Гидравлический узел теплых полов

5 Схем подключения водяного теплого пола

Вступление

Система водяной теплый пол самая сложная система обогрева полами по расчёту, монтажу и подключению. Каждый этап реализации водяного пола влияет на конечный результат отопления теплыми полами. В этой статье посмотрим практикующие схемы подключения водяного теплого пола.

Учитываем особенности

Чтобы более подробно разобрать схемы подключения теплого пола с жидким теплоносителем вспомним некоторые особенности этой системы обогрева.

  • Во-первых, рекомендуемая температура в системе должна быть 35-45˚C. Не больше. Варианты температур в радиаторах отопления для теплых полов не подходят. Это значит, что на входе воды в систему необходимо предусмотреть механизм регулирования (снижения) температуры теплоносителя.
  • Во-вторых, циркуляция теплоносителя в системе должна быть постоянной. При этом скорость его движения не должна превышать 0,1 м в секунду;
  • В-третьих, разница температур теплоносителя на входе и выходе не должна превышать 10˚C;
  • В-четвёртых, система водяной теплый пол не должна влиять на другие системы отопления, а также на систему водоснабжения дома.

Схемы подключения водяного теплого пола

Теперь посмотрим практичные схемы подключения теплого пола в доме.

Прямое подключение от котла

Данная схема наиболее проста в монтаже, однако имеет ряд ограничений для реализации.

  • Во-первых, она может применяться только в низкотемпературных котлах с возможностью регулирования температуры теплоносителя. Как следствие эта схема может применяться только тогда, когда отсутствует радиаторное отопления, а теплый пол единственный источник тепла в доме.
  • Во-вторых, несмотря на кажущуюся простоту монтажа, схема «капризна» к нюансам подключения и требует опыта подобных работ.

Реализуется данная схема подключения с помощью 3-х ходового или 2-х ходового клапанов.

3-х ходовой клапан

Задача 3-х ходового клапана в смешении горячего (прямого) и холодного (обратного) потоков теплоносителя. На схеме вы видите вариант установки 3-х ходового клапана. Здесь он играет роль термостата.

Термостат это прибор обеспечения постоянной температуры, в нашем случае, теплоносителя.

Данная схема имеет ряд особенностей. Во-первых, она не работает в контурах длиннее 35-40 метров. Во-вторых, она не пригодна, если нужно по отдельности регулировать температуру каждого контура.

  • Первый недостаток устраняется установкой температурных датчиков с сервоприводами и термостатическими клапанами на каждый контур.
  • Второй недостаток устраняется установкой циркуляционного насоса.

2-х ходовой клапан

Альтернатива 3-х ходового клапана, является 2-х ходовой клапан или питающий клапан.

Его задача, обеспечить не постоянный, а периодический подмес воды. Обеспечивает такой подмес термоголовка с термодатчиком входящая в конструкцию клапана. По сути, 2-х ходовой клапан либо отсекает горячую воду от котла, либо добавляет её в систему.

Плюс такой схемы, в простоте и невозможности перегрева. Недостаток, в 200 метровом ограничении площади обогрева. Решаются ограничения в установке циркуляционных насосов с организацией параллельного или последовательного (популярного) типа смешивания.

Схема подключения ВТП через насосно-смесительный узел

Эту схему применяют для одновременного подключения к котлу отопления радиаторов (основное отопление) и водяного теплого пола (дополнительное отопление).

Для реализации этой схемы потребуется коллекторный узел с насосно-смесительным узлом. Коллекторный узел продается в готовом виде и входит в сборку коллекторного шкафа теплого пола. Цена коллекторного узла 10-20 тыс. руб. Опытные мастера собирают насосно-смесительный узел сами.

Задача насосно-смесительного узла обеспечить высокую скорость теплоносителя в системе с возможностью точной и главное, независимой, регулировки температуры. Благодаря насосно-смесительному узлу контура водяного теплого пола от контура радиаторов работают независимо.

Такая независимость контуров обеспечивает гарантированную надежность работы и качество подключения системы водяной теплый пол в доме.

