Гидравлический расчет трубопроводов однотрубной системы отопления

Содержание
  1. Расчет однотрубной системы отопления с примерами
  2. Сбор данных и подготовительные расчеты
  3. Расчет тепловой производительности котельной установки
  4. Расчет количества и мощности батарей
  5. Вычисления диаметра трубы для отопительного контура
  6. Расчет объема расширительного бака
  7. Расчет однотрубной системы отопления
  8. Однотрубная система отопления в частных домах
  9. Общие сведения и назначение
  10. Преимущества и недостатки
  11. Преимуществами данной системы считают:
  12. Недостатками же являются:
  13. Типы однотрубных систем отопления
  14. Расчет и монтаж
  15. Однотрубная система отопления
  16. Конструкция и принцип работы
  17. Почему необходимо увеличивать размеры каждого последующего радиатора?
  18. Увеличение подающей магистрали
  19. Недостатки однотрубной системы отопления
  20. Похожие записи:
  21. Расчет отопления частного дома
  22. Расчет тепловых потерь
  23. Расчет гидравлики
  24. Перепады давления в СО
  25. Расчет циркуляционного кольца включает:
  26. Расчет трубопроводов СО
  27. Расчет количества радиаторов при водяном отоплении
  28. Формула расчета

Расчет однотрубной системы отопления с примерами

Наверное, нет смысла подвергать сомнению утверждение, что автономный обогрев собственного жилища имеет ряд преимуществ перед централизованными системами отопления. Единственным недостатком можно считать достаточно большие первоначальные вложения, львиную долю которых составляет проведение гидравлического расчета однотрубной системы отопления. В этой публикации будет рассказано, как самостоятельно рассчитать однотрубную отопительную систему (СО) для небольшого помещения или частного дома.

Сбор данных и подготовительные расчеты

Прежде всего ответим, для чего нужен гидравлический расчет?

  1. Для эффективного обогрева всех помещений независимо от внешней и внутренней температуры воздуха.
  2. Для снижения эксплуатационных затрат, которые возникают в процессе работы отопительного оборудования.
  3. Для снижения затрат, связанных с приобретением оборудования и материалов. Это касается грамотного подбора диаметров трубопровода на каждом участке отопительной системы.
  4. Для снижения уровня шума, связанного с движением теплоносителя по контуру.
  5. Для стабильной работы отопительной системы.

Для того чтобы сделать расчет системы отопления (в этом повествовании будет говориться исключительно об однотрубной схеме с принудительной циркуляцией теплоносителя), необходимо получить следующие данные:

  • Необходимую мощность теплогенератора.
  • Мощность и количество радиаторов для каждого отапливаемого помещения.
  • Диаметр и протяженность отопительного контура.

Имея на руках искомые данные можно переходить к подбору циркуляционного насоса, расчетам количества теплоносителя, емкости расширительного бака и настройки группы безопасности. Теперь обо всем по порядку.

Расчет тепловой производительности котельной установки

Итак, вы решили создавать однотрубную систему отопления частного дома своими руками. Первое, что нужно сделать, чтобы узнать искомую величину мощности теплогенератора – это произвести расчет теплопотерь каждого отапливаемого помещения. Как известно, основные потери тепла исходят от:

  • Наружных стен.
  • Потолка.
  • Пола.
  • Окон.

На примере рассмотрим теплопотери угловой комнаты, с размерами 6 х 3 метра, двумя окнами 1,5 х 1,2 м, и высотой потолков 2,5 м.

  1. Наружные стены (S1) = (6 х 2,5)+(3 х 2,5)-2 (1,5 х 1,2); S1= 15+7,5-3,6=18,9 м 2
  2. Окна (S2) = 2(1,5 х 1,2)= 3,6 м 2
  3. Пол (S3) = 18 м 2
  4. Потолок (S4) =18 м 2

Применяем формулу расчета теплопотерь (Q) = k; для наружных стен k = 62; для окон k = 135; для пола k = 35; для потолка k = 27. Подставляем необходимые значения.

