Гидравлический расчет водопровода: простые методы
Для чего выполняется гидравлический расчет водопроводной сети? Какие именно параметры нуждаются в расчете? Существуют ли какие-то простые схемы расчетов, доступные для новичка? Сразу оговорим: этот материал ориентирован прежде всего на владельцев небольших частных домов; соответственно, такие параметры, как вероятность одновременного использования всех сантехнических приборов в здании, нам определять не нужно.
Как и любая инженерная система, водопровод нуждается в расчете.
Что рассчитывается
Гидравлический расчет внутреннего водопровода сводится к определению следующих параметров:
- Расчетного расхода воды на отдельных участках водопровода.
- Скорости потока воды в трубах.
Подсказка: для внутренних водопроводов нормой считаются скорости от 0,7 до 1,5 м/с. Для пожарного водопровода допустима скорость до 3 м/с.
- Оптимального диаметра водопровода, обеспечивающего приемлемое падение напора. Как вариант – может определяться потеря напора при известном диаметре каждого участка. Если с учетом потерь напор на сантехнических приборах будет меньше нормированного, локальная сеть водоснабжения нуждается в установке подкачки.
Несложный опыт наглядно демонстрирует падение напора в водопроводе.
Расход воды
Нормативы расхода воды отдельными сантехническими приборами можно обнаружить в одном из приложений к СНиП 2.04.01-85, регламентирующему сооружение внутренних водопроводов и канализационных сетей. Приведем часть соответствующей таблицы.
Прибор | Расход ХВС, л/с | Общий расход (ХВС и ГВС), л/с |
Умывальник (водоразборный кран) | 0,10 | 0,10 |
Умывальник (смеситель) | 0,08 | 0,12 |
Мойка (смеситель) | 0,08 | 0,12 |
Ванна (смеситель) | 0,17 | 0,25 |
Душевая кабинка (смеситель) | 0,08 | 0,12 |
Унитаз со сливным бачком | 0,10 | 0,10 |
Унитаз с краном прямой подачи воды | 1,4 | 1,4 |
Кран для полива | 0,3 | 0,3 |
В случае предполагаемого одновременного использования нескольких сантехнических приборов расход суммируется. Так, если одновременно с использованием туалета на первом этаже предполагается работа душевой кабинки на втором – будет вполне логичным сложить расход воды через оба сантехнических прибора: 0,10+0,12=0,22 л/с.
При последовательном подключении приборов расход воды суммируется.
Особый случай
Для пожарных водопроводов действует норма расхода в 2,5 л/сна одну струю. При этом расчетное количество струй на один пожарный гидрант при пожаротушении вполне предсказуемо определяется типом здания и его площадью.
На фото – пожарный гидрант.
Параметры здания | Количество струй при тушении пожара |
Жилое здание в 12 – 16 этажей | 1 |
То же, при длине коридора более 10 метров | 2 |
Жилое здание в 16 – 25 этажей | 2 |
То же, при длине коридора более 10 метров | 3 |
Здания управления (6 – 10 этажей) | 1 |
То же, при объеме более 25 тыс. м3 | 2 |
Здания управления (10 и более этажей, объем до 25000 м3) | 2 |
То же, объем больше 25 тыс. м3 | 3 |
Общественные здания (до 10 этажей, объем 5 – 25 тыс. м3) | 1 |
То же, объем больше 25 тыс. м3 | 2 |
Общественные здания (более 10 этажей, объем до 25 тыс. м3) | 2 |
То же, объем больше 25 тыс. м3 | 3 |
Администрации предприятий (объем 5 – 25 тыс. м3) | 1 |
То же, объем более 25000 м3 | 2 |
Скорость потока
Предположим, что наша задача – гидравлический расчет тупиковой водопроводной сети с известным пиковым расходом через нее. Нам нужно определить диаметр, который обеспечит приемлемую скорость движения потока через трубопровод (напомним, 0,7-1,5 м/с).
Большая скорость потока вызывает появление гидравлических шумов.
Формулы
Расход воды, скорость ее потока и размер трубопровода увязываются друг с другом следующей последовательностью формул:
- S – площадь сечения трубы в квадратных метрах;
- π – число “пи”, принимаемой равным 3,1415;
- r – радиус внутреннего сечения в метрах.