Прямое подключение ВТП от радиатора отопления

Используется для подключения одной нитки теплого пола в небольшом помещении до 10 кв. метров.

Подключение ТП через термостатический клапан, это самый простой и вместе с тем, самый спорный способ подключения. И вот почему.

Читайте также:  Электрокотлы для горячего водоснабжения схема подключения

Во-первых, это способ работает только для совсем маленьких помещений площадью не более 10 кв. метров. Во-вторых, данная схема не обеспечивает высокую скорость теплоносителя и разница температур входа и выхода теплоносителя доходит до 40-45˚C, вместо, нормативных 5-10˚C.

Если кратко описать суть подключения теплого пола через термостатический клапан, это еще один радиатор отопления комнаты, только уложенный в пол. В контуре радиаторного отопления делается петля, ставится тройник, врезается клапан и ставится воздухоотводчик.

Регулировка в таком контуре производится через термоголовку с датчиком (накладным или погружным) прикреплённым к трубе отопления. есть варианты регулировки от температуры воздуха в комнате.

Гидравлический разделитель

Эта схема используется в комбинированных схемах отопления с радиаторами. По сути, является схемой гидравлического разделения системы радиаторного отопления и системы теплый пол.

Если в системе радиаторного отопления используется циркуляционный насос, то наличие второго насоса в смесительном узле может привести к конфликтному нарушению гидравлических режимов.

Для параллельной работы двух насосов в системе отопления устанавливают гидравлический разделитель или теплообменник. Пример на схеме.

Вывод

В статье рассмотрены 5 схем подключения водяного теплого пола. Все они имеют практическое воплощение и активно используются в различных системах отопления.

Устройство и работа насосно-смесительного узла теплого пола

Системы водяного подогрева полов (вторичного контура отопления, теплые полы — ТП), используемые совместно высокотемпературным радиаторным отоплением (первичным контуром), нуждаются в приведении параметров теплоносителя к определенным характеристикам. В первую очередь, это касается гидравлической и температурной увязки контуров обоих типов. Ведь важно обеспечить как полноценное снабжение теплоносителем в требуемых объемах коммуникаций ТП, так и не допустить перегрева вторичной низкотемпературной системы. Эти задачи возлагаются на насосно-смесительный узел теплого пола (НСУ). Они решаются посредством сбалансированной автоматической работы запорно-регулирующей арматуры и насосного агрегата, обеспечивающей дозированный подмес теплоносителя из обратной линии.

Рисунок 1

Требования к температуре теплононосителя

НСУ теплого пола является достаточно сложным комплектом оборудования, от грамотной сборки и настройки которого во многом зависит правильность функционирования всей тепловой установки. Например, если котел спроектирован на подачу теплоносителя 70-90 0 С в радиаторы, то, в параллельно работающих в этих же помещениях контурах напольного обогрева, температура циркулирующей жидкости допускается не выше 45-50 0 С (max 55 0 С). Точные температурные параметры выводятся путем инженерных расчетов системы теплого пола. Они призваны обеспечить подготовку воды в НСУ таким образом, чтобы прогрев напольных поверхностей, с учетом структуры и материала их покрытий, не превышал:

  • в помещения с долговременным пребыванием людей (офисах, жилых) – 29 0 С;
  • во вспомогательных помещениях (кладовых, коридорах, гардеробных) – 30 0 С;
  • в санузлах, ванных комнатах, бассейнах – 32 0 С.

Кроме того, настройка смесительного узла будет выполнена наиболее оптимально, если удастся добиться перепада температур между подачей и обраткой ТП 5-15 0 С. Уменьшение теплового градиента (Δt) требует наращивания расхода теплоносителя, как следствие роста скорости его циркуляции, которая приводит к гидравлическим потерям. Высокий же градиент температур уже ощущается тактильно, как разница в нагреве поверхности напольного покрытия, что вызывает определенный дискомфорт.

