- Расчет однотрубной системы отопления с примерами
- Сбор данных и подготовительные расчеты
- Расчет тепловой производительности котельной установки
- Расчет количества и мощности батарей
- Вычисления диаметра трубы для отопительного контура
- Расчет объема расширительного бака
- К расчету горизонтальных однотрубных систем отопления
- Узел по схеме № 5, табл. 1
- Пример расчета a min для типового радиаторного узла со смещенным замыкающим участком по схеме № 5, табл. 1, с сочетанием диаметров 15×20×20
- Пример расчета a min для типового радиаторного узла с осевым замыкающим участком по схеме № 1, табл. 1, с сочетанием диаметров труб 25×20×20
- Определение коэффициентов затекания воды в конвектор «Универсал» КСК-20-1,18к
- Заключение
- Литература
Расчет однотрубной системы отопления с примерами
Наверное, нет смысла подвергать сомнению утверждение, что автономный обогрев собственного жилища имеет ряд преимуществ перед централизованными системами отопления. Единственным недостатком можно считать достаточно большие первоначальные вложения, львиную долю которых составляет проведение гидравлического расчета однотрубной системы отопления. В этой публикации будет рассказано, как самостоятельно рассчитать однотрубную отопительную систему (СО) для небольшого помещения или частного дома.
Сбор данных и подготовительные расчеты
Прежде всего ответим, для чего нужен гидравлический расчет?
- Для эффективного обогрева всех помещений независимо от внешней и внутренней температуры воздуха.
- Для снижения эксплуатационных затрат, которые возникают в процессе работы отопительного оборудования.
- Для снижения затрат, связанных с приобретением оборудования и материалов. Это касается грамотного подбора диаметров трубопровода на каждом участке отопительной системы.
- Для снижения уровня шума, связанного с движением теплоносителя по контуру.
- Для стабильной работы отопительной системы.
Для того чтобы сделать расчет системы отопления (в этом повествовании будет говориться исключительно об однотрубной схеме с принудительной циркуляцией теплоносителя), необходимо получить следующие данные:
- Необходимую мощность теплогенератора.
- Мощность и количество радиаторов для каждого отапливаемого помещения.
- Диаметр и протяженность отопительного контура.
Имея на руках искомые данные можно переходить к подбору циркуляционного насоса, расчетам количества теплоносителя, емкости расширительного бака и настройки группы безопасности. Теперь обо всем по порядку.
Расчет тепловой производительности котельной установки
Итак, вы решили создавать однотрубную систему отопления частного дома своими руками. Первое, что нужно сделать, чтобы узнать искомую величину мощности теплогенератора – это произвести расчет теплопотерь каждого отапливаемого помещения. Как известно, основные потери тепла исходят от:
- Наружных стен.
- Потолка.
- Пола.
- Окон.
На примере рассмотрим теплопотери угловой комнаты, с размерами 6 х 3 метра, двумя окнами 1,5 х 1,2 м, и высотой потолков 2,5 м.
- Наружные стены (S1) = (6 х 2,5)+(3 х 2,5)-2 (1,5 х 1,2); S1= 15+7,5-3,6=18,9 м 2
- Окна (S2) = 2(1,5 х 1,2)= 3,6 м 2
- Пол (S3) = 18 м 2
- Потолок (S4) =18 м 2
Применяем формулу расчета теплопотерь (Q) = k; для наружных стен k = 62; для окон k = 135; для пола k = 35; для потолка k = 27. Подставляем необходимые значения.
- Q1 = 18,9 х 62 = 1171,8 Вт или 1,172 кВт;
- Q2 = 3,6 х 135 = 486 Вт или 0,486 кВт;
- Q3 = 18 х 35 = 630 Вт или 0,63 кВт
- Q4 = 18 х 27 = 486 Вт или 0,486 кВт;
Теперь суммируем все теплопотери для выявления необходимого количества тепла, которого необходимо для конкретного помещения = 2,774 кВт;
Те же действия необходимы для каждого отдельного помещения. Суммируя теплопотери можно сделать вывод о необходимой производительности котельной установки. Есть методика менее точная, но достаточно надежная и быстрая: необходимо использовать удельную мощность котлоагрегата рекомендованную в зависимости от региона.
