- Тепловой насос, работающий от водяной скважины – возражения, сомнения и плюсы
- Геотермальное отопление своими руками – рекомендации по выбору типа наружного контура и инструкция по изготовлению
- Как работает геотермальное отопление?
- Классификация по конструкционному типу
- Особенности отопительной системы
- Достоинства и недостатки системы
- Геотермальная система отопления своими руками – пошаговая инструкция
- Изготовление теплового насоса
- Строительство наружного контура
- Затраты
- Видео на тему
Тепловой насос, работающий от водяной скважины – возражения, сомнения и плюсы
Постройка частного дома, коттеджа, да и вообще любого малоэтажного жилья заставляет задуматься о его отопительной системе. Актуальный способ – использование для отопления геотермального теплового насоса.
Существует несколько типов тепловых насосов, различающихся по способу производства тепла. К популярным способам относят ТН с применением горизонтального контура с забором воды с поверхности водоема или с водяным контуром с использованием водяной скважины.
Создание отопления с помощью теплового насоса на водяном контуре часто становится очень актуальным и выгодным по сравнению с геотермальным контуром. Почему? Ответ самый простой. Достаточно пробурить водяную скважину на глубину от 10 до 100 метров, где найдется водоносный пласт, и пользоваться скважиной для работы ТН. Вода считается более эффективным теплоносителем, чем просто использование тепла грунта.
Для создания горизонтального контура требуется наличие участка большой площади. Для геотермального контура может понадобиться пробурить достаточно большое количество скважин. Возможностей для их бурения может не оказаться. Элементарно, могут отсутствовать подъездные пути для доставки буровой установки. Для монтажа ТН с получением тепла от грунтовых вод или водоносного пласта требуется пробурить всего две скважины. Одну для забора воды, другую для сброса отработанной воды. Это намного более легкое и менее затратное в экономическом плане действие.
Существует ряд возражений, касающихся бытовых тепловых насосов. Попробуем развенчать их на примере использования тепловых насосов Ovanter.
Скептики утверждают, что грунтовая вода, используемая для тепловых насосов, не относится к возобновляемым источникам энергии.
Грунтовая вода – идеальная подпитка энергией теплового насоса. Температура грунтовой воды круглый год составляет примерно от +4 до +7 о С. Она соответствует большинству регионов в России и никогда не падает ниже этого значения. Помимо водяной скважины источником энергии для земляного теплового насоса с водяным контуром может считаться: поверхностная вода или, если присутствуют, сточные или биологические воды, поступающие от очистных сооружений или сбрасываемые жидкости из промышленных стоков.
Основные виды воды, способной служить источником тепловой энергии для ТН с водяным циклом.
- Подпочвенные воды – температура в разных географических районах от +4 до +10 о С;
- Морская вода – температура на глубине от 25 до 50 метров колеблется в пределах от +5 до +8 о С;
- Грунтовые воды – отличаются наиболее стабильной температурой;
- Ближайший водоем (река, озеро, глубокий пруд). Контур укладывается на дно водоема или притапливается на глубину до 2 метров. К слову, 1 метр трубопровода, используемого для такого контура, соответствует 30 Вт тепловой мощности.
Чем выше температура грунта, тем более повышается тепловой коэффициент (СОР), тем меньше электроэнергии тратится на работу теплового насоса на производство теплоты.
Для тепловых насосов с горизонтальным контуром необходимо учитывать фактор охлаждения грунта.
На самом деле интенсивное использование геотермального тепла грунта влечет остывание почвы вокруг регистра труб системы теплосбора. Например, в северных регионах за короткий летний период грунт не успевает набрать нужную температуру. Поэтому зачастую, на начало следующего зимнего периода грунт выходит с пониженным тепловым потенциалом.
Понижение температуры грунта носит экспоненциальный (возрастающий) характер. Поэтому примерно через 5 лет эксплуатации системы теплоснабжения, тепловое состояние грунта после понижения температуры улучшается и выходит на относительно устойчивый уровень. Однако он будет все равно меньше естественного на 1 – 2 о С. Выход из положения находится. При проектировании системы теплоснабжения важно учитывать возможное охлаждение грунта в процессе ее эксплуатации.
Существует еще такой выход. Тепловые насосы, потребляющие тепловую энергию из грунтовых вод и водоносных пластов или из открытых водоемов, создают более стабильную систему теплоснабжения с устойчивой температурой. Пример, использование российских тепловых насосов Ovanter. Насосы этой фирмы работают в открытых системах грунтовых вод, где происходит постоянный водообмен. Пополнение грунтовых вод происходит за счет следующих источников, представляющих собой:
- Воду, просачивающуюся с поверхности почвы;
- Воду, которая поступает из более глубоких грунтовых слоев.
