- Тепловая характеристика здания и расчет потребности в тепле на отопление по укрупненным измерителям
- Расчетная и фактическая удельная отопительная характеристика здания
- Понятие тепловой удельной характеристики
- Методика расчета
- Класс энергоэффективности
- Улучшение энергоэффективности
- Основные методы
- Что могут сделать жильцы?
- Улучшение энергоэффективности частного дома
- Заключение
Тепловая характеристика здания и расчет потребности в тепле на отопление по укрупненным измерителям
Для теплотехнической оценки конструктивно-планировочных решений и для ориентировочного расчета теплопотерь зданий пользуются показателем — удельная тепловая характеристика здания q.
Величина q, Вт/(м 3 *К) [ккал/(ч*м 3 *°С)], определяет средние теплопотери 1 м 3 здания, отнесенные к расчетной разности температур, равной 1°:
где Qзд — расчетные теплопотери всеми помещениями здания;
V — объем отапливаемой части здания до внешнему обмеру;
tп-tн — расчетная разность температур для основных помещений здания.
Величину q определяют в виде произведения:
где q0 — удельная тепловая характеристика, соответствующая разности температур Δt0=18-(-30)=48°;
βt — температурный коэффициент, учитывающий отклонение фактической расчетной разности температур от Δt0.
Удельная тепловая характеристика q0 может быть определена по формуле:
Эту формулу можно преобразовать в более простое выражение, пользуясь приведенными в СНиП данными и приняв, например, за основу характеристики для жилых зданий:
где R0 — сопротивление теплопередаче наружной стены;
ηок — коэффициент, учитывающий увеличение теплопотерь через окна по сравнению с наружными стенами;
d — доля площади наружных стен, занятая окнами;
ηпт, ηпл -коэффициенты, учитывающие уменьшение теплопотерь через потолок и пол по сравнению с наружными стенами;
Fc — площадь наружных стен;
Fп — площадь здания в плане;
V — объем здания.
Зависимость удельной тепловой характерношки q0 от изменения конструктивно-планировочного решения здания, объема здания V и относительного к R0 тр сопротивления теплопередаче наружных стен β, высота здания h, степени остекления наружных стен d, коэффициента теплопередачи окон kон и ширины здания b.
Температурный коэффициент βt равен:
Формула соответствует значениям коэффициента βt, которые обычно приводятся в справочной литературе.
Характеристикой q удобно пользоваться для теплотехнической оценки возможных конструктивно-планировочных решений здания.
Если в формулу подставить значение Qзд, то ее можно привести к виду:
Величина тепловой характеристики, зависит от объема здания и, кроме того, от назначения, этажности и формы здания, площади и теплозащиты наружных ограждений, степени остекления здания и района строительства. Влияние отдельных факторов на величину q очевидно из рассмотрения формулы. На рисунке показана зависимость qо от различных характеристик здания. Реперной точке на чертеже, через которую проходят все кривые, соответствуют значения: qо=О,415 (0,356) для здания V=20*103 м 3 , шириной b=11 м, d=0,25 Ro=0,86(1,0), kок=3,48 (3,0); длиной l=30 м. Каждая кривая соответствует изменению одной из характеристик (дополнительные шкалы по оси абсцисс) при прочих равных условиях. Вторая шкала на оси ординат показывает эту зависимость в процентах. Из графика видно, что заметное влияние на qo оказывает степень остекленности d и ширина здания Ь.
График отражает влияние теплозащиты наружных ограждений на общие теплопотери здания. По зависимости qo от β
Величины q для зданий различных назначений и объемов приводятся в справочных пособиях. Для гражданских зданий эти значения изменяются в следующих пределах:
Объем здания, тыс. м 3 | До 5 | 10 | 15 | > 15 |
Тепловая характеристика q: | ||||
Вт/(м 3 *К) | 0,56—0,41 | 0,52—0,35 | 0,49—0,31 | 0,46—0,21 |
[ккал/ч м 3 °C] | 0,48—0,35 | 0,45—0,3 | 0,42—0,27 | 0,4—0,18 |
Потребность в тепле на отопление здания может заметно отличаться от величины теплопотерь, поэтому можно вместо q пользоваться удельной тепловой характеристикой отопления здания qот, при вычислении которой по верхней формуле числитель подставляют не теплопотери, а установочную тепловую мощность системы отопления Qот.уст.
где Qот — определяется по формуле:
где Qorp — потери тепла через наружные ограждения;
Qвент — расход тепла на нагревание воздуха, поступающего в помещение;
Qтexн — технологические и бытовые тепловыделения.