Рисунок 2

Типовые схемы насосно-смесительных узлов

В зависимости от способ включения циркуляционного насоса различают следующие схемы НСУ:

  • последовательную – рис. 2а;
  • параллельную – рис. 2б;
  • комбинированную.

При этом основными считаются первые две, а последняя схема, соответственно, представляет их гибридный вариант.

Включенный последовательно насос эксплуатируется только для подготовки теплоносителя и его циркуляции в контурах теплого пола. Подобная схема, хотя и требует использования двух раздельных перекачивающих агрегатов (для первичного и вторичного контуров), однако, отличается лучшими, чем параллельная, технологическими показателями. В профессионально изготовленных системах ТП, зачастую, сборку НСУ осуществляют с последовательным включением насоса. При этом следует учитывать, что эффективность работы такой сборки существенно зависит от правильности её расчетов и настройки.

Преимущество параллельного подключения насоса заключается в возможности использования всего одного агрегата для обеспечения циркуляции теплоносителя в первичном и вторичном контурах. С одной стороны, это упрощает сборку, а с другой – требует установки более мощного перекачивающего оборудования. Если изготовление смешивающего узла для небольшой бытовой системы выполняется своими руками, то выбрав параллельную компоновку, легче избежать критических ошибок, которые могут негативно отразиться на работе водяного теплого пола.

Как в параллельных, так и в последовательных сборках НСУ практикуется использование термостатических двухходовых (рис. 2-5 и 7) или трехходовых (рис. 1, 8 и 9) клапанов. Схемы с термостатами первого типа рекомендуется применять для помещений с площадями ТП в несколько десятков квадратных метров. Поэтому для организации напольного отопления в среднестатистической типовой квартире они вполне подходят. Смешивание теплоносителя в них осуществляется после двухходового клапана непосредственно в циркуляционном потоке системы теплого пола.

Читайте также:  Сделать оценку качества поверхностного источника питьевого водоснабжения

Трехходовые термостаты сами являются смешивающими устройствами. Внутри их корпусов происходит регулируемый подмес теплоносителя из первичного контура к циркулирующему потоку из системы ТП. Трехходовая термостатическая запорно-регулирующая арматура рекомендуется для установки на крупных отапливаемых площадях, измеряемой сотнями квадратных метров.

Комплектация смесительного узла

Добиться обеспечения функциональности системы ТП возможно, только имея четкое представление о строении НСУ, практическом назначении его основных и вспомогательных элементов. Устройство и работу типового узла удобно будет разобрать на примере схемы с последовательным включением насосного агрегата и двухходовым клапаном-термостатом (рис. 3). Указанную компоновку имеет смесительный узел для теплого пола Valtec (рис.5), реализуемый в торговой сети в виде готового комплекта оборудования.

Рисунок 3

Основные функциональные элементы НСУ Valtec

К ним относятся:

  • циркуляционный насос;
  • клапан балансировочно-запорный (первичного контура);
  • клапан балансировочный (вторичного контура);
  • байпасный клапан (перепускной).

Насос (рис. 3 и 5, поз.3)

Инициирует подачу и возврат теплоносителя через узлы и петли ТП. Применяется циркуляционное оборудование аналогичное тому, которое используется в первичных контурах системы отопления. Величин его главных рабочих параметров (давление и производительность) должно хватать на преодоление гидросопротивлений в трубопроводах, чтобы обеспечивать циркуляцию теплоносителя с требуемой скоростью и в заданных объемах.

Балансирный клапан первичного контура (рис. 3 и 5, поз.8)

Отвечает за поступающие объемы теплоносителя, подпитывающего систему теплого пола из первичного высокотемпературного контура отопления (Т1, Т2). Балансировка потока жидкости осуществляется изменением пропускной способности клапана. Регулировка балансирного клапана выполняется путем вращения его настроечного винта с головкой под ключ-шестигранник, который закрывается защитным колпачком. Процесс также синхронизируется с работой клапана-термостата (поз. 1), управляемого выносным погружным датчиком (поз. 1а). Чувствительный элемент датчика монтируется в резьбовую гильзу (поз. 4).