Теплосодержание грунтовых вод практически никогда не иссякает и подпитывается и «сверху», и «снизу».
Таким образом, эффективность зависит от толщины и глубины нахождения водоносного слоя. Температура водоносного слоя остается постоянной и не изменяется в течение всего периода. Практика строительства подобных систем свидетельствует, что максимальный температурный градиент в общей толще грунта в течение всего времени эксплуатации не превышает, как правило, 8-10 град/м. Значит, перепады температур будут очень малы. Значение температурного градиента наблюдается по вертикали и именно в том направлении, в котором более всего наблюдается интенсивность потока жидкости. Она компенсирует миграцию влаги под воздействием термоградиентных сил. Таким образом, система сбора низкопотенциального тепла грунта под влиянием потоков влаги в грунтовых порах в общем массиве не нуждается в особой точности математических расчетов.
Получение воды из скважины нуждается в бурении и некоторого, зачастую большого, количества трубопровода. Если вода низкого качества, это влечет появление солевых отложений и коррозии на стенках труб.
Современные технологии позволили найти решение по защите трубопровода от коррозии. Эффективным способом борьбы с коррозией считается применение пластиковых труб. Это самый действенный вариант в создании отопительной системы с мощными тепловыми насосами, способными работать со скважинами глубиной до 70 и более метров. Для трубопровода используются дешевые пластиковые трубы.
Проблема сброса воды после того, как вода прошла через теплообменник.
У кого-то может возникнуть вопрос: куда девать сброшенную воду? Сбросная вода, например, промышленных объектов может также использоваться в качестве источника энергии для тепловых насосов.
Сбросная вода, используемая для ТН частного дома, согласно технологическим условиям обязательно должна уходить в соседнюю скважину, расположенную на расчетном расстоянии от основной скважины и обратно в пласт.
Рис. №1. Схема использования теплового насоса открытого типа с отбором теплоты грунтовых вод. На схеме хорошо видно скважину для сброса воды.
Законодательные акты в виде Федеральных норм и правил обусловливают условия сброса воды и подводят под действия частных лиц юридическое обоснование. Кроме того, сброс воды при использовании в системе ТН не считается экологически вредным. Выброс вредных примесей в окружающую среду отсутствует.
Зависимость работы ТН от дебета скважины и аккумуляция возобновляемых запасов воды в дополнительном баке.
Со временем количество воды в скважине может уменьшаться, а качество якобы ухудшается.
Однако даже со временем, доставая воду со скважины глубиной до 70 и более метров объемом 3 – 5 м 3 /час, количество воды не уменьшается. Свойства воды, благодаря протоке во многом улучшаются
Вода может аккумулироваться в дополнительном резервуаре (баке для хранения запаса воды). В этом случае вода может использоваться без применения теплообменника. Например, использование бака аккумулятора емкостью 300 литров дает возможность копить тепловую энергию и выравнивает скачкообразное использование воды. Кроме того, ряд необходимых и дополнительных элементов в системе повышают ее качество, надежность и безотказность.
Тепловой насос совместно со скважинным насосом представляют собой мощную установку для подъема воды. При подъеме на поверхность вода разделяется. Часть воды используется для отопления. Другая часть воды, проходя через систему механической фильтрации, применяется для бытовых нужд. Если дом входит в категорию малоэтажных строений, можно брать воду для внутреннего потребления даже без использования дополнительной насосной станции.
Завязка в системе геотермального теплового насоса таких элементов как испаритель, компрессор, конденсатор, дроссель и теплообменник служит для приготовления воды для ГВС. Они замкнуты с помощью стального трубопровода с циркулирующим по нему хладагентом.
Солнечный коллектор для подогрева воды в аккумуляторе увеличивает эффективность системы отопления и горячего водоснабжения. Он, как и электронагреватель может служить для покрытия пиковых нагрузок.
В частности, эффективным средством для этого считается использование системы такого теплообменника, как фанкойл.
Кто-то может сказать, что при использовании воды из скважины существует опасность загрязнения теплообменников, а расходники для очистки воды стоят дорого.
Проходя по трубопроводу при скорости протоки от 1,2 до 5 м 3 /ч, вода уже очищается. Превышения марганца и железа, которые могут вызвать закупорку и снизить эффективность процесса теплообмена контролируются. Вода, проходя через фильтр грубой очистки и теплообменник, не нагревается и не взаимодействует с кислородом, поэтому не дает осадка.
Фильтрация способствуют очищению воды. Расходные материалы для фильтра грубой очистки стоят не дорого и находятся в свободной продаже.
Использование ТН только для малоэтажных построек.
Это предубеждение, что тепловые насосы с использованием водяной скважины невозможно применять для производственных и складских помещений или для высоких построек. Якобы, существующая мощность тепловых насосов теряет свою эффективность после того, как вода поднята с глубины 100 м.