Тепловую производительность котельной установки можно высчитать, используя Wк = Wуд х S/10; где:
Wк = мощность котлоагрегата;
Wуд = рекомендованная удельная мощность, представленная на рис.;
S/10 = площадь обогреваемого помещения на 10 м 3 .
Теперь, когда, есть данные о мощности котлоагрегата, необходимого для обогрева дома, можно приступать к чертежам контура отопительной системы, прикидывать место размещения радиаторов отопления.
Расчет количества и мощности батарей
Как в однотрубном подключение радиаторов отопления, так и в двухтрубных схемах, эффективность отопления конкретного помещения зависит не только от количества секций радиаторов, их конструкции, материала, из которого они изготовлены, площади поверхности и способа подсоединения к магистральному трубопроводу, но и от материала стен и способа утепления, теплопотерь в окнах и пр.
Воспользуемся рекомендованными данными, которые можно найти в специализированной литературе. 1 м 3 в кирпичном доме требует приблизительно 0.034 кВт тепла для поддержания комфортной температуры; в доме из СИП – панелей – 0,041 кВт; в кирпичном доме с утепленными: перекрытием, чердаком, несущими стенами, фундаментом – 0,02 кВт.
Для примера, рассмотрим подбор батарей для комнаты 18 м 2 с высотой потолков 2,5 м. в кирпичном доме. (0,034 кВт).
- Узнаем объем помещения: 18 х 2,5 = 45 м 3 .
- Рассчитываем, сколько необходимо тепловой энергии для данной комнаты: 45 х 0,034 = 1,53 кВт
Теперь нужно воспользоваться таблицей, с характеристиками батарей.
На рисунке показаны основные характеристики наиболее распространенных радиаторов. Исходя из представленных данных, лучшее соотношение характеристик и стоимости у алюминиевых батарей. Нам необходимы данные о мощности одной секции, нижняя граница которой равна 0,175 кВт.
- Делим полученный результат на мощность секции выбранного типа радиаторов и получаем количество секций: 1,53/ 0,175 = 8,74
Итог: для обогрева помещения 45 м 3 нам необходим алюминиевый радиатор, состоящий из 9 секций. Аналогичные расчеты проведите для каждой комнаты в доме.
Вычисления диаметра трубы для отопительного контура
Данная процедура является обязательной при расчете любой системы отопления. В однотрубных схемах – это еще и достаточно сложно сделать, так как теплоноситель все больше остывает в каждом последующем радиаторе. Для поддержания определенной температуры нужно на каждом последующем участке контура увеличивать скорость движения теплоносителя. Сделать это можно, уменьшая диаметр трубы, согласно необходимой тепловой мощности для каждого радиатора.
Сделать вычисления можно по формуле Rср = β*?рр/∑L; Па/м, Получим среднее значение потери давления вследствие трения на 1 метр расчетного кольца СО. Далее, используя формулу, рассчитываем диаметр трубопровода для конкретного участка контура.
∆t° —разница температур теплоносителя между входом и выходом из котлоагрегата, °С
Q —количество тепла, необходимое на обогрев конкретного помещения
V — скорость теплоносителя, м/с
Несколько слов о скорости движения воды в системе. Чтобы отопление работало эффективно необходимо чтобы скорость движения теплоносителя была как можно выше. Однако, при этом увеличивается давление в системе и возникает шум от трения о поверхность трубопровода. Оптимальная скорость теплоносителя в горизонтальной однотрубной системе отопления должна находиться в пределах 0,3 – 0,7 м/сек. Медленнее – возможно завоздушивание; Быстрее – появляется шум.
Существуют таблицы, в которых можно выбрать необходимый диаметр труб. Для этого диаметра предлагается оптимальная скорость и расход теплоносителя. Рассмотрим пример подбора труб из армированного полипропилена для каждого участка отопительного контура с 6-ю радиаторами разной мощности.
Важно! В таблице указан внутренний диаметр трубы. Оптимальные результаты находятся в колонках, обозначенных синим цветом.