Балансирный клапан вторичного контура (рис. 3 и 5, поз.2)

Его настройка зависит от площади подогреваемой поверхности напольного покрытия. Открытие/закрытие регулирующего устройства влияет на изменение пропорции соотношения объемов теплоносителей из обратки ТП (Т21) и подачи первичной системы отопления (Т1). Прикрытие балансировочным клапаном оборотного потока из вторичного контура способствует более интенсивному поступлению разогретой жидкости от теплогенератора (котла). Таким образом, теплопроизводительность ТП увеличивается.

Установка степени открытия клапана (рис. 4) осуществляется по шкале на его оголовке (рис. 5, поз. 2), где указана его пропускная способность в м 3 /час. После завершения настройки шкала от случайного смещения фиксируется винтом 2а.

Рисунок 4

Байпасный клапан (рис. 3 и 5, поз.7)

Совместно с перепускным патрубком (поз. 12) обеспечивает безаварийную работу циркуляционного насоса в режиме подпора, когда циркуляция через петли ТП прекращается полностью либо становится недостаточной. Подобный режим может быть вызван перекрытием контуров на гребенке посредством ручных вентилей либо же работой их клапанов с простым термостатическими или автоматическим управлением. В результате сопротивление течению жидкости, как и нагрузка на оборудование, увеличиваются. При определенном перепаде давления, величина которого настраивается по шкале перепускного клапана (градуировка в бар), он приоткрывается. Теплоноситель либо часть его потока начинает перетекать по байпасному патрубку, замыкая через насос малый цикл циркуляции. Таким образом, исключается аварийная перегрузка и обеспечивается сохранность оборудования.

Вспомогательные элементы

Обеспечивать, поддерживать и контролировать работу НСУ также помогают различные вспомогательные и сервисные устройства:

  • термометры – поз. 5;
  • воздухоотводчики поплавкого типа (автоматические) – поз. 9;
  • дренажные клапаны – поз. 10;
  • обратный шаровый клапан – поз. 11.

Рисунок 5

Как все работает?

Подача теплоносителя в заданном диапазоне температур на коллектор теплого пола обеспечивается настройками узла подмеса. Главный цикл оборота жидкости внутри системы ТП складывается из циклов циркуляции в каждой из веток. При этом НСУ подмешивает горячий теплоноситель из первичного контура отопления в объемах необходимых для восполнения суммарных теплопотерь на отопление всех помещений. То есть, чем интенсивней происходит охлаждение теплоносителя в ветках теплого пола, тем большее его количество добавляется во внутренний оборот всего вторичного контура. Объем обновляемой горячей жидкости изменяется автоматически – от максимального, разово установленного настройками балансирного клапана 8 (рис. 3 и 5), до полного перекрытия. В диапазоне от максимума до минимума потока регулировка осуществляется термостатическим клапаном 1, который получает управляющие импульсы от своего выносного датчика (рис. 5, поз. 1а), контролирующего температуру потока Т11 на подающий коллектор.

Читайте также:  Как закрыть батарею отопления от детей

Важно! Непосредственно на работу системы теплого оказывают влияние регулирующие функции термостатического клапана 1. В свою очередь, балансировочный клапан 8 служит лишь для согласования суммарных потерь давления во вторичных контурах ТП с потерями давления в отопительных приборах первичного контура. При этом аналогичной настройке по потерям давления должны подвергаться все потребители в первичной системе, чтобы распределение тепловой энергии происходило в соответствие с их запросами, а не по пути наименьшего гидравлического сопротивления. Важность и степень подобной балансировки наглядно показаны на рисунке 6.

Рисунок 6

Одновременно с всасыванием обновляемого горячего теплоносителя Т1 через клапан-термостат 1 (рис. 3 и 5), происходит также втягивание насосом 3 остывшего потока Т21 через балансировочный клапан 2 (вторичного контура). Проходя через насос потоки теплоносителя смешиваются, в результате, на подачу Т11 в коллектор теплого пола уже поступает жидкость заданной настройками НСУ температуры.