  1. Q1 = 18,9 х 62 = 1171,8 Вт или 1,172 кВт;
  2. Q2 = 3,6 х 135 = 486 Вт или 0,486 кВт;
  3. Q3 = 18 х 35 = 630 Вт или 0,63 кВт
  4. Q4 = 18 х 27 = 486 Вт или 0,486 кВт;

Теперь суммируем все теплопотери для выявления необходимого количества тепла, которого необходимо для конкретного помещения = 2,774 кВт;

Те же действия необходимы для каждого отдельного помещения. Суммируя теплопотери можно сделать вывод о необходимой производительности котельной установки. Есть методика менее точная, но достаточно надежная и быстрая: необходимо использовать удельную мощность котлоагрегата рекомендованную в зависимости от региона.

Тепловую производительность котельной установки можно высчитать, используя Wк = Wуд х S/10; где:

Wк = мощность котлоагрегата;

Wуд = рекомендованная удельная мощность, представленная на рис.;

S/10 = площадь обогреваемого помещения на 10 м 3 .

Теперь, когда, есть данные о мощности котлоагрегата, необходимого для обогрева дома, можно приступать к чертежам контура отопительной системы, прикидывать место размещения радиаторов отопления.

Расчет количества и мощности батарей

Как в однотрубном подключение радиаторов отопления, так и в двухтрубных схемах, эффективность отопления конкретного помещения зависит не только от количества секций радиаторов, их конструкции, материала, из которого они изготовлены, площади поверхности и способа подсоединения к магистральному трубопроводу, но и от материала стен и способа утепления, теплопотерь в окнах и пр.

Воспользуемся рекомендованными данными, которые можно найти в специализированной литературе. 1 м 3 в кирпичном доме требует приблизительно 0.034 кВт тепла для поддержания комфортной температуры; в доме из СИП – панелей – 0,041 кВт; в кирпичном доме с утепленными: перекрытием, чердаком, несущими стенами, фундаментом – 0,02 кВт.

Для примера, рассмотрим подбор батарей для комнаты 18 м 2 с высотой потолков 2,5 м. в кирпичном доме. (0,034 кВт).

  1. Узнаем объем помещения: 18 х 2,5 = 45 м 3 .
  2. Рассчитываем, сколько необходимо тепловой энергии для данной комнаты: 45 х 0,034 = 1,53 кВт

Теперь нужно воспользоваться таблицей, с характеристиками батарей.

На рисунке показаны основные характеристики наиболее распространенных радиаторов. Исходя из представленных данных, лучшее соотношение характеристик и стоимости у алюминиевых батарей. Нам необходимы данные о мощности одной секции, нижняя граница которой равна 0,175 кВт.

  1. Делим полученный результат на мощность секции выбранного типа радиаторов и получаем количество секций: 1,53/ 0,175 = 8,74

Итог: для обогрева помещения 45 м 3 нам необходим алюминиевый радиатор, состоящий из 9 секций. Аналогичные расчеты проведите для каждой комнаты в доме.

Вычисления диаметра трубы для отопительного контура

Данная процедура является обязательной при расчете любой системы отопления. В однотрубных схемах – это еще и достаточно сложно сделать, так как теплоноситель все больше остывает в каждом последующем радиаторе. Для поддержания определенной температуры нужно на каждом последующем участке контура увеличивать скорость движения теплоносителя. Сделать это можно, уменьшая диаметр трубы, согласно необходимой тепловой мощности для каждого радиатора.

Сделать вычисления можно по формуле Rср = β*?рр/∑L; Па/м, Получим среднее значение потери давления вследствие трения на 1 метр расчетного кольца СО. Далее, используя формулу, рассчитываем диаметр трубопровода для конкретного участка контура.