- На первом участке СО (от выхода котла до радиатора) мощность системы 15 кВт. Выбираем данные, соответствующие мощности из синих колонок. Подходит труба с внутренним диаметром 20 мм и 25 мм. Выбираем 20 мм (она дешевле). Скорость движения теплоносителя на этом участке будет 0,6 м/с; расход теплоносителя, через трубу такого диаметра при данной скорости – 659 кг/ч.
- Первый радиатор имеет мощность 3 кВт поэтому нагрузка на нем уже 15 – 3 = 12 кВт. В оптимальной зоне таблицы данное значение находится в зоне трубы 20 мм.
- На участке между первым и вторым радиатором: 12 кВт – 2,5 = 9,5 кВт; диаметр трубы 20 мм.
- На третьем радиаторе тепловая нагрузка падает уже до 9,5 – 2 = 7,5 кВт. Исходя из таблицы на этом участке требуется труба с 15 мм внутреннего диаметра.
Аналогично делается расчет трубопровода на всех участках СО.
Совет: Следует знать, что армированный полипропилен имеет несколько другие внутренние размеры, чем указано в таблице. Показанный нами пример внутреннего диаметра 20 мм реально имеет 21,2 мм. и маркировку ПП32, и соответственно внешний диаметр 32 мм.
Расчет объема расширительного бака
Для того чтобы рассчитать объем расширительного бачка мембранного типа следует знать количество теплоносителя, который находится в отопительном контуре. Зависимость такая: расширительный бак должен быть объемом в 10 % от количества теплоносителя.
Количество воды в СО рассчитывается по формуле: W = π (D 2 /4) L где:
- π – 3,14;
- D – внутренний диаметр участка трубопровода;
- L – длина участка трубопровода (если весь контур выполнен из трубы одного диаметра, то считаем длину контура).
Например, внутренний диаметр трубопровода из армированного полипропилена – 21,2 мм = 0,021м; длина контура – 100 м. 3,14 х (0,021 2 /4) х 100 = 0.0345м 3 или 34,5 литра. От сюда вывод: при объеме теплоносителя в системе 34,5 л, в температурных пределах СО от 0 до 80°С и давлении в системе от 0,3 до 1 Бар, необходим расширительный бак, емкостью 3,5 л.
Чтобы рассчитать параметры циркуляционного насоса нужны данные о мощности котла, разница температур на входе и выходе котельной установки. Далее можно воспользоваться формулой Q = N /(t 2- t 1), где N – мощность котлоагрегата; T1 – температура теплоносителя на подающем патрубке, T2 – температура охлажденного теплоносителя на обратной ветке контура.
Совет: следует знать, что для построения грамотной однотрубной системы отопления, кроме полученных данных необходимо сделать расчет гидравлических сопротивлений, которые возникают на равнопроходных отводах, учесть гидравлические потери на точках сужения трубопровода, грязевике и обратном клапане (если предполагается). Данный расчет сделать самостоятельно достаточно просто, используя программы: «Гидравлические и тепловые расчеты» и HERZ. C. O. С.
К расчету горизонтальных однотрубных систем отопления
Ю. А. Коростелев, канд. техн. наук, доцент Новосибирского государственного архитектурно-строительного университета (Сибстрин);
А. Н. Кулеш, главный инженер, ООО «Инжиниринговая фирма Сатурн»;
С. В. Бублей, ассистент кафедры ТГиВ Новосибирского государственного архитектурно-строительного университета (Сибстрин)
Вертикальные системы отопления достаточно полно исследованы и нашли широкое применение для отопления зданий. До 1960 года, как правило, проектировались и монтировались двухтрубные вертикальные системы отопления. После 1960 года были изучены и внедрены однотрубные вертикальные системы с верхней разводкой подающей магистрали. В дальнейшем, после разработки специалистами Ленинграда П-образных вертикальных систем отопления, эти системы с 1970 года получили самое широкое применение и проектируются в настоящее время.