Полезно: для стальных и чугунных труб радиус обычно принимается равным половине их ДУ (условного прохода).
У большинства пластиковых труб внутренний диаметр на шаг меньше номинального наружного: так, у полипропиленовой трубы наружным диаметром 40 мм внутренний приблизительно равен 32 мм.
Условный проход примерно соответствует внутреннему диаметру стальной трубы.
- Q – расход воды (м3);
- V – скорость водяного потока (м/с) ;
- S – площадь сечения в квадратных метрах.
Пример
Давайте выполним гидравлический расчет пожарного водопровода для одной струи с расходом 2,5 л/с.
Как мы уже выяснили, в этом случае скорость водяного потока ограничена м/с.
- Пересчитываем расход в единицы СИ: 2,5 л/с = 0,0025 м3/с.
- Вычисляем по второй формуле минимальную площадь сечения. При скорости в 3 м/с она равна 0,0025/3=0,00083 м3.
- Рассчитываем радиус внутреннего сечения трубы: r^2 = 0,00083/3,1415 = 0,000264; r = 0,016 м.
- Внутренний диаметр трубопровода, таким образом, должен быть равен как минимум 0,016 х 2 = 0,032 м, или 32 миллиметра. Это соответствует параметрам стальной трубы ДУ32.
Обратите внимание: при получении промежуточных значений между стандартными размерами труб округление выполняется в большую сторону.
Цена труб с диаметром, отличающимся на шаг, различается не слишком сильно; между тем уменьшение диаметра на 20% влечет за собой почти полуторакратное падение пропускной способности водопровода.
Пропускная способность первой и третьей труб различается вчетверо.
Простой расчет диаметра
Для быстрого расчета может использоваться следующая таблица, непосредственно увязывающая расход через трубопровод с его размером.
Расход, л/с | Минимальный ДУ трубопровода, мм |
0,2 | 10 |
0,6 | 15 |
1,2 | 20 |
2,4 | 25 |
4 | 32 |
6 | 40 |
10 | 50 |
Потеря напора
Формулы
Инструкция по расчету потери напора на участке известной длины довольно проста, но подразумевает знание изрядного количества переменных. К счастью, при желании их можно найти в справочниках.
Формула имеет вид H = iL(1+K).
- H – искомое значение потери напора в метрах.
Справка: избыточное давление в 1 атмосферу (1 кгс/см2) при атмосферном давлении соответствует водяному столбу в 10 метров.
Для компенсации падения напора в 10 метров, таким образом, давление на входе в водораспределительную сеть нужно поднять на 1 кгс/см2.
- i – гидравлический уклон трубопровода.
- L – его длина в метрах.
- K – коэффициент, зависящий от назначения сети.
Формула сильно упрощена. На практике изгибы трубопровода и запорная арматура тоже вызывают падение напора.
Некоторые элементы формулы явно требуют комментариев.
Проще всего с коэффициентом К. Его значения заложены в уже упоминавшийся нами СНиП за номером 2.04.01-85:
Назначение водопровода | Значение коэффициента |
Хозяйственно-питьевой | 0,3 |
Производственный, хозяйственно-противопожарный | 0,2 |
Производственно-противопожарный | 0,15 |
Противопожарный | 0,1 |
А вот с понятием гидравлического уклона куда сложнее. Он отражает то сопротивление, которое труба оказывает движению воды.
Гидравлический уклон зависит от трех параметров:
- Скорости потока. Чем она выше, тем больше гидравлическое сопротивление трубопровода.
- Диаметра трубы. Здесь зависимость обратная: уменьшение сечения приводит к росту гидравлического сопротивления.
- Шероховатости стенок. Она, в свою очередь, зависит от материала трубы (сталь обладает менее гладкой поверхностью по сравнению с полипропиленом или ПНД) и, в некоторых случаях, от возраста трубы (ржавчина и известковые отложения увеличивают шероховатость).
К счастью, проблему определения гидравлического уклона полностью решает таблица гидравлического расчета водопроводных труб (таблица Шевелева). В ней приводятся значения для разных материалов, диаметров и скоростей потока; кроме того, таблица содержит коэффициенты поправок для старых труб.
Уточним: поправки на возраст не требуются всем типам полимерных трубопроводов.