Забор тепловой энергии из глубокой скважины – да. Он способен снабдить теплом только малоэтажные строения. Однако, ведь существует возможность брать воду для контура и из открытого водоема. В этом случае КПД теплового насоса повышается в разы.
Вывод: Бытовой тепловой насос с использованием воды из скважины может считаться наиболее актуальным и эффективным устройством для частного малоэтажного домостроения, производственных объектов и достаточно крупных жилых комплексов. При использовании грунтовой воды эффективность коэффициента преобразователя (СОР) может достигать 5, что позволяет производить добавочные 3-4 кВт тепловой энергии. Пример: тепловые насосы Ovanter класса Премиум.
Тепловой насос – это естественный источник тепловой энергии с выгодными экономическими и экологическими качествами, отличающийся и не зависящий от традиционных видов отопления.
Выбор теплового насоса с определенным циклом, в нашем случае это вода, строится на основании расчетов при создании технико-экономического проекта и возможности полноценного использования предоставленных условий окружающей среды.
Геотермальное отопление своими руками – рекомендации по выбору типа наружного контура и инструкция по изготовлению
Значительные первоначальные затраты пока не дают геотермальному отоплению превратиться у нас в «товар широкого потребления».
Но идея получать тепло бесплатно оказалась настолько заманчивой, что многие наши соотечественники стараются осваивать ее всеми силами, минимизируя расходы где только возможно.
Наиболее эффективный способ снизить стоимость системы – изготовить все ее компоненты самостоятельно.
Далее мы посмотрим, как можно организовать геотермальное отопление своими руками, и с какой суммой придется при этом расстаться.
Как работает геотермальное отопление?
Это просто новый способ применения старого доброго теплового насоса, который имеется в каждом холодильнике.
Родным братом системы геотермального отопления можно считать кондиционер, работающий в режиме «зима». Ведь это устройство греет воздух вовсе не с помощью ТЭНов, как думают некоторые.
Кондиционер, так сказать, перекачивает тепло, добываемое им из промозглого осеннего воздуха снаружи помещения. Ту же задачу выполняет тепловой насос в геотермальной установке, только в качестве источника тепла используется грунт или вода с температурой +5 – +7 градусов.
Как же получается, что ледяная на ощупь среда выступает в роли источника тепла? Это становится возможным благодаря замечательной способности газов нагреваться при сжатии и остывать при расширении.
Если порции газа дать нагреться от одной среды, а затем перенести в другую и там сжать, он станет еще более горячим и будет отдавать тепловую энергию этой второй среде, даже если она имеет более высокую температуру, чем первая. Теперь снова вернем газ к первоначальному давлению, одновременно перенеся его в первую среду.
Геотермальное отопления – принцип работы
Его температура упадет ниже первоначальной, ведь часть внутренней энергии была отдана в виде тепла на этапе сжатия. Следовательно, газ снова начнет нагреваться от первой среды.
Повторяя операцию снова и снова, мы будем «перекачивать» тепло из одной среды в другую в противоположном естественному теплообмену направлении. Этот процесс называется «циклом Карно» и именно на нем основан принцип работы теплового насоса в системе геотермального отопления.
Классификация по конструкционному типу
Если в случае с кондиционером газ-хладагент сам проходит через среду-источник, то в системе геотермального отопления он получает тепло от посредника – воды или антифриза.
Последний циркулирует по так называемому наружному контуру, представляющему собой длинную трубу.
Именно эта труба и помещается в среду источник.
По виду наружного контура различают три исполнения систем геотермального отопления:
- С горизонтальным контуром: труба укладывается «змейкой» (в грунте) или в виде спирали (на дне водоема) ниже глубины промерзания, то есть примерно в паре метров от поверхности земли. Такой контур занимает большую площадь, но зато его может соорудить сам владелец.
- С вертикальным контуром: трубы опускаются в глубокие скважины. Более удобный вариант, так как не требует значительного пространства, но для строительства скважины придется нанимать специалистов с особым оборудованием.
- Комбинированный вариант: еще один тип контура, который можно построить самостоятельно, при этом он занимает меньше места, чем горизонтальный. Используется полимерная труба, которая укладывается в грунт в виде цилиндрической пружины. Получается нечто среднее между вертикальным и горизонтальным контурами с уклоном в сторону последнего.
Не всегда есть возможность проложить трубы ниже глубины промерзания почвы. Утеплитель для труб в земле поможет защитить отопительную систему от мороза.
Об альтернативных источниках энергии расскажем в этой теме. Энергия ветра и солнца, а также тепло земли в качестве источников тепла.
Что такое биогаз и как получить такое альтернативное топливо своими руками, читайте здесь: https://microklimat.pro/sistemy-otopleniya/alternativnoe-otoplenie/biogaz-svoimi-rukami.html. Виды сырья, конструкция биогазовой установки и много другой полезной информации, читайте внимательно.
