- Классификация систем отопления
- Системы местного отопления зданий
- Описание популярных разновидностей систем местного отопления
- Электрическое отопление
- Газовое отопление
- Печное отопление
- Организация автономного местного отопления с привлечением солнечной энергии
- Общие сведения об отоплении
- Характеристика систем отопления
- Основные конструктивные элементы системы отопления (рисунок 1):
- Требования к системе отопления
- Классификация систем отопления
- Теплоносители в системах отопления
- Основные виды систем отопления
Классификация систем отопления
Характеристика систем отопления
Общие положения
Система отопления – это совокупность взаимосвязанных конструктивных элементов, предназначенных для получения, переноса и передачи теплоты в обогреваемые помещения здания.
Основные конструктивные элементы системы отопления: теплоисточник (теплогенератор при местном или теплообменник при централизованном теплоснабжении), предназначенный для получения теплоты; теплопроводы (элементы для переноса теплоты от теплоисточника к отопительным приборам); отопительные приборы (элементы для передачи теплоты в помещение).
Перенос по теплопроводам может осуществляться с помощью жидкой или газообразной среды. Жидкая (вода или специальная незамерзающая жидкость – антифриз) или газообразная (пар, воздух) среда, перемещающаяся в системе отопления, называется теплоносителем.
Расчетная тепловая система отопления выявляется в результате сопоставления теплового баланса в обогреваемых помещениях при расчетной температуре наружного воздуха – средней температуре наиболее холодной пятидневки tн.р с обеспеченностью kоб = 0,92 (рис. 1.1). Расчетная тепловая мощность в течение отопительного сезона, продолжительностью D zо.с, должна использоваться частично при текущей температуре наружного воздуха tн.i и только при tн.р – полностью.
Требования, предъявляемые к системам отопления:
— санитарно-гигиенические: поддержание заданной температуры воздуха и внутренних поверхностей ограждений помещений во времени при допустимой подвижности воздуха; ограничение температуры поверхности отопительных приборов;
— экономические: минимальные капитальные вложения, экономный расход тепловой энергии при эксплуатации;
— архитектурно-строительные: компактность; увязка со строительными конструкциями;
— производственно-монтажные: минимальное количество унифицирован-ных узлов и деталей; механизация их изготовления; сокращение ручного труда при монтаже;
— эксплуатационные: эффективность действия в течение всего периода работы; долговечность, ремонтнопригодность, безотказность; безопасность и бесшумность действия.
Наиболее важны санитарно-гигиенические и эксплуатационные требования, от которых зависит поддержание заданной температуры в помещениях в течение отопительного сезона.
|
Рис. 1.1. Изменение среднесуточной температуры наружного воздуха в течение года в Москве:
tп – температура помещения; tн1 – минимальная среднесуточная температура наружного воздуха
Классификация систем отопления
Системы отопления подразделяются на местные и центральные.
В местных системах для отопления, как правило, одного помещения все три элемента конструктивно объединяются в одной установке, непосредственно в которой происходит получение, перенос и передача теплоты в помещение. Примером местной системы отопления являются отопительные печи, конструкции и расчет которых будут рассмотрены далее, а также системы отопления с использованием электрической энергии.
Центральными называются системы, предназначенные для отопления группы помещений из единого теплового центра. Котлы или теплообменники могут размещаться непосредственно в обогреваемом здании (в котельной или местном тепловом пункте) либо вне здания – в центральном тепловом пункте (ЦТП), на тепловой станции (отдельно стоящая котельная) или ТЭЦ.
Теплопроводы центральных систем подразделяются на магистрали (подающие, по которым подается теплоноситель, и обратные, по которым отводится охладившийся теплоноситель), стояки (вертикальные трубы) и ветви (горизонтальные трубы), связывающие магистрали с подводками к отопительным приборам.