∆t° —разница температур теплоносителя между входом и выходом из котлоагрегата, °С
Q —количество тепла, необходимое на обогрев конкретного помещения
V — скорость теплоносителя, м/с

Несколько слов о скорости движения воды в системе. Чтобы отопление работало эффективно необходимо чтобы скорость движения теплоносителя была как можно выше. Однако, при этом увеличивается давление в системе и возникает шум от трения о поверхность трубопровода. Оптимальная скорость теплоносителя в горизонтальной однотрубной системе отопления должна находиться в пределах 0,3 – 0,7 м/сек. Медленнее – возможно завоздушивание; Быстрее – появляется шум.

Читайте также:  Использование тепловой энергии для отопления дома

Существуют таблицы, в которых можно выбрать необходимый диаметр труб. Для этого диаметра предлагается оптимальная скорость и расход теплоносителя. Рассмотрим пример подбора труб из армированного полипропилена для каждого участка отопительного контура с 6-ю радиаторами разной мощности.

Важно! В таблице указан внутренний диаметр трубы. Оптимальные результаты находятся в колонках, обозначенных синим цветом.

  1. На первом участке СО (от выхода котла до радиатора) мощность системы 15 кВт. Выбираем данные, соответствующие мощности из синих колонок. Подходит труба с внутренним диаметром 20 мм и 25 мм. Выбираем 20 мм (она дешевле). Скорость движения теплоносителя на этом участке будет 0,6 м/с; расход теплоносителя, через трубу такого диаметра при данной скорости – 659 кг/ч.
  2. Первый радиатор имеет мощность 3 кВт поэтому нагрузка на нем уже 15 – 3 = 12 кВт. В оптимальной зоне таблицы данное значение находится в зоне трубы 20 мм.
  3. На участке между первым и вторым радиатором: 12 кВт – 2,5 = 9,5 кВт; диаметр трубы 20 мм.
  4. На третьем радиаторе тепловая нагрузка падает уже до 9,5 – 2 = 7,5 кВт. Исходя из таблицы на этом участке требуется труба с 15 мм внутреннего диаметра.

Аналогично делается расчет трубопровода на всех участках СО.

Совет: Следует знать, что армированный полипропилен имеет несколько другие внутренние размеры, чем указано в таблице. Показанный нами пример внутреннего диаметра 20 мм реально имеет 21,2 мм. и маркировку ПП32, и соответственно внешний диаметр 32 мм.

Расчет объема расширительного бака

Для того чтобы рассчитать объем расширительного бачка мембранного типа следует знать количество теплоносителя, который находится в отопительном контуре. Зависимость такая: расширительный бак должен быть объемом в 10 % от количества теплоносителя.

Количество воды в СО рассчитывается по формуле: W = π (D 2 /4) L где:

  • π – 3,14;
  • D – внутренний диаметр участка трубопровода;
  • L – длина участка трубопровода (если весь контур выполнен из трубы одного диаметра, то считаем длину контура).

Например, внутренний диаметр трубопровода из армированного полипропилена – 21,2 мм = 0,021м; длина контура – 100 м. 3,14 х (0,021 2 /4) х 100 = 0.0345м 3 или 34,5 литра. От сюда вывод: при объеме теплоносителя в системе 34,5 л, в температурных пределах СО от 0 до 80°С и давлении в системе от 0,3 до 1 Бар, необходим расширительный бак, емкостью 3,5 л.

Чтобы рассчитать параметры циркуляционного насоса нужны данные о мощности котла, разница температур на входе и выходе котельной установки. Далее можно воспользоваться формулой Q = N /(t 2- t 1), где N – мощность котлоагрегата; T1 – температура теплоносителя на подающем патрубке, T2 – температура охлажденного теплоносителя на обратной ветке контура.