Особенности отопительной системы
В отличие от газового котла, тепловому насосу не требуется нагревать теплоноситель системы отопления до высокой температуры, так как образование конденсата при холодной «обратке» ему не грозит. К тому же работа в низкотемпературном режиме потребует меньших энергозатрат.
Чтобы компенсировать низкую температуру теплоносителя, поверхность радиаторов пришлось бы сильно увеличивать, поэтому вместо них лучше использовать систему «теплый пол». Этот вид отопления является и наиболее рациональным, так как нагреваемый воздух в первую очередь поступает, так сказать, в зону обитания, а не под потолок.
Еще один аргумент в пользу «теплого пола» – минимальные теплопотери. Ведь их величина зависит, в первую очередь, от перепада температур, а он при низкотемпературном режиме является наименьшим. Второй фактор – площадь контакта нагретого воздуха с наружными стенами. Поднимающийся от «теплого пола» воздух наружных стен не касается (при использовании обычных радиаторов он буквально омывает остекление окна и прилегающие участки наружной стены).
Основной недостаток «теплого пола» – энергозависимость – в данном случае неактуален, так как тепловой насос тоже не сможет работать без электричества.
Достоинства и недостатки системы
Внедряя геотермальное отопление, мы выигрываем в следующем:
- Получаем дармовое тепло: 1 кВт затраченной электроэнергии приносит в среднем 3, а иногда и 5 кВт тепла.
- Обходимся без строительства дымохода и утомительных работ по его обслуживанию.
- Не загрязняем атмосферу и экономим невозобновляемые ресурсы.
Теперь о недостатках:
- Система без электропитания неработоспособна.
- Наружный контур имеет очень большие размеры.
Безопасная геотермальная система
Производительность системы по теплу ограничена. Во-первых, наружный контур не может иметь сколь угодно большую длину, так как с увеличением продолжительности значительно возрастает его гидравлическое сопротивление. Во-вторых, при интенсивной выкачке тепла грунт будет перемерзать, что при вертикальном расположении наружного контура (в скважинах) может привести к негативным последствиям для местной экологии.
Геотермальная система отопления своими руками – пошаговая инструкция
Рассмотрим сооружение геотермального отопления дома своими руками с горизонтальным наружным контуром (укладка в грунте). Работы разобьем на два этапа.
Изготовление теплового насоса
На стене следует закрепить компрессор от кондиционера или холодильника.
При наличии слабой проводки используйте два компрессора с меньшей мощностью – это позволит уменьшить пусковой ток (компрессоры будут включаться последовательно).
Конденсатор, в котором будет сжиматься хладагент, изготавливаем из сантехнической медной трубы наружным диаметром около 12 мм и толщиной стенки 1 – 1,2 мм. Она наматывается на цилиндрическую болванку, так чтобы получился змеевик.
Испаритель делается из того же материала.
Самодельный тепловой насос
В качестве теплообменников следует использовать две емкости: для системы отопления – нержавеющую (здесь устанавливается конденсатор), для наружного контура – пластиковую (в ней установим испаритель).
Конденсатор устанавливаем так, чтобы фреон в нем двигался сверху вниз. Благодаря этому при его конденсации не будут образовываться пузырьки. В испарителе газ должен двигаться в противоположном направлении.
Один конец конденсатора присоединяется к выходу компрессора, на другом – устанавливается редукционный клапан. К выходному отверстию этого клапана присоединяется испаритель, второй конец которого следует подключить ко входу компрессора.
Каждую емкость при помощи штуцеров следует врезать в соответствующий контур.
Строительство наружного контура
Контур представляет собой пластиковую трубу, уложенную в траншею ниже глубины промерзания грунта в виде «змейки». Расстояние между соседними участками должно составлять около 70 см.
Длина контура будет зависеть от влажности грунта. При сухом грунте с каждого метра трубы удается снять 10 Вт тепла, во влажных глинистых почвах этот показатель возрастает до 35 Вт. Таким образом, на каждый кВт тепловой мощности понадобится контур площадью от 25 до 50 кв. м.
Затраты
- на изделия и материалы для конденсатора: 163 доллара;
- для испарителя: 206 долларов;
- на б/у компрессор и фреон: около 50 долларов.
При наличии автоматики общая стоимость самодельного теплового насоса составит примерно 500 долларов.
Полипропиленовая труба марки PN10 диаметром 50 мм для наружного контура будет стоить по 193 руб. за погонный метр.
Знаете ли вы, что отопить дом совершенно бесплатно можно, используя тепло земли? Геотермальное отопление: принцип работы, достоинства и недостатки технологии.
Принцип действия теплового насоса для отопления дома разберем в этой статье.