависят от температуры окружающей среды. В первую очередь это обратный ток коллектора, который с повышением температуры возрастает, что сказывается отрицательно на работе, например, усилительных каскадов. Их рабочая точка смещается настолько, что возникают значительные искажения сигнала, и в дальнейшем транзистор просто перестает реагировать на входной сигнал.
Такая ситуация присуща в основном схемам с фиксированным током базы. Поэтому, применяются схемы транзисторных каскадов с элементами обратной связи, которые стабилизируют работу каскада в целом, и в том числе снижают воздействие температуры на работу транзистора.
Такая температурная зависимость наблюдается не только у транзисторов, но и у диодов. Чтобы в этом убедиться достаточно с помощью цифрового мультиметра «прозвонить» любой диод в прямом направлении. Как правило, прибор покажет цифру близкую к 700. Это как раз прямое падение напряжения на открытом диоде, которое прибор показывает в милливольтах. Для кремниевых диодов при температуре 25 градусов Цельсия этот параметр составляет приблизительно 700 мВ, а для германиевых диодов около 300.
Если теперь этот диод немного подогреть, хотя бы паяльником, то эта цифра будет постепенно уменьшаться, поэтому считается, что температурный коэффициент напряжения у диодов -2мВ/град. Знак «минус» в данном случае указывает на то, что с повышением температуры прямое напряжение на диоде будет уменьшаться.
Такая зависимость также позволяет использовать диоды в качестве датчиков температуры. Если тем же прибором «прозвонить» переходы транзистора, то результаты будут очень похожи, поэтому транзисторы достаточно часто применяются в качестве датчиков температуры.
В нашем случае работа всего терморегулятора как раз и основана на этом «отрицательном» свойстве каскада с фиксированным током базы. Схема терморегулятора показана на рисунке 1.
Рисунок 1. Схема терморегулятора (при нажатии на картинку откроется схема в большем масштабе).
Датчик температуры собран на транзисторе VT1 типа КТ835Б. Нагрузкой этого каскада является резистор R1, а резисторы R2, R3 задают режим работы транзистора по постоянному току. Фиксированное смещение, о котором упоминалось чуть выше, задается резистором R3 таким образом, чтобы напряжение на эмиттере транзистора при комнатной температуре составляло около 6,8 В. Поэтому на схеме в обозначении этого резистора присутствует звездочка (*). Особой точности тут добиваться не надо, лишь бы не было это напряжение намного меньше или больше. Измерения следует проводить относительно коллектора транзистора, который соединен с общим проводом источника питания.
Транзистор структуры p-n-p КТ835Б выбран не случайно: его коллектор соединен с металлической пластиной корпуса, которая имеет отверстие для крепления транзистора на радиатор. За это отверстие транзистор крепится к небольшой металлической пластине, к которой также крепится подводящий провод.
Получившийся датчик крепится с помощью металлических хомутов к трубе системы отопления. Поскольку, как уже отмечалось, коллектор соединен с общим проводом источника питания, между трубой и датчиком не потребуется ставить изолирующую прокладку, что упрощает конструкцию и улучшает тепловой контакт.
Компаратор
Для задания температуры служит компаратор, выполненный на операционном усилителе ОР1 типа К140УД608. Через резистор R5 на его инвертирующий вход подается напряжение с эмиттера транзистора VT1, а на неинвертирующий вход через резистор R6 подается напряжение с движка переменного резистора R7.
Это напряжение задает температуру, при которой будет отключаться нагрузка. Резисторами R8, R9 задаются верхний и нижний диапазон установки порога срабатывания компаратора, а следовательно пределы регулирования температуры. С помощью резистора R4 обеспечивается необходимый гистерезис срабатывания компаратора.
Устройство управления нагрузкой
Устройство управления нагрузкой выполнено на транзисторе VT2 и реле Rel1. Здесь же находится индикация режимов работы терморегулятора. Это светодиоды HL1 красного цвета, и HL2 зеленого. Красный цвет означает нагрев, а зеленый, что заданная температура достигнута. Диод VD1, включенный параллельно обмотке реле Rel1, защищает транзистор VT2 от напряжений самоиндукции, возникающих на катушке реле Rel1 в момент отключения.
Современные малогабаритные реле позволяют коммутировать достаточно большие токи. Примером такого реле может служить реле фирмы Tianbo, показанное на рисунке 2.
Рисунок 2. Малогабаритное реле фирмы Tianbo.