Центральная система отопления называется районной, когда группа зданий отапливается из отдельно стоящей центральной тепловой станции. Теплоноситель (как правило, вода) нагревается на тепловой станции, перемещается по наружным (t1) и внутренним (внутри здания tг
Дата добавления: 2016-01-07 ; просмотров: 4716 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Системы местного отопления зданий
Определение местного отопления согласно ГОСТ предполагает, что таковыми принято считать те системы, где все составляющие инженерную конструкцию элементы объединены и являются целостным устройством. Его достоинством является возможность устанавливать необходимую температуру в помещении вне зависимости от остальных, автономно. Однако и обслуживание каждой установки требуется производить индивидуально.
Оглавление:
Описание популярных разновидностей систем местного отопления
Местное отопление необходимо в тех случаях, когда централизованное недоступно (для частных домов, дач) или недостаточно. В этом случае распространено применение следующих его разновидностей:
- печное;
- газовое;
- альтернативное: солнечное, геотермальное и так далее;
- электрическое.
Электрическое отопление
Электричество является дорогостоящим ресурсом, поэтому системы местного отопления на его основе реализуются только при отсутствии других вариантов или как вспомогательные. Существует немало возможностей организовать обогрев помещения этим способом.
- Конвекторы и радиаторы служат наиболее востребованными вариантами электрического местного отопления. Масляные обогреватели могут быть очень мощными и быстро нагревать помещение, однако их функционирование требует большого расхода электроэнергии, а разогретый корпус нередко становится причиной бытовых травм. Конвекторы имеют другой принцип работы и при отсутствии иных вариантов могут использоваться как основная система отопления.
- Система теплого пола может применяться для дополнительного обогрева. Она монтируется под напольное покрытие, управление производится с помощью терморегулятора, вынесенного на стену.
- Варианты оборудования, работающие как источники инфракрасного излучения наиболее экономичны. Некоторые из них имеют КПД свыше 90%. В то же время стоимость таких приборов достаточно высока, а особенности функционирования комфортны не каждому: они осуществляют нагрев предметов в помещении, а не его атмосферу.
- Электрическое водяное отопление предполагает использование котлов с ТЭНами, электродами или индукционных и воды как теплоносителя. Этот вариант – один из наиболее эффективных при организации системы обогрева здания с применением электроэнергии. Индукционные котлы дороги, однако отличаются повышенными параметрами безопасности и долговечны. Но установка отдельного электрического водяного отопления в части или комнате здания экономически нецелесообразна.
Газовое отопление
Природный газ является одним из самых недорогих источников тепла при наличии доступа к нему (магистрали). Конструкция на его основе чаще всего собирается из газового котла, тип которого можно выбрать по своему вкусу и потребностям, и водяной системы отопления.
При эксплуатации местного газового отопления следует учитывать некоторые нюансы.
- Выключение газового отопления в холодное время года недопустимо, поскольку при замерзании вода может разорвать стенки труб. В то же время оставлять работающий котел без присмотра нельзя, поэтому такой вариант не подходит для загородных домов и дач, где хозяева не проживают постоянно.
- К воде, как теплоносителю, предъявляются строгие требования по составу и содержанию солей и примесей.
- Элементы системы теплоснабжения нуждаются в постоянном техническом обслуживании, поскольку склонны к коррозии и поломкам.
- Водяное отопление не обеспечивает быстрого нагрева атмосферы помещения сразу после включения. Радиаторы необходимо также регулярно освобождать от пыли и грязи, иначе их эффективность будет снижаться.
Печное отопление
Если газовая магистраль недоступна, то наиболее востребованным видом местного отопления домов в сельской местности и даже квартир остается печное. Это рациональный и относительно недорогой способ обогрева с использованием различных типов топлива: дров или угля.
Печь является особенным элементом интерьера и относительно недорога в возведении и обслуживании. Она способна создать неповторимую атмосферу в доме, наполняя его теплом и уютом. Однако существуют и минусы в использовании такого обогревательного прибора.