Металлопластик, полипропилен, обычный и сшитый полиэтилен не меняют структуру поверхности весь период эксплуатации.
Размер таблиц Шевелева делает невозможной их публикацию целиком; однако для ознакомления мы приведем небольшую выдержку из них.
Вот справочные данные для пластиковой трубы диаметром 16 мм.
Расход в литрах в секунду | Скорость в метрах в секунду | 1000i (гидравлический уклон для протяженности в 1000 метров) |
0,08 | 0,71 | 84 |
0,09 | 0,8 | 103,5 |
0,1 | 0,88 | 124,7 |
0,13 | 1,15 | 198,7 |
0,14 | 1,24 | 226,6 |
0,15 | 1,33 | 256,1 |
0,16 | 1,41 | 287,2 |
0,17 | 1,50 | 319,8 |
При расчете падения напора нужно учитывать, что большая часть сантехнических приборов для нормальной работы требует определенного избыточного давления. В СНиП тридцатилетней давности приводятся данные для устаревшей сантехники; более современные образцы бытовой и санитарной техники требуют для нормальной работы избыточного давления, равного как минимум 0,3 кгс/см (3 метра напора).
Датчик не даст проточному нагревателю включиться при давлении воды ниже 0,3 кгс/см2.
Однако: на практике лучше закладывать в расчет несколько большее избыточное давление – 0,5 кгс/см2.
Запас нужен для компенсации неучтенных потерь на подводках к приборам и их собственного гидравлического сопротивления.
Примеры
Давайте приведем пример гидравлического расчета водопровода, выполненного своими руками.
Предположим, что нам нужно вычислить потерю напора в домашнем пластиковом водопроводе диаметром 15 мм при его длине в 28 метров и максимально допустимой скорости потока воды, равной 1,5 м/с.
Трубы этого размера чаще всего используются для разводки воды в пределах квартиры или небольшого коттеджа.
- Гидравлический уклон для длины в 1000 метров будет равным 319,8. Поскольку в формуле расчета падения напора используется i, а не 1000i, это значение следует разделить на 1000: 319,8 / 1000 = 0,3198.
- Коэффициент К для хозяйственно-питьевого водопровода будет равным 0,3.
- Формула в целом приобретет вид H = 0,3198 х 28 х (1 + 0,3) = 11,64 метра.
Таким образом, избыточное давление в 0,5 атмосферы на концевом сантехническом приборе мы будем иметь при давлении в магистральном водопроводе в 0,5+1,164=1,6 кгс/см2. Условие вполне выполнимо: давление в магистрали обычно не ниже 2,5 – 3 атмосфер.
К слову: испытания водопровода при сдаче в эксплуатацию проводятся давлением, как минимум равным рабочему с коэффициентом 1,3.
Акт гидравлических испытаний водопровода должен включать отметки как об их продолжительности, так и об испытательном давлении.
Образец акта гидравлических испытаний.
А теперь давайте выполним обратный расчет: определим минимальный диаметр пластикового трубопровода, обеспечивающего приемлемое давление на концевом смесителе для следующих условий:
- Давление в трассе составляет 2,5 атмосферы.
- Протяженность водопровода до концевого смесителя равна 144 метрам.
- Переходы диаметра отсутствуют: весь внутренний водопровод будет монтироваться одним размером.
- Пиковый расход воды составляет 0,2 литра в секунду.
- Допустимая потеря давления составляет 2,5-0,5=2 атмосферы, что соответствует напору в 20 метров.
- Коэффициент К и в этом случае равен 0,3.
- Формула, таким образом, будет иметь вид 20=iх144х(1+0,3). Несложный расчет даст значение i в 0,106. 1000i, соответственно, будет равным 106.
- Следующий этап – поиск в таблице Шевелева диаметра, соответствующего 1000i = 106 при искомом расходе. Ближайшее значение – 108,1 – соответствует диаметру полимерной трубы в 20 мм.
Зависимость между внутренним и наружным диаметром полипропиленового трубопровода.
Заключение
Надеемся, что не переутомили уважаемого читателя избытком цифр и формул. Как уже упоминалось, нами приведены предельно простые схемы расчетов; профессионалы вынуждены использовать куда более сложные решения. Как обычно, дополнительная тематическая информация найдется в видео в этой статье. Успехов!