Горизонтальные системы отопления проектировались, как правило, в промышленных и общественных зданиях большого объема (цеховое отопление или отопление залов). Это имеет место и в настоящее время. Как правило, эти системы монтируются не из типовых узлов (нельзя заготавливать впрок). Монтаж ведется «по месту» установки нагревательных приборов (длину радиаторного узла диктует длина нагревательного прибора). Для определения поверхности нагрева приборов, как правило, расчет основан на «среднем температурном напоре» для всей ветви горизонтальной системы. Это недопустимо, если ветвь системы обслуживает различные по нагрузкам помещения. В справочной литературе таких примеров расчета горизонтальных однотрубных систем нет. Типовые радиаторные узлы с односторонним присоединением приборов не разработаны. Имеющиеся данные носят рекомендательный характер. Применение узла с трехходовым краном (см. СН 419–70–М, 1972) было отменено, т. к. пользование им невозможно. Применение эксцентриковых шайб в замыкающих участках (система А. В. Мазо) привело к резьбовому соединению (сгон), что кроме удорожания узла во время эксплуатации системы приводило к появлению течей.
Горизонтальные системы отопления в жилых зданиях повышенной этажности не находили применения, т. к. кроме увязки гидравлических потерь в ветвях поэтажно с учетом (соответственно этажу) гравитационного давления необходимо выполнять расчет малых циркуляционных колец. Этой громоздкой работы при проектировании вертикальной системы нет, т. к. гравитационное давление суммируется поэтажно на весь вертикальный стояк и рассматривается как запас к величине насосного циркуляционного давления.
Расчет горизонтальной системы отопления требует тщательного анализа работы всех поэтажных ветвей и расчета всех малых циркуляционных колец, чтобы не было проблем при пуске и эксплуатации системы отопления.
Вот некоторые причины, которые сдерживали широкое применение горизонтальных систем отопления.
В настоящее время востребованность этих систем возрастает, т. к. они обладают определенными преимуществами перед вертикальными системами, что нашло отражение в последних трех изданиях СНиП – ОВ и К.
Рассмотрим динамику изменения рекомендаций этой нормативной литературы:
1. СНиП 2.04.05–91* (2001 год), стр. 5 п. 3.15*: «системы поквартирного отопления в зданиях следует проектировать двухтрубными, предусматривая при этом установку приборов регулирования, контроля и учета расхода теплоты для каждой квартиры».
2. СНиП 2.04.05–91* (2003 год), стр. 5 п. 3.15*: «в жилых зданиях следует предусматривать:
– устройство поквартирных систем отопления с горизонтальной разводкой труб и установку счетчика расхода теплоты для каждой квартиры».
3. СНиП 41–01–2003 (2004 год), п. 6.1.3: «отопление жилых зданий следует проектировать, обеспечивая регулирование и учет расхода теплоты каждой квартирой».
«В жилых зданиях следует предусматривать:
– установку счетчика расхода теплоты для каждой квартиры при устройстве поквартирных систем отопления с горизонтальной (лучевой) разводкой труб».
Проанализируем этот кризис нормативной литературы по отоплению.
В первом случае диктуется системы «проектировать двухтрубными». Почему нельзя однотрубные? Не разработаны другие?
Во втором случае – «следует предусматривать с горизонтальной разводкой труб» – это значит можно и двухтрубные, и однотрубные. Существенно демократичнее. Зависит от инициативы и грамотности проектировщика.
В третьем случае – «следует проектировать», затем «следует предусматривать… устройство систем с горизонтальной (лучевой) разводкой труб». Если внимательно рассмотреть конструкцию этой системы, то она включает два коллектора в каждой квартире (так называемые «гребенки») с двухтрубной обвязкой каждого прибора, что требует устройства пола на лагах или замоноличивания труб в гофрах в перекрытие. На коллекторах устанавливается балансировочная и настроечная арматура, а на подводках к приборам регулирующая по расходу теплоотдачу арматура с термоголовками. Это необоснованно увеличивает сметную стоимость системы отопления, причем не в пользу отечественного товаропроизводителя. Применение металлополимерных труб по стоимости сопоставимо со стальными. Опорожнение системы самотеком в дренажную трубу не предусмотрено.
Далее, в п. 6.1.3 – «предусматривать устройство поквартирного учета теплоты индикаторами расхода теплоты на каждом отопительном приборе».
По этому пункту даже трудно дать объяснение, т. к. не ясно, кто и как часто снимает показания, что это за «контролеры», расхаживающие по квартирам к каждому прибору.