Совет: следует знать, что для построения грамотной однотрубной системы отопления, кроме полученных данных необходимо сделать расчет гидравлических сопротивлений, которые возникают на равнопроходных отводах, учесть гидравлические потери на точках сужения трубопровода, грязевике и обратном клапане (если предполагается). Данный расчет сделать самостоятельно достаточно просто, используя программы: «Гидравлические и тепловые расчеты» и HERZ. C. O. С.

Расчет однотрубной системы отопления

Однотрубная система отопления в частных домах

Современные системы теплофикации жилых зданий имеют множество вариантов проектных решений, которые, в числе прочих, касаются также и вопросов доставки теплоносителя в отапливаемые помещения. Одним из вариантов таких решений является однотрубная система отопления.

Общие сведения и назначение

Однотрубная система отопления была разработана в СССР в 50х-60х годах ХХ века, как наиболее экономичная по трудозатратам и материалам. Необходимость подобной разработки обосновывалась массовым строительством жилых домов (т.н. «хрущевок») в максимально быстро и дешево. Данная разработка предназначалась для отопления вновь возводимых жилых помещений эконом-класса. В дальнейшем подобные системы на основе типовых проектов применялись также при строительстве панельных многоэтажных домов.

Однотрубной данная система названа потому, что трубопроводы, подводящие теплоноситель к отопительным приборам и трубопроводы, отводящие теплоноситель от прибора, врезаны в одну магистральную трубу.

Преимущества и недостатки

Преимуществами данной системы считают:

  • низкая себестоимость вследствие использования меньшего количества материалов;
  • быстрый монтаж из-за минимального количества соединений, монтажных проемов, количества трубопроводов;
  • простота и наглядность эксплуатации;
  • более эстетичный, чем, например, у двухтрубной системы, внешний вид.

Недостатками же являются:

  • невозможность регулировать проток теплоносителя через отопительный прибор независимо от последующих приборов;
  • необходимость наличия циркуляционного насоса вследствие высокого гидравлического сопротивления, или устройства системы с естественной циркуляцией;
  • повышенная изнашиваемость элементов отопления вследствие наличия избыточного давления, создаваемого циркуляционным насосом;
  • необходимость компенсировать снижение температуры теплоносителя в каждом следующем приборе за счет увеличения его поверхности нагрева.

Типы однотрубных систем отопления

По типам однотрубные системы отопления разделяются на:

  • горизонтальные (применяются, в основном, для отопления одноэтажных зданий);

Горизонтальная однотрубная система отопления.

  • вертикальные (применяются для теплоснабжения многоэтажных строений);

Схема закрытой однотрубной системы отопления многоквартирного дома.

  • открытые, расширительный бак сообщается с атмосферой;

Однотрубный циркуляционный контур с расширителем открытого типа.

  • закрытые — расширительный бак. как правило, мембранного типа, изолирован от атмосферы;

Расширительный бак в системе отопления.

  • с естественной циркуляцией;
  • с искусственной циркуляцией (создается циркуляционным насосом);

Схема однотрубная система отопления с искуственной циркуляцией.

  • по типу теплоносителя (в однотрубной системе отопления частного дома, как правило, теплоносителем является водопроводная вода, поэтому антифриз, масло и другие виды возможных теплоносителей не рассматриваются);
  • по типу присоединения отопительных приборов (проточная, с регулируемым и нерегулируемым байпасом).

Однотрубная система отопления с естественной циркуляцией.

В одной системе, как правило, используется несколько вышеназванных типов, например: вертикальная открытая однотрубная водяная система отопления с естественной циркуляцией и нерегулируемым байпасом.

Расчет и монтаж

Схемы отопления, в том числе и однотрубные, нуждаются в тщательном гидравлическом расчете для обеспечения их бесперебойной и равномерной работы. Гидравлический и тепловой расчеты можно провести самостоятельно, найдя нужные методики в интернете, или обратиться в фирмы, где проводятся данные работы.

