Оптимизация системы отопления здания
Снижение тепловых потерь через ограждающие конструкции
Системы отопления
Системы отопления являются основным потребителем тепловой энергии в организациях бюджетной сферы. Существует два направления снижения потребления тепловой энергии на отопление: оптимизация системы отопления здания и снижение тепловых потерь через ограждающие конструкции зданий.
Снижение тепловых потерь через ограждающие конструкции является важной задачей экономии тепловой энергии, расходуемой на отопление зданий.
Тепловые потери зависят от конструкции ограждения, его толщины и примененных материалов. Основные потери тепла (до 80%) приходятся на наружные стены и остекление зданий. Потери тепла через наружные стены, в зависимости от высоты и конструкции строения, составляют в пределах 20-60% от общего расходуемого тепла. Потери тепла через оконные проемы, как правило, выше, чем через стены.
Снижение тепловых потерь через ограждающие конструкции сводится к мероприятиям по утеплению, а именно:
• улучшение тепловой изоляции стен, полов и чердаков путем установки дополнительного слоя из теплоизоляционного материала;
• замена старых оконных рам на современные стеклопакеты с двойным и тройным остеклением;
• уплотнение оконных и двойных проемов, заделка щелей, замена разбитых стекол.
Основные резервы энергосбережения лежат в области реконструкции ранее построенных объектов, т.к. многие ограждающие конструкции, применяемые ранее в строительстве, не соответствуют современным энергетическим требованиям, что приводит к повышенным тепловым потерям и, соответственно, большому расходу теплоты на отопление здания.
Реализация мероприятий по утеплению и реконструкции зданий с целью приведения ограждающих конструкций к современным требованиям позволяет обеспечить до 45% экономии тепловой энергии на отопление зданий.
Оптимизация работы системы отопления здания сводится преимущественно к автоматизации теплопотребления, что позволяет достичь ощутимого эффекта экономии тепла (до 20-30 %). Вместе с этим автоматизация позволяет существенно улучшить качество теплоснабжения, то есть подать потребителю тепловую энергию в соответствии с его потребностью, обеспечив необходимый комфорт.
Наиболее полно и эффективно задачи автоматизации могут быть реализованы с помощью автоматизированных индивидуальных тепловых пунктов зданий (ИТП) с возможностью регулирования теплопотребления по желанию потребителя в зависимости от температуры наружного воздуха, назначения объекта и пр. Экономия при установке таких ИТП достигается за счет компенсации инертности источника тепла в моменты изменения температуры наружного воздуха (погодная компенсация), а также за счет возможности автоматического снижения температуры внутри здания в ночное время и в выходные дни (для административных зданий, учебных корпусов и т.п.).
На рисунке 8.2 показан внешний вид автоматизированного теплового пункта здания.
Рисунок 8.2 – Внешний вид теплового пункта
Автоматизированный тепловой пункт включает в себя:
· средства регулирования (регулировочные клапаны с функцией дистанционного управления);
· средства контроля (датчики температуры, давления и расхода теплоносителя);
· средства управления (электронные блоки-регуляторы, управляющие регулировочными устройствами в соответствии с заложенной программой регулирования на основании информации, поступающей от средств контроля);
· дополнительное оборудование (трубопроводы, теплообменники, насосы).
На рисунке 8.3 приведен пример схемы построения автоматизированного ИТП.
1 — сетчатый фильтр; 2 — датчик давления воды в трубопроводе; 3 — расширительный сосуд; 4 — водоподогреватель системы ГВС; 5 — водоподогреватель системы теплоснабжения; 6 — диафрагменный элемент; 7 — перепускной клапан; 8 — электронный регулятор; 9 — отопительный прибор; 10 — датчик температуры воды в трубопроводе; 11 — датчик температуры наружного воздуха; 12 — насос; 13 — регулятор перепада давления; 14 — регулирующий клапан с