Как видно на рисунке реле допускает коммутацию тока до 16А, что позволяет управлять нагрузкой мощностью до 3Квт. Это максимальная нагрузка. Чтобы несколько облегчить режим работы контактной группы, мощность нагрузки следует ограничить на уровне 2…2,5 КВт. Такие реле в настоящее время применяются очень широко в автомобильной и бытовой технике, например, в стиральных машинах. При этом габариты реле не превышают размеров спичечного коробка!
Работа и наладка терморегулятора
Как было сказано в начале статьи, при комнатной температуре напряжение на эмиттере транзистора VT1 около 6,8 В, а при нагревании до 90°C напряжение понижается до 5,99 В. Для проведения подобных опытов в качестве нагревателя подойдет настольная лампа с металлическим абажуром, а для измерения температуры китайский цифровой мультиметр с термопарой, например DT838. Если датчик собранного устройства укрепить на абажуре, а лампу включить через контакт реле, то можно будет на такой установке проверить работу собранной схемы.
Работа компаратора построена таким образом, что если напряжение на инвертирующем входе (напряжение термодатчика) выше, чем напряжение на входе неинвертирующем (напряжение уставки температуры), на выходе компаратора напряжение близко к напряжению источника питания, в данном случае его можно назвать логической единицей. Поэтому транзисторный ключ VT2 открыт, реле включено, и контакты реле включают нагревательный элемент.
По мере разогрева отопительной системы нагревается и датчик температуры VT1. Напряжение на его эмиттере с ростом температуры понижается, и когда оно станет равно, а точнее чуть меньше, чем напряжение, установленное на движке переменного резистора R7, компаратор переходит в состояние логического нуля, поэтому транзистор запирается и реле отключается.
Нагревательный элемент обесточивается, и радиатор начинает остывать. Транзисторный датчик VT1 также остывает, а напряжение на его эмиттере повышается. Как только это напряжение станет выше, чем установлено резистором R7 компаратор перейдет в состояние высокого уровня, реле включится и процесс повторится снова.
Немного о работе схемы индикации, точнее о назначении ее элементов. Светодиод HL1 красного цвета включается вместе с обмоткой реле Rel1, и указывает на то, что происходит нагрев отопительной системы. В это время транзистор VT2 открыт, и через диод D2 шунтирует светодиод HL2, зеленый свет погашен.
Когда заданная температура будет достигнута, транзистор закроется и отключит реле, а вместе с ним красный светодиод HL1. В то же время закрытый транзистор перестанет шунтировать светодиод HL2, который зажжется. Диод D2 необходим для того, чтобы светодиод HL1, а вместе с ним и реле не могли включиться через светодиод HL2. Светодиоды подойдут любые, поэтому их тип не указан. В качестве диодов D1, D2 вполне подойдут широко распространенные импортные диоды 1N4007 или отечественные КД105Б.
Блок питания терморегулятора
Потребляемая схемой мощность невелика, поэтому в качестве блока питания можно использовать любой сетевой адаптер китайского производства, либо собрать стабилизированный выпрямитель на 12В. Ток потребления схемы не более 200мА, поэтому подойдет любой трансформатор мощностью не более 5Вт и выходным напряжением 15…17В.
Схема блока питания показана на рисунке 3. Диодный мост выполнен также на диодах 1N4007, а стабилизатор напряжения +12В на интегральном стабилизаторе типа 7812. Потребляемая мощность невелика, поэтому устанавливать стабилизатор на радиатор не потребуется.
Рисунок 3. Блок питания терморегулятора.
Конструкция терморегулятора произвольная, большая часть деталей смонтирована на печатной плате, лучше, если там же будет смонтирован и блок питания. Транзисторный датчик присоединяется с помощью экранированного двухжильного кабеля, при этом коллектор транзистора соединяется посредством экрана.
Желательно, чтобы на конце кабеля был трехконтактный разъем, а на плате ответная его часть. Можно также на плате установить малогабаритную клеммную колодку, хотя это менее удобно, нежели разъем. Такое соединение значительно облегчит установку датчика и всего устройства в целом на месте применения.
Готовое устройство следует разместить в пластиковом корпусе, а снаружи установить резистор установки температуры R7 и светодиоды HL1 и HL2. Лучше, если эти детали также будут распаяны на плате, а в корпусе для них сделаны отверстия.
Подсоединение к силовой сети и подключение нагревателя осуществляется через клеммник, который следует укрепить внутри пластмассового корпуса. Для защиты всего устройства в целом подключение следует производить согласно ПУЭ, используя аппаратуру защиты.
Подобных терморегуляторов было изготовлено несколько штук и все они показали приемлемую точность регулирования температуры, а также очень высокую надежность, ведь при такой простоте схемы ломаться собственно говоря нечему.