Но при самостоятельном проведении расчета необходимо учитывать следующие факторы:

  1. максимальная высота стояков должна быть не более 30 метров;
  2. открытый расширительный бачок должен располагаться в высшей точке системы, желательно – прямо над главным стояком, но не ниже 3 метров от нижней точки системы;
  3. в схемах отопления с естественной циркуляцией необходимо предусмотреть уклоны магистральных трубопроводов: подающего – от котла к крайнему стояку с уклоном 3-5 градусов, обратного – от крайнего стояка к котлу с уклоном не менее 3-5 градусов; в схемах с искусственной циркуляцией уклон должен составлять не менее 0,5 см на 1 метр трубы;
  4. внутренний диаметр магистральных трубопроводов должен быть не менее 25 мм, диаметр стояков – не менее 20 мм.
Читайте также:  Чем теплые полы лучше теплых стен

Более подробно о гидравлическом расчете однотрубной системы отопления Вы можете узнать, посмотрев следующее видео:

Системы однотрубного отопления, не смотря на устаревшие технологии, успешно применяются и в наше время для отопления малоэтажных частных зданий и сооружений.

Тепловой насос для отопления дома: как выбрать

Однотрубная система отопления

Наибольшее распространение однотрубные системы отопления получили в 20 веке, когда они широко применялись в самых различных строениях, начиная от жилых многоквартирных домов и административных зданий и заканчивая частными домами. Однако однотрубная схема достаточно часто применяются и в настоящее время.

Вертикальная однотрубная схема водяного отопления частного дома.

Конструкция и принцип работы

Однотрубка представляет собой один подающий трубопровод, к которому последовательно подсоединены несколько радиаторов. Двигаясь по трубопроводу, теплоноситель заходит в первый радиатор, отдает ему тепло и уже несколько охлажденным продолжает движение по подающему трубопроводу, заходя в каждый последующий радиатор. Теплоноситель поступает во второй радиатор с меньшей температурой, чем в первый, таким образом, первому радиатору достается наибольшее количество тепла, а последнему наименьшее.

Неравномерный нагрев радиаторов является одним из основных недостатков однотрубной системы отопления. Для решения этой проблемы в многоквартирных домах используется специальная перемычка (такого же диаметра как у подающей магистрали, либо на размер меньше), через которую, минуя радиатор, постоянно циркулирует нагретый теплоноситель. Несмотря на использование перемычки, однотрубная система, в отличии от двухтрубной, является более холодной. В двухтрубной системе присутствует как подающая, так и обратная магистраль, к которым одновременно подключается каждый радиатор.

В двухтрубной схеме теплоноситель, по подающей магистрали, заходит в радиатор, где происходит теплопередача. После этого, теплоноситель выходит из радиатора уже по обратной магистрали, а не по подающей, как в однотрубной схеме. Таким образом, в двухтрубной системе каждый радиатор, вне зависимости от его удаленности, нагревается практически одинаково.

Примечание! Наиболее подходящим условием применения однотрубной системы отопления в частном доме является небольшая отапливаемая площадь, т.е. количество используемых радиаторов. Если для отопления дома необходимо только 5 радиаторов, то однотрубка будет одним из лучших вариантов. Если же в системе планируется 6-10 радиаторов, то ее применение проведет к удорожанию проекта (необходимость установки многосекционных радиаторов и увеличенного подающего трубопровода).

Горизонтальная однотрубная схема отопления частного дома своими руками, диагональное подключение.

Почему необходимо увеличивать размеры каждого последующего радиатора?

Даже при правильно смонтированной однотрубной системе отопления, ее последние радиаторы будут нагреваться слабее, чем первые. Это происходит потому, что каждый последующий (по ходу движения теплоносителя) радиатор будет забирать около 10°C. Поэтому, для увеличения теплоотдачи последних отопительных приборов рекомендуется использовать многосекционные радиаторы, которые обладают более высокой теплоотдачей. Такое решение, безусловно, увеличивает себестоимость всей системы.