Пример циклической работы оборудования НСУ

Совместная работа насоса, балансировочного клапана вторичного контура и термостата происходит следующим образом. Например, в системе ТП предусмотрен термический градиент между подачей и обраткой ТП Δt=10 0 С, а расчетная температура в подающем коллекторе 50 0 С. Допустим, система работает в установившемся режиме, когда результирующий поток теплоносителя от подмеса из первичного контура Т1 и обратного коллектора теплого пола Т21 имеет температуру равную расчетной. При правильно установленных настройках балансира 2 и определенной степени приоткрытия термостата 1, это возможно, только в случае, если из обратки Т21 поступает вода с температурой 40 0 С.

Если же начинает поступать теплоноситель, остывший до 39 0 С или ниже, то соответственно происходит охлаждение и результирующего потока после насоса. Этот дисбаланс улавливается выносным датчиком 1 а, который дает команду на еще большее приоткрытие клапана-термостата 1. В результате увеличивается приток горячей воды из первичного контура отопления Т1 и температура в подающем коллекторе Т11 возвращается к своим расчетным 50 0 С.

Постепенно из обратки Т21 начинает поступать перегретая выше 40 0 С, что влечет за собой обратные процессы – клапан термостата 1 прикрывается и объем подмеса из Т1 снижается. Таким образом, термические циклы в системе ТП постоянно изменяются в режиме поддержания градиент Δt=10 0 С, с подачей t=50 0 С.

Рисунок 7

Какой смеситель выбрать?

Сборка водяного отопления теплого пола может целиком осуществляться своими руками. Это касается не только монтажа отопительных контуров или подключения к коллекторному распределителю, но и комплектации НСУ. Понимая принципы работы его элементов, а также используя типовые рабочие схемы, вполне возможно собрать действующую эффективную смесительную установку. Если же идти по пути наименьшего сопротивления и затратить немного больше средств, то можно обратиться к готовым предложениям от известных производителей отопительного оборудования. Сборка, установка и настройка таких НСУ отличается простотой. И если все делать в точном соответствии с прилагаемыми к ним заводскими инструкциями, то результат гарантировано окажется положительным.

Выше уже был рассмотрен насосно смесительный узел Valtec. Однако также хорошо у потребителей зарекомендовали себя и некоторые другие готовые комплектации НСУ. Например, оборудование для подготовки теплоносителя для системы теплого пола от немецкой компании Kermi (рис.8).

Рисунок 8

Комплект Kermi Стандарт ESM оборудован трехходовым клапаном (Oventrop), циркуляционным насосом (модель Wilo Yonos PARA RS) и, управляющим его работой, предохранительным термостататом. Клапанный модуль Oventrop включает:

  • распределительный трехходовой вентиль;
  • терморегулятор, состоящий из приводной головки и выносного накладного датчика;
  • соединительного циркуляционного патрубка:
  • накидных гаек (американок), к которым подключаются подающий и обратный трубопроводы первичного контура отопления, а также устройства со стороны вторичного контура.

В Kermi Стандарт ESM заложена возможность настройки поддержания температуры теплоносителя в диапазоне 20-50 0 С при давлении в системе ТП до 6 бар. Регулировка осуществляется автоматически в соответствие с установками шкалы на головке-рукоятке трехходового клапана.

Рисунок 9

Еще одна сборка НСУ Solomix от компании Uni-Fitt из более бюджетной серии, но так же неплохо зарекомендовавшая себя на российском рынке. Это готовый смесительный узел на базе трехходового термостата, с встроенным термометром, теплонасосом, байпасным и обратным клапаном и автоматическим воздухоотводчиком.

В НСУ Solomix предусмотрено ручное изменение температуры посредством аналоговой подстройки термостата в диапазоне 20-65 0 С. Комплект рассчитан на работу в системах теплых полов с максимальным давлением до 10 бар. А его форм-фактор, обеспечивающий нижнее подключение трубопроводов первичного контура, заметно облегчает проведение монтажных работ.

Оцените статью