Гидравлический расчет системы отопления методичка мгсу

Методическое пособие
Методика расчета энергетической эффективности систем отопления жилых и общественных зданий

Купить Методическое пособие — бумажный документ с голограммой и синими печатями. подробнее

Цена на этот документ пока неизвестна. Нажмите кнопку «Купить» и сделайте заказ, и мы пришлем вам цену.

Распространяем нормативную документацию с 1999 года. Пробиваем чеки, платим налоги, принимаем к оплате все законные формы платежей без дополнительных процентов. Наши клиенты защищены Законом. ООО «ЦНТИ Нормоконтроль»

Наши цены ниже, чем в других местах, потому что мы работаем напрямую с поставщиками документов.

Способы доставки

  • Срочная курьерская доставка (1-3 дня)
  • Курьерская доставка (7 дней)
  • Самовывоз из московского офиса
  • Почта РФ

Методика устанавливает способы расчета энергетической эффективности центральных систем водяного отопления жилых, общественных и административных зданий, которая также может быть применена и к иным видам систем отопления.

Методическое пособие применимо для описания энергетической эффективности систем водяного теплоснабжение вентиляционных установок.

Методика не распространяется на системы отопления защитных сооружений гражданской обороны, сооружений предназначенных для работ с радиоактивными веществами, источниками ионизирующих излучений; объектов подземных горных работ и помещений, в которых производятся, хранятся или применяются взрывчатые вещества.

Методическое пособие разработано в развитие требований СП 60.13330.2016 «СНиП 41-01-2003 Отопление, вентиляция и кондиционирование воздуха» для реализации проектировщиками требований, заложенных в строительных нормах и правилах, и выполнения более грамотного и рационального проектирования систем отопления и теплоснабжения вентиляционных установок.

Оглавление

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Общие положения

5 Особенности оценки энергетической эффективности систем отопления для жилых и общественных зданий в рамках комплексной оценки энергопотребления здания

6 Методика расчета энергетической эффективности систем отопления жилых и общественных зданий

7 Особенности оценки энергетической эффективности систем внутреннего теплоснабжения для нужд систем вентиляции для жилых и общественных зданий

Приложение А. Примеры по определению энергетической эффективности центральной системы водяного отопления

Приложение Б. Расчет потери давления по длине и в местных сопротивлениях

Приложение В. Теплоотдача открыто проложенных труб

Приложение Г. Определение дополнительных тепловых потерь зарадиаторными участками наружных ограждений

Приложение Д. Физические свойства воды и гликолей

Список использованной литературы

Дата введения 01.02.2020
Добавлен в базу 01.02.2020
Актуализация 01.02.2020

Этот документ находится в:

Организации:

Разработан ФГБУ Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук
Разработан ФГБОУ ВО НИУ МГСУ
Разработан ООО Завод вентиляционного оборудования ИННОВЕНТ
Утвержден Министерство строительства и жилищно-коммунального хозяйства Российской Федерации

Чтобы бесплатно скачать этот документ в формате PDF, поддержите наш сайт и нажмите кнопку:

Мини стерст во с г ро и гсл ьст ва и жилищно-коммунальною хозяйства Российской Фелеранни

Федеральное автономное учреждение «Федеральный центр нормирования, стандартизации и оценки соответствия в строительстве»

МЕТОДИКА РАСЧЕТА ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ СИСТЕМ ОТОПЛЕНИЯ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ

СОДЕРЖАНИЕ

1 Область применения. 5

2 Нормативные ссылки. 6

3 Термины и определения.

4 Общие положения. 10

5 Особенности оценки энергетической эффективности систем

отопления для жилых и общественных зданий в рамках комплексной оценки энергопотребления здания.

6 Методика расчета энергетической эффективности систем водяного

отопления жилых и общественных зданий. 41

7 Особенности оценки энергетической эффективности систем внутреннего теплоснабжения для нужд систем вентиляции для

жилых и общественных зданий. ^ I

Приложение А Примеры по определению энергетической

эффективности центральной системы водяного отопления. $8

Приложение Б Расчет потери давления по длине и в местных сопротивлениях. ^2

Приложение В Теплоотдача открыто проложенных труб. 98

Приложение Г Определение дополнтельных тепловых потерь зарадиаторными участками наружных ограждений. 100

Читайте также:  Конвектор timberk professional инструкция по эксплуатации

Приложение Д Физические свойства воды и гликолей. 101

Список использованной литературы. 102

4.2 Процесс регулирования осуществляется на различных ступенях транспортирования тепловой энергии от источника до потребителя (рисунок 4.1).

Рисунок 4.1 — Этапы эксплуатационного регулирования теплоподачи на отопление зданий в условиях городской застройки [4J:

I — центральное на теплоисточнике; II — групповое в центральном тепловом пункте (ЦТП); 111 местное в индивидуальном тепловом пункте (ИТП) или в собственной котельной; IV — узловое на входе в сложный элемент или в часть системы отопления; V — индивидуальное в отопительном приборе; t\, I2 — температу ра соответственно подаваемого и охлажденного теплоносителя до этапа II;

/’i, /2 — то же между этапами II и III; /,, /0 — то же в системе отопления здания

Несовершенство любого из этих видов регулирования может приводить к дополнительным тепловым и электрическим потерям энергии. Именно эти потери будут завесить и от конструкции здания, системы отопления, а также от оборудования, которое в ней применяется.

4.3 Набор оборудования тепловых пунктов и системы отопления многообразен при различном подключении системы к тепловым сетям (зависимое, независимое), а также зависит от схемы теплоснабжения.