К примеру, однотрубная система отопления смонтирована так, что подающий трубопровод и подводки к радиаторам имеют одинаковый диаметр. В результате более высокого углового сопротивления, в радиатор войдет менее половины теплоносителя, около 45%, остальная часть продолжит движение по подающему трубопроводу. Если в первый радиатор поступил теплоноситель с температурой 60°C, то на выходе из радиатора будет уже 50°C. Далее 60°C-ый теплоноситель в подающей магистрали смешивается с 50°C-ым выходящим из радиатора, в результате этого получается теплоноситель с температурой около 55°C. Таким образом, с каждым последующим радиатором, температура теплоносителя будет уменьшаться примерно на 4,5-5°C (около 7%). Соответственно каждый последующий радиатор необходимо увеличивать на 7% по отношению к предыдущему.

Схема однотрубки с нижним подключением.

Увеличение подающей магистрали

Однако, чтобы так значительно не увеличивать количество секций каждого последующего радиатора, рекомендуется увеличить диаметр подающего трубопровода (на 1 или 2 размера больше, чем у подводки к радиаторам).

Недостатки однотрубной системы отопления

Неравномерный нагрев радиаторов. Даже используя многосекционные радиаторы будет сложно добиться одинаковой теплоотдачи всех радиаторов.

  • Более высокая стоимость. В сравнении с двухтрубной схемой, однотрубка является более дорогостоящей, т.к. необходимо приобретать каждый следующий по направлению движения теплоносителя радиатор с увеличенным количеством секций. Помимо этого, для подающей магистрали необходима более «толстая», чем в двухтрубке, труба.
  • Не экономична. Многосекционные радиаторы и «толстая» труба подающей магистрали увеличивают количество теплоносителя в системе. Соответственно для его нагрева потребуется использовать больше топлива.
  • Сложность монтажа. В сравнении с двухтрубной системой, монтаж и расчет однотрубной системы является более сложным процессом (см. вышеописанные причины).

Похожие записи:

Расчет отопления частного дома

Для климата средней полосы тепло в доме является насущной потребностью. Вопрос отопления в квартирах решается районными котельными, ТЭЦ или тепловыми станциями. А как же быть владельцу частного жилого помещения? Ответ один — установка отопительной техники, необходимой для комфортного проживания в доме, она же — автономная система отопления. Чтобы не получить в результате установки жизненно необходимой автономной станции груду металлолома, к проектированию и монтажу следует отнестись скрупулёзно и с большой ответственностью.

Расчет тепловых потерь

Первый этап расчета заключается в расчете тепловых потерь комнаты. Потолок, пол, количество окон, материал из которых изготовлены стены, наличие межкомнатной или входной двери — все это источники теплопотерь.

Рассмотрим на примере угловой комнаты объемом 24,3 куб. м.:

  • площадь комнаты — 18 кв. м. (6 м х 3 м)
  • 1 этаж
  • потолок высотой 2,75 м,
  • наружные стены — 2 шт. из бруса (толщина18 см), обшитые изнутри гипроком и оклеенные обоями,
  • окно — 2 шт. 1,6 м х 1,1 м каждое
  • пол — деревянный утепленный, снизу — подпол.

Расчеты площадей поверхностей:

  • наружных стен за минусом окон: S1 = (6+3) х 2,7 — 2×1,1×1,6 = 20,78 кв. м.
  • окон: S2 = 2×1,1×1,6=3,52 кв. м.
  • пола: S3 = 6×3=18 кв. м.
  • потолка: S4 = 6×3= 18 кв. м.