Значения qот могут быть использованы для расчета потребности в тепле на отопление здания по укрупненным измерителям по следующей формуле:
Расчет тепловых нагрузок на системы отопления по укрупненным измерителям используют для ориентировочных подсчетов при определении потребности в тепле района, города, при проектировании центрального теплоснабжения и пр.
Расчетная и фактическая удельная отопительная характеристика здания
Удельная тепловая характеристика здания — один из важных технических параметров. Он обязательно должен содержаться в энергетическом паспорте. Расчет этих данных необходим для проведения проектно-строительных работ. Знание таких характеристик необходимо и потребителю тепловой энергии, так как они существенно влияют на сумму оплаты.
Понятие тепловой удельной характеристики
Прежде чем говорить о расчетах, необходимо определиться с основными терминами и понятиями. Под удельной характеристикой принято понимать значение наибольшего потока тепла, необходимого на обогрев здания или сооружения. При расчете удельных характеристик дельту температур (разницу между уличной и комнатной температурой) принято брать за 1 градус.
По сути, этот параметр определяет энергоэффективность здания. Средние показатели определяются нормативной документацией (строительными правилами, рекомендациями, СНиП и т.п.). Любое отклонение от нормы — независимо от того, в какую оно сторону — дает понятие об энергетической эффективности системы отопления. Расчет параметра ведется по действующим методикам и СНиП «Тепловая защита зданий».
Методика расчета
Удельная отопительная характеристика может быть расчетно-нормативной и фактической. Расчетно-нормативные данные определяются с помощью формул и таблиц. Фактические данные тоже можно рассчитать, но точных результатов можно добиться только при условии тепловизионного обследования здания.
Расчетные показатели определяются по формуле:
В данной формуле за F0 принята площадь здания. Остальные характеристики — это площадь стен, окон, пола, покрытий. R — сопротивление передаче соответствующих конструкций. За n берется коэффициент, изменяющийся в зависимости от расположения конструкции относительно улицы. Данная формула не является единственной. Тепловая характеристика может определяться по методикам саморегулируемых организаций, местным строительным нормам и т. п.
Расчет фактической характеристики определяется по формуле:
В этой формуле основными являются фактические данные:
- расход топлива за год (Q)
- продолжительность отопительного периода (z)
- средняя температура воздуха внутри (tint) и снаружи (text) помещения
- объем рассчитываемого сооружения
Это уравнение отличается простотой, поэтому используется очень часто. Тем не менее оно имеет существенный недостаток, снижающий точность расчетов. Этот недостаток заключается в том, что в формуле не учитывается разница температур в помещениях внутри рассчитываемого здания.
Для получения более точных данных можно использовать расчеты с определением расходов тепла:
- По проектной документации.
- По показателям теплопотерь через строительные конструкции.
- По укрупненным показателям.
С этой целью может применяться формула Н. С. Ермолаева:
Ермолаев предложил для определения фактической удельной характеристики зданий и сооружений использовать данные о планировочных характеристиках здания (p — периметр, S — площадь, H — высота). Отношение площади остекленных окон к стеновым конструкциям передается коэффициентом g0. Теплопередача окон, стен, полов, потолков также применяется в виде коэффициента.
Саморегулирующими организациями используются собственные методики. В них учитываются не только планировочные и архитектурные данные здания, но и год его постройки, а также поправочные коэффициенты температур уличного воздуха во время отопительного сезона. Также при определении фактических показателей нужно учитывать потери тепла в трубопроводах, проходящих по неотапливаемым помещениям, а также расходы на вентиляцию и кондиционирование. Эти коэффициенты берутся из специальных таблиц в СНиП.
Класс энергоэффективности
Данные об удельной теплохарактеристике являются основой для определения класса энергоэффективности зданий и сооружений. С 2011 года класс энергоэффективности в обязательном порядке должен определяться для многоквартирных жилых домов.
Для определения энергетической эффективности используются следующие данные:
- Отклонение расчетно-нормативных и фактических показателей. Причем последние могут быть получены как расчетным, так и практическим путем — с помощью тепловизионного обследования. Нормативные данные должны включать в себя сведения о расходах не только на отопление, но и на вентиляцию и кондиционирование. Обязательно учитываются климатические особенности местности.
- Тип здания.
- Использованные строительные материалы и их технические характеристики.
Каждый класс имеет установленные минимальные и максимальные значения расхода энергоресурсов в течение года. Класс энергоэффективности обязательно должен быть включен в энергетический паспорт дома.
Улучшение энергоэффективности
Нередко расчеты показывают, что энергоэффективность здания очень низка. Добиться ее улучшения, а значит, сократить расходы на отопление можно за счет улучшения теплоизоляции. Закон «Об энергосбережении» определяются методики улучшения энергоэффективности многоквартирных домов.
Основные методы
Жильцы тоже могут позаботиться о теплосбережении своих квартир.