- Русская печь требует выделения большой площади для своего возведения.
- Тепло от печей распространяется неравномерно, что может приводить к отсыреванию углов и подоконников, дискомфорту жильцов.
- Коэффициент полезного действия печного отопления крайне низок по сравнению с иными его видами и составляет всего 25%.
- Процесс топки ежедневно отнимает время, при этом требует строгого и постоянного контроля. Прогрев холодного помещения также происходит не сразу.
Совмещение печи с водяным контуром способно компенсировать ряд негативных моментов в ее эксплуатации, но нуждается в учете характерных для него особенностей (недопущение замерзания воды в трубах и регулярное техническое обслуживание для предотвращения коррозии и поломок).
Организация автономного местного отопления с привлечением солнечной энергии
Из альтернативных вариантов организации местного отопления зданий использование солнечной энергии является наиболее доступным. Она привлекает к себе все больше внимания владельцев загородного жилья, частных домов, поскольку предполагает отсутствие дальнейших затрат на оплату ресурсов.
- Грамотно выбранные гелиопанели способны служить более 25 лет, а средний срок их окупаемости при постоянной эксплуатации составляет около 3 лет. Существует два основных варианта оборудования для подобной системы обогрева: солнечные батареи и воздушные коллекторы.
- В солнечных батареях свет солнца преобразуется в электрический ток напрямую. Такой вариант наиболее востребован для обеспечения дома электроэнергией, которая затем уже может расходоваться по усмотрению хозяев, в том числе, для работы электрической системы местного отопления.
Местное воздушное отопление на базе солнечного коллектора не требует использования дополнительных приборов: энергия солнца напрямую преобразуется в нем в тепловую.
Накопление электроэнергии для использования в пасмурные дни, когда эффективность выработки тепла оборудованием снижается, производится с помощью специальных аккумуляторов. Приборы не требуют постоянного контроля своей работы, могут использоваться в отсутствие хозяев и не нуждаются в оформлении разрешительной документации для монтажа и ввода в эксплуатацию.
Общие сведения об отоплении
В зависимости от преобладающего способа теплопередачи отопление помещений может быть конвективным или лучистым.
Характеристика систем отопления
К конвективному относят отопление, при котором температура внутреннего воздуха поддерживается на более высоком уровне, чем радиационная температура помещения, понимая под радиационной усредненную температуру поверхностей, обращенных в помещение, вычисленную относительно человека, находящегося в середине этого помещения. Это широко распространенный способ отопления.
Лучистым называют отопление, при котором радиационная температура помещения превышает температуру воздуха. Лучистое отопление при несколько пониженной температуре воздуха (по сравнению с конвективным отоплением) более благоприятно для самочувствия человека в помещении (например, до 18-20 °с вместо 20-22 °с в помещениях гражданских зданий).
Конвективное или лучистое отопление помещений осуществляется специальной технической установкой, называемой системой отопления. Система отопления — это совокупность конструктивных элементов со связями между ними, предназначенных для получения, переноса и передачи теплоты в обогреваемые помещения здания.
Основные конструктивные элементы системы отопления (рисунок 1):
- теплоисточник (теплогенератор при местном или теплообменник при централизованном теплоснабжении) — элемент для получения теплоты;
- теплопроводы — элемент для переноса теплоты от теплоисточника к отопительным приборам;
- отопительные приборы — элемент для передачи теплоты в помещение.
Рисунок 1. Схема системы отопления: 1 — теплогенератор или теплообменник и основные типы теплообменных аппаратов ; 2 — подача топлива или подвод первичного теплоносителя; 3 — подающий теплопровод; 4 — отопительный прибор; 5 — обратный теплопровод.
Перенос по теплопроводам может осуществляться с помощью жидкой или газообразной рабочей среды. Жидкая (вода или специальная незамерзающая жидкость — антифриз) или газообразная (пар, воздух, продукты сгорания топлива) среда, перемещающаяся в системе отопления, называется теплоносителем.