Теперь, имея все расчеты теплоотдающих площадей, оценим теплопотери каждой:

  • Q1 = S1 х 62 = 20,78×62 = 1289 Вт
  • Q2= S2 x 135 = 3×135 = 405 Вт
  • Q3=S3 x 35 = 18×35 = 630 Вт
  • Q4 = S4 x 27 = 18×27 = 486 Вт
  • Q5=Q+ Q2+Q3+Q4=2810 Bт

Итого. суммарные теплопотери комнаты в самые холодные дни равны 2,81 кВт. Это число записывается со знаком минус и теперь известно сколько тепла необходимо подать в комнату для комфортной температуры в ней.

Читайте также:  Где уже включили отопление

Расчет гидравлики

Переходим к наиболее сложному и важному гидравлическому расчету — гарантии эффективной и надежной работы ОС.

Единицами расчета гидравлической системы являются:

  • диаметр трубопровода на участках отопительной системы;
  • величины давлений сети в разных точках;
  • потери давления теплоносителя;
  • гидравлическая увязка всех точек системы.

Перед расчетом нужно предварительно выбрать конфигурацию системы. тип трубопровода и регулирующей/запорной арматуры. Затем определиться с видом приборов отопления и их расположением в доме. Составить чертеж индивидуальной системы отопления с указанием номеров, длины расчетных участков и тепловых нагрузок. В заключении выявить основное кольцо циркуляции. включающее поочередные отрезки трубопровода, направленные к стояку (при однотрубной системе ) или к самому уделенному прибору отопления (при двухтрубной системе ) и обратно к источнику тепла.

При любом режиме эксплуатации СО необходимо обеспечить бесшумность работы. В случае отсутствия неподвижных опор и компенсаторов на магистралях и стояках возникает механический шум из-за температурного удлинения. Использование медных или стальных труб способствует распространению шума по всей системе отопления.

Из-за значительной турбулизации потока, который возникает при увеличенном движении теплоносителя в трубопроводе и усиленном дросселировании потока воды регулирующим клапаном, возникает гидравлический шум. Поэтому, учитывая возможность возникновения шума, необходимо на всех этапах гидравлического расчета и конструирования — подбор насосов и теплообменников, балансовых и регулирующих клапанов, анализ температурных удлинений трубопровода — выбирать соответствующие для заданных исходных условий оптимальное оборудование и арматуру.

Перепады давления в СО

Гидравлический расчет включает имеющиеся перепады давления на вводе отопительной системы:

  • диаметры участков СО
  • регулирующие клапаны, которые устанавливаются на ветках, стояках и подводках приборов отопления;
  • разделительные, перепускные и смесительные клапаны;
  • балансовые клапаны и величины их гидравлической настройки.

При пуске отопительной системы балансовые клапаны настраиваются на схемные параметры настройки.

На схеме отопления обозначается расчетная тепловая нагрузка каждого из отопительных приборов, которая равна тепловой расчетной нагрузке помещения, Q4. В случае наличия более одного прибора необходимо разделить величину нагрузки между ними.

Далее необходимо определить основное циркуляционное кольцо. В однотрубной системе количество колец равно числу стояков, а в двухтрубной — количеству приборов отопления. Клапаны баланса предусматривают для каждого кольца циркуляции, поэтому количество клапанов в однотрубной системе равно числу вертикальных стояков, а в двухтрубной — количеству приборов отопления. В двухтрубной СО балансовые вентили располагают на обратной подводке прибора отопления.

Расчет циркуляционного кольца включает:

  • систему с попутным движением воды. В однотрубных системах кольцо располагается в самом нагруженном стояке, в двухтрубных — в нижнем приборе отопления более нагруженного стояка;
  • систему с тупиковым движением теплоносителя. В однотрубных системах кольцо располагается в самом нагруженном и удаленном стояке, в двухтрубных — в нижнем приборе отопления нагруженного удаленного стояка;
  • горизонтальную систему, где кольцо располагается в более нагруженной ветви 1-го этажа.

Необходимо из двух направлений расчета гидравлики основного кольца циркуляции выбрать одно.