Что могут сделать жильцы?
Хорошего эффекта позволяют добиться следующие способы:
- Установка алюминиевых радиаторов.
- Монтаж термостатов.
- Установка теплосчетчиков.
- Монтаж теплоотражающих экранов.
- Применение неметаллических труб в системах отопления.
- Монтаж индивидуального отопления при наличии технических возможностей.
Повысить энергоэффективность можно и другими способами. Один из самых эффективных — сокращение издержек на вентилирование помещения.
С этой целью можно использовать:
- Микропроветривание, устанавливаемое на окнах.
- Системы с подогревом поступающего извне воздуха.
- Регулирование подачи воздуха.
- Защита от сквозняков.
- Оснащение систем принудительной вентиляции двигателями с разными режимами работы.
Улучшение энергоэффективности частного дома
Для повышения энергоэффективности многоквартирного дома задача реальная, но требует огромных затрат. В результате нередко она остается так и не решенной. Сократить теплопотери в частном доме значительно проще. Этой цели можно добиться разными методами. Подойдя к решению проблемы комплексно, нетрудно получить превосходные результаты.
В первую очередь затраты на отопление складываются из особенностей системы отопления. Частные дома крайне редко подключаются к центральным коммуникациям. В большинстве случаев они отапливаются индивидуальной котельной. Установка современного котельного оборудования, отличающегося экономичностью работы и высоким КПД, поможет сократить расходы на тепло, что не скажется на комфорте в доме. Лучший выбор — газовый котел.
Однако газ не всегда целесообразен для отопления. В первую очередь это касается местностей, где еще не прошла газификация. Для таких регионов можно подобрать другой котел исходя из соображений дешевизны топлива и доступности эксплуатационных расходов.
Не стоит экономить на дополнительном оборудовании, опциях для котла. Например, установка только одного терморегулятора способна обеспечить экономию топлива около 25%. Смонтировав ряд дополнительных датчиков и приборов можно добиться еще более существенного снижения расходов. Даже выбирая дорогостоящее, современное, «интеллектуальное» дополнительное оборудование, можно быть уверенным, что оно окупится в течение первого отопительного сезона. Сложив эксплуатационные затраты в течение нескольких лет, можно наглядно увидеть выгоды дополнительного «умного» оборудования.
Большинство автономных систем отопления строится с принудительной циркуляцией теплоносителя. С этой целью в сеть встраивается насосное оборудование. Без сомнения, такое оборудование должно быть надежным, качественным, но подобные модели могут быть весьма и весьма «прожорливыми». Как показала практика, в домах, где отопление имеет принудительную циркуляцию, 30% затрат на электроэнергию приходится именно на обслуживание циркуляционного насоса. При этом в продаже можно найти насосы, имеющие класс А энергоэффективности. Не будем вдаваться в подробности, за счет чего достигается экономичность такого оборудования, достаточно только сказать, что установка такой модели окупится уже в течение первых трех-четырех отопительных сезонов.
Электрический радиатор
Мы уже упоминали об эффективности использования терморегуляторов, но эти приборы заслуживают отдельного разговора. Принцип работы термодатчика очень прост. Он считывает температуру воздуха внутри обогреваемого помещения и включает/отключает насос при понижении/повышении показателей. Порог срабатывания и желаемый температурный режим устанавливается пользователем. В результате жильцы получают полностью автономную систему отопления, комфортный микроклимат, существенную экономию топлива за счет более продолжительных периодов отключения котла. Важное преимущество использования термостатов — отключение не только нагревателя, но и циркуляционного насоса. А это сохраняет работоспособность оборудования и дорогостоящие ресурсы.
Существуют и другие способы повышения энергоэффективности здания:
- Дополнительное утепление стен, полов с помощью современных теплоизоляционных материалов.
- Установка пластиковых окон с энергосберегающими стеклопакетами.
- Защита дома от сквозняков и т. д.
Все эти методы позволяют увеличить фактические теплохарактеристики здания относительно расчетно-нормативных. Такое увеличение — это не просто цифры, а составляющие комфорта дома и экономичности его эксплуатации.
Заключение
Расчетно-нормативная и фактическая удельная тепловая характеристика — важные параметры, используемые специалистами-теплотехниками. Не стоит думать, что эти цифры не имеют никакого практического значения для жильцов частных и многоквартирных домов. Дельта между расчетными и фактическими параметрами — основной показатель энергоэффективности дома, а значит, и экономичности обслуживания инженерных коммуникаций.
Отечественные инфракрасные обогреватели пион и их сравнительная характеристика с другими моделями
Отопительная система частного дома «Ленинградка»
Как понять что это такое – электрический конвектор
Разбираемся, что такое байпас в системе отопления