Система отопления для выполнения возложенной на нее задачи должна обладать определенной тепловой мощностью. Расчетная тепловая мощность системы выявляется в результате составления теплового баланса в обогреваемых помещениях при температуре наружного воздуха.
Текущие (сокращенные) теплозатраты на отопление имеют место в течение почти всего времени отопительного сезона, поэтому теплоперенос к отопительным приборам должен изменяться в широких пределах. Этого можно достичь путем изменения (регулирования) температуры и (или) количества перемещающегося в системе отопления теплоносителя.
Требования к системе отопления
Санитарно-гигиенические: поддержание заданной температуры воздуха и внутренних поверхностей ограждений помещения во времени, в плане и по высоте при допустимой подвижности воздуха, ограничение температуры на поверхности отопительных приборов;
Экономические: оптимальные капитальные вложения, экономный расход тепловой энергии при эксплуатации;
Архитектурно-строительные: соответствие интерьеру помещения, компактность, увязка со строительными конструкциями, согласование со сроком строительства здания;
Производственно-монтажные: минимальное число унифицированных узлов и деталей, механизация их изготовления, сокращение трудовых затрат и ручного труда при монтаже;
Эксплуатационные: эффективность действия в течение всего периода работы, надежность (безотказность, долговечность, ремонтопригодность) и техническое совершенство, безопасность и бесшумность действия.
Деление требований на пять групп условно, так как в них входят требования, относящиеся как к периоду проектирования и строительства, так и эксплуатации здания.
Наиболее важны санитарно-гигиенические и эксплуатационные требования, которые обусловливаются необходимостью поддерживать заданную температуру в помещениях в течение отопительного сезона и всего срока службы системы отопления здания.
Классификация систем отопления
Системы отопления по расположению основных элементов подразделяются на местные и центральные.
В местных системах для отопления, как правило, одного помещения все три основных элемента конструктивно объединяются в одной установке, непосредственно в которой происходит получение, перенос и передача теплоты в помещение. Теплопереносящая рабочая среда нагревается горячей водой, паром, электричеством или при сжигании какого-либо топлива.
Еще одним примером местной системы отопления могут служить отопительные печи, конструкции и расчет которых будут рассмотрены.
В местной системе отопления с использованием электрической энергии теплопередача может осуществляться с помощью жидкого или газообразного теплоносителя либо без него непосредственно от разогретого твердого элемента.
Центральными называются системы, предназначенные для отопления группы помещений из единого теплового центра. В тепловом центре находятся теплогенераторы (котлы) или теплообменники. Они могут размещаться непосредственно в обогреваемом здании (в котельной или местном тепловом пункте) либо вне здания — в центральном тепловом пункте (ЦТП), на тепловой станции (отдельно стоящей котельной) или ТЭЦ.
Теплопроводы центральных систем подразделяют на магистрали (подающие, по которым подается теплоноситель, и обратные, по которым отводится охладившийся теплоноситель), стояки (вертикальные трубы или каналы) и ветви (горизонтальные трубы или каналы), связывающие магистрали с подводками к отопительным приборам (с ответвлениями к помещениям при теплоносителе воздухе).
Примером центральной системы является система отопления здания с собственным тепловым пунктом или котельной, принципиальная схема которой не будет отличаться от схемы на рисунке 1, если отопительные приборы размещены во всех обогреваемых помещениях этого здания.
Центральная система отопления называется районной, когда группа зданий отапливается из отдельно стоящей центральной тепловой станции. Теплогенераторы, теплообменники и отопительные приборы системы здесь также разделены: теплоноситель (например, вода) нагревается на тепловой станции, перемещается по наружным и внутренним (внутри здания) теплопроводам в отдельные помещения каждого здания к отопительным приборам и, охладившись, возвращается на тепловую станцию (рисунок 2).