При первом направлении расчета, диаметр трубопровода и потери давления в кольце циркуляции определяются по задаваемой скорости движения воды на каждом участке основного кольца с последующим подбором насоса циркуляции. Напор насоса Pн, Па определяется в зависимости от вида отопительной системы:

  • для вертикальных бифилярных и однотрубных систем: Рн = Pс. о. — Ре
  • для горизонтальных бифилярных и однотрубных, двухтрубных систем:Рн = Pс. о. — 0,4Ре
  • Pс.о — потери давления в основном кольце циркуляции, Па;
  • Ре — естественное циркуляционное давление, которое возникает вследствие понижения температуры теплоносителя в трубах кольца и приборах отопления, Па.

В горизонтальных трубах скорость теплоносителя принимают от 0,25 м/с, для возможности удаления воздуха из них. Оптимальная расчетная движения теплоносителя в трубах из стали до 0,5 м/с, полимерных и медных — до 0,7 м/с.

После расчета основного кольца циркуляции производят расчет остальных колец путем определения известного давления в них и подбора диаметров по примерной величине удельных потерь Rср.

Применяется направление в системах с местным теплогенератором, в СО при зависимом (при недостаточном давлении на вводе тепловой системы) или независимом присоединении к тепловым СО.

Второе направление расчета заключается в подборе диаметра трубы на расчетных участках и определении потерь давления в кольце циркуляции. Рассчитывается по изначально заданной величине циркуляционного давления. Диаметры участков трубопровода подбирают по примерной величине удельных потерь давления Rср. Этот принцип применяется в расчетах отопительных систем с зависимым присоединением к тепловым сетям, с естественной циркуляцией.

Для исходного параметра расчета нужно определить величину имеющегося циркуляционного перепада давления PP, где PP в системе с естественной циркуляцией равно Pe, а в насосных системах — от вида отопительной системы:

  • в вертикальных однотрубных и бифилярных системах: PР = Рн + Ре
  • в горизонтальных однотрубных, двухтрубных и бифилярных системах: PР = Рн + 0,4.Ре

Расчет трубопроводов СО

Следующей задачей расчета гидравлики является определение диаметра трубопровода. Расчет производится с учетом циркуляционного давления, установленном для данной СО, и тепловой нагрузки. Следует отметить, что в двухтрубных СО с водяным теплоносителем главное циркуляционное кольцо располагается в нижнем приборе отопления, более нагруженного и удаленного от центра стояка.

По формуле Rср = β*?рр/∑L; Па/м определяем среднее значение на 1 метр трубы удельной потери давления от трения Rср, Па/м, где:

  • β — коэффициент, учитывающий часть потери давления на местные сопротивления от общей суммы расчётного циркуляционного давления (для СО с искусственной циркуляцией β=0,65);
  • рр — имеющееся давление в принятой СО, Па;
  • ∑L — сумма всей длины расчётного кольца циркуляции, м.

Расчет количества радиаторов при водяном отоплении

Формула расчета

В создании уютной атмосферы в доме при водяной системе отопления необходимым элементом являются радиаторы. При расчете учитываются общий объем дома, конструкция здания, материал стен, вид батарей и другие факторы.

Например: один кубометр кирпичного дома с качественными стеклопакетами потребует 0,034 кВт; из панели — 0,041 кВт; возведенные согласно всех современных требований — 0,020 кВт.

Расчет производим следующим образом:

  • определяем тип помещения и выбираем вид радиаторов;
  • умножаем площадь дома на указанный тепловой поток ;
  • делим полученное число на показатель теплового потока одного элемента (секции) радиатора и округляем результат в большую сторону.

Например: комната 6x4x2,5 м панельного дома (тепловой поток дома 0,041 кВт), объем комнаты V = 6x4x2,5 = 60 куб. м. оптимальный объем теплоэнергии Q = 60×0, 041 = 2,46 кВт3, количество секций N = 2,46 / 0,16 = 15,375 = 16 секций.

Оцените статью