Однако последнее время стала актуальной практика присоединения систем отопления зданий по независимой схеме, когда создается отдельный отопительный контур внутри самого здания, а теплоноситель из теплосети не попадает в систему отопления (только при ее заполнении и подпитке). Данный вид присоединения значительно дороже, т. к. необходимо приобретать дополнительное оборудование, например, теплообменник, циркуляционный насос, расширительный бак, а также оборудование подпитки и автоматизации системы. Для регулирования количества отданной теплоты потребителям, связанным с изменением температу ры наружного воздуха и изменению фактического теплопотребления, на источниках теплоты (ТЭЦ, РК и т.п.) применяется качественное регулирование, которое позволяет обеспечить условно постоянный гидравлический режим в тепловых сетях. Однако такое централизованное регулирование не может полностью обеспечить требуемый тепловой комфорт в каждом отапливаемом здании и, тем более, в каждом отапливаемом помещении. Это связано в первую очередь с неоднородностью систем теплопотреблен ия. В связи с этим, на практике применяются ЦТП и ИТП, в которых осуществляют местное качественно-количественное регулирование для целого района или отдельного здания. Современные ЦТП и ИТП позволяют исключить «перетопы» зданий, связанные с поддержанием температуры подаваемого теплоносителя из тепловой сети не ниже 70 °С для нагревания воды на нужды ГВС за счет количественного регулирования, т.е. понижения расхода теплоносителя из тепловой сети гга нужды отопления. Однако и это не позволяет полностью обеспечить требуемый тепловой комфорт в каждом отапливаемом помещении.

В современных системах отопления начали использовать автоматические регуляторы, которые под воздействием одного из факторов (например, температуры воздуха в помещении) влияют на расход теплоносителя в системе и на ее участках, тем самым создавая узловое и индивидуальное количественное регулирование.

4.4 Конечная цель узлового и индивидуального регулирования — изменение теплоотдачи отопительного прибора. Целью применения автоматического регулирования, как на ЦТП и ИТП, так и у потребителя, является поддержание расчетных комфортных условий в отапливаемых помещениях с наименьшими

затратами тепловой энергии. Таким образом, потребитель наделяется возможностью обеспечить оптимальную температуру помещения, при которой будет расходоваться ровно столько тепловой энергии, сколько необходимо в данный момент. Это позволит не только обеспечить расчетный комфорт, но и сэкономить дорогостоящую тепловую энергию.

К сожалению, качественное и индивидуальное количественное регулирование не лишено своих недостатков. Отопительные приборы при изменении температуры или расхода теплоносителя неравномерно изменяют свою теплоотдачу. Причем, степень неравномерности зависит не только от конструкции прибора и от параметров теплоносителя, но и от конструктивных особенностей здания.

4.5 На подводках у отопительных приборов в настоящее время применяются не только краны двойной регулировки, краны трехходовые и проходные (рисунок 4.2), но и термостатические клапаны различной конструкции (рисунок 4.3).

Рисунок 4.2 — Термостатические клапаны для систем отопления: а — кран двойной регулировки типа КРДП; 0 — кран регулирующий треходовой типа КРТ; в — кран регулирующий проходной типа КРП

Читайте также:  Системы регулирования индивидуальных систем отопления

Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия

Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.

Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.

Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.

Расчет гидравлики водяной системы отопления

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.

Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.

Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.

Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.

На данном этапе проектирования определяются:

  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участка Длина участка в метрах Количество приборов а участке, шт.
1-2 1,8 1
2-3 3,0 1
3-4 2,8 2
4-5 2,9 2

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.

Вычисление местных сопротивлений

Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:

  • шероховатость внутренней поверхности трубы;
  • наличие мест расширения или сужения внутреннего диаметра трубопровода;
  • повороты;
  • протяженность;
  • наличие тройников, шаровых кранов, приборов балансировки и их количество.
Читайте также:  Моторчики для отопления дома

Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).

Исходные данные для расчета:

  • длина расчетного участка – l, м;
  • диаметр трубы – d, мм;
  • заданная скорость теплоносителя – u, мм;
  • характеристики регулирующей арматуры, предоставляемые производителем;
  • коэффициент трения (зависит от материала трубы), λ;
  • потери на трение – ∆Pl, Па;
  • плотность теплоносителя (расчетная) – ρ = 971,8 кг/м 3 ;
  • толщина стенки трубы – dн х δ, мм;
  • эквивалентная шероховатость трубы – kэ, мм.

Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.

Символ ξ в формуле означает коэффициент местного сопротивления.

Если в доме стоит печка, отопить она сможет лишь небольшое помещение. Установка батарей отопления в частном доме большой площади обязательна, так как в противном случае отдаленные от печи комнаты отапливаться не будут.

Основные характеристики газового котла Buderus представлены в этом обзоре.

О том, как запустить газовый котел, расскажем в этой статье.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение потерь

Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:

  • первичного контура – ∆Plk;
  • местных систем – ∆Plм;
  • генератора тепла – ∆Pтг;
  • теплообменника ∆Pто.

Гидравлический расчет системы отопления – пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 75 0 С, tо = 60 0 С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м 3 /ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 80 0 С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

Варианты двухтрубной отопительной системы

Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

Самодельная печь хорошо подойдет для обогрева дачного домика или подсобного помещения. Печка из газового баллона своими руками – смотрите инструкцию по изготовлению.

Как собрать пресс для топливных брикетов своими руками, вы узнаете в этой статье.

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

Видео на тему

Оцените статью