Рисунок 2. Схема районной системы отопления: 1 — приготовление первичного теплоносителя; 2 — местный тепловой пункт; 3 и 5 — внутренние подающие и обратные теплопроводы; 4 — отопительные приборы; б и 7 — наружный подающий и обратный теплопроводы; 8 — циркуляционный насос наружного теплопровода
В современных системах теплоснабжения зданий от ТЭЦ или крупных тепловых станций используются два теплоносителя. Первичный высокотемпературный теплоноситель перемещается от ТЭЦ или тепловой станции по городским распределительным теплопроводамк цтп или непосредственно к местным тепловым пунктам зданий и обратно. Вторичный теплоноситель после нагревания в теплообменниках (или смешения с первичным) поступает по наружным (внутриквартальным) и внутренним теплопроводам к отопительным приборам обогреваемых помещений зданий и затем возвращается в цтп или местный тепловой пункт.
Первичным теплоносителем обычно служит вода, реже пар или газообразные продукты сгорания топлива. Если, например, первичная высокотемпературная вода нагревает вторичную воду, то такая центральная система отопления именуется водоводяной. Аналогично могут существовать водовоздушная, пароводяная, паровоздушная, газовоздушная и другие системы центрального отопления.
По виду основного (вторичного) теплоносителя местные и центральные системы отопления принято называть системами водяного, парового, воздушного или газового отопления.
Теплоносители в системах отопления
Движущаяся среда в системе отопления — теплоноситель — аккумулирует теплоту и затем передает ее в обогреваемые помещения. Теплоносителем для отопления может быть подвижная, жидкая или газообразная среда, соответствующая требованиям, предъявляемым к системе отопления.
Для отопления зданий и сооружений в настоящее время преимущественно используют воду или атмосферный воздух, реже водяной пар или нагретые газы.
Сопоставим характерные свойства указанных видов теплоносителя при использовании их в системах отопления.
Газы, образующиеся при сжигании твердого, жидкого или газообразного органического топлива, имеют сравнительно высокую температуру и применимы в тех случаях, когда в соответствии с санитарно-гигиеническими требованиями удается ограничить температуру теплоотдающей поверхности отопительных приборов. При транспортировании горячих газов имеют место значительные попутные теплопотери, обычно бесполезные для обогревания помещения.
Высокотемпературные продукты сгорания топлива могут выпускаться непосредственно в помещения или сооружения, но при этом ухудшается состояние их воздушной среды, что в большинстве случаев недопустимо. Удаление же продуктов сгорания наружу по каналам усложняет конструкцию и понижает кпд отопительной установки. При этом возникает необходимость решения экологических проблем, связанных с возможным загрязнением атмосферного воздуха продуктами сгорания вблизи отапливаемых объектов.
Область использования горячих газов ограничена отопительными печами, газовыми калориферами и другими подобными местными отопительными установками.
В отличие от горячих газов вода, воздух и пар используются многократно в режиме циркуляции и без загрязнения окружающей здание среды.
Вода представляет собой жидкую, практически несжимаемую среду со значительной плотностью и теплоемкостью. Вода изменяет плотность, объем и вязкость в зависимости от температуры, а температуру кипения — в зависимости от давления, способна сорбировать или выделять растворимые в ней газы при изменении температуры и давления.
Пар является легкоподвижной средой со сравнительно малой плотностью. Температура и плотность пара зависят от давления. Пар значительно изменяет объем и энтальпию при фазовом превращении.
Воздух также является легкоподвижной средой со сравнительно малыми вязкостью, плотностью и теплоемкостью, изменяющей плотность и объем в зависимости от температуры.
Сравним эти три теплоносителя по показателям, важным для выполнения требований, предъявляемых к системе отопления.
Одним из санитарно-гигиенических требований является поддержание в помещениях равномерной температуры. По этому показателю преимущество перед другими теплоносителями имеет воздух. При использовании нагретого воздуха-теплоносителя с низкой теплоинерционностью — можно постоянно поддерживать равномерной температуру каждого отдельного помещения, быстро изменяя температуру подаваемого воздуха, т.е. Проводя так называемое эксплуатационное регулирование. При этом одновременно с отоплением можно обеспечить вентиляцию помещений.
Применение в системах отопления горячей воды также позволяет поддерживать равномерную температуру помещений, что достигается регулированием температуры, подаваемой в отопительные приборы воды. При таком регулировании температура помещений все же может несколько отклоняться от заданной (на 1 -2 °С) вследствие тепловой инерции масс воды, труб и приборов.
При использовании пара температура помещений неравномерна, что противоречит гигиеническим требованиям. Неравномерность температуры возникает из-за несоответствия теплопередачи приборов при неизменной температуре пара (при постоянном давлении) изменяющимся теплопотерям помещения в течение отопительного сезона. В связи с этим приходится уменьшать количество подаваемого в приборы пара и даже периодически отключать их во избежание перегревания помещений при уменьшении их теплопотерь.
Другое санитарно-гигиеническое требование — ограничение температуры наружной поверхности отопительных приборов — вызвано явлением разложения и сухой возгонки органической пыли на нагретой поверхности, сопровождающимся выделением вредных веществ, в частности окиси углерода. Разложение пыли начинается при температуре 65-70 °С и интенсивно протекает на поверхности, имеющей температуру более 80 °С.
При использовании пара в качестве теплоносителя температура поверхности большинства отопительных приборов и труб постоянна и близка или выше 100 °С, т.е. Превышает гигиенический предел. При отоплении горячей водой средняя температура нагретых поверхностей, как правило, ниже, чем при применении пара. Кроме того, температуру воды в системе отопления понижают для снижения теплопередачи приборов при уменьшении теплопотерь помещений. Поэтому при теплоносителе воде средняя температура поверхности приборов в течение отопительного сезона практически не превышает гигиенического предела.
Важным экономическим показателем при применении различных теплоносителей является расход металла на теплопроводы и отопительные приборы.
При использовании воды обеспечивается достаточно равномерная температура помещений, можно ограничить температуру поверхности отопительных приборов, сокращается по сравнению с другими теплоносителями площадь поперечного сечения труб, достигается бесшумность движения в теплопроводах. Недостатками применения воды являются значительный расход металла и большое гидростатическое давление в системах. Тепловая инерция воды замедляет регулирование теплопередачи приборов.
При использовании пара сравнительно сокращается расход металла за счет уменьшения площади приборов и поперечного сечения конденсатопроводов, достигается быстрое прогревание приборов и отапливаемых помещений. Гидростатическое давление пара в вертикальных трубах по сравнению с водой минимально. Однако пар как теплоноситель не отвечает санитарно-гигиеническим требованиям, его температура высока и постоянна при данном давлении, что затрудняет регулирование теплопередачи приборов, движение его в трубах сопровождается шумом.
При использовании воздуха можно обеспечить быстрое изменение или равномерность температуры помещений, избежать установки отопительных приборов, совмещать отопление с вентиляцией помещений, достигать бесшумности его движения в воздуховодах и каналах. Недостатками являются его малая теплоаккумулирующая способность, значительные площадь поперечного сечения и расход металла на воздуховоды, относительно большое понижение температуры по их длине.
Основные виды систем отопления
В настоящее время в россии применяют центральные системы в основном водяного и, значительно реже, парового отопления, местные и центральные системы воздушного отопления, а также печное отопление в сельской местности. Приведем общую характеристику этих систем с детальной классификацией на основании рассмотренных свойств теплоносителей.
При водяном отоплении циркулирующая нагретая вода охлаждается в отопительных приборах и возвращается к теплоисточнику для последующего нагревания.
Системы водяного отопления по способу создания циркуляции воды разделяются на системы с естественной циркуляцией (гравитационные) и с механическим побуждением циркуляции воды при помощи насоса (насосные). В гравитационной системе (рисунок 3, а) используется свойство воды изменять свою плотность при изменении температуры. В замкнутой вертикальной системе с неравномерным распределением плотности под действием гравитационного поля земли возникает естественное движение воды.
В насосной системе (рисунок 3, б) используется насос с электрическим приводом для создания разности давления, вызывающей циркуляцию, и в системе создается вынужденное движение воды.
Рисунок 3. Схемы системы водяного отопления: а — с естественной циркуляцией (гравитационная); б — с механическим побуждением циркуляции воды (насосная); 1 — теплообменник; 2 — подающий теплопровод (т1); 3 — расширительный бак; 4 — отопительный прибор; 5 -обратный теплопровод (т2); 6 — циркуляционный насос; 7 — устройство для выпуска воздуха из системы
По температуре теплоносителя различаются системы низкотемпературные с предельной температурой горячей воды ниже 70 °С, среднетемпературные от 70 до 100 °С и высокотемпературные выше 100 °С. Максимальное значение температуры воды ограничено в настоящее время 150°С.
По положению труб, объединяющих отопительные приборы по вертикали или горизонтали, системы делятся на вертикальные и горизонтальные.
В зависимости от схемы соединения труб с отопительными приборами системы бывают однотрубные и двухтрубные.
В каждом стояке или ветви однотрубной системы отопительные приборы соединяются одной трубой, и вода протекает последовательно через все приборы. Если каждый прибор разделен условно на две части («д» и «б»), в которых вода движется в противоположных направлениях и теплоноситель последовательно проходит сначала через все части «а», а затем через все части «б», то такая однотрубная система носит название бифилярной (двухпоточной).
В двухтрубной системе каждый отопительный прибор присоединяется отдельно к двум трубам — подающей и обратной, и вода протекает через каждый прибор независимо от других приборов.
При воздушном отоплении циркулирующий нагретый воздух охлаждается, передавая теплоту при смешении с воздухом обогреваемых помещений и иногда через их внутренние ограждения. Охлажденный воздух возвращается к нагревателю.
Системы воздушного отопления по способу создания циркуляции воздуха разделяются на системы с естественной циркуляцией (гравитационные) и с механическим побуждением движения воздуха с помощью вентилятора.
В гравитационной системе используется различие в плотности нагретого и окружающего отопительную установку воздуха. Как и в водяной вертикальной гравитационной системе, при различной плотности воздуха в вертикальных частях возникает естественное движение воздуха в системе. При применении вентилятора в системе создается вынужденное движение воздуха.
Воздух, используемый в системах отопления, нагревается до температуры, обычно не превышающей 60 °с, в специальных теплообменниках -калориферах. Калориферы могут обогреваться водой, паром, электричеством или горячими газами. Система воздушного отопления при этом соответственно называется водовоздушной, паровоздушной, электровоздушной или газовоздушной.
Воздушное отопление может быть местным (рисунок 4, а) или центральным (рисунок 4, б)
Рисунок 4. Схемы системы воздушного отопления: а — местная система; б — центральная система; 1 — отопительный агрегат; 2 — обогреваемое помещение (помещения на рис. Б); 3 -рабочая (обслуживаемая) зона помещения; 4 — обратный воздуховод; 5 — вентилятор; б -теплообменник (калорифер); 7 — подающий воздуховод.
В местной системе воздух нагревается в отопительной установке с теплообменником (калорифером или другим отопительным прибором), находящимся в обогреваемом помещении.
В центральной системе теплообменник (калорифер) размещается в отдельном помещении (камере). Холодный воздух подводится к калориферу по обратному (рециркуляционному) воздуховоду. Горячий воздух от калорифера перемещается вентилятором в обогреваемые помещения по подающим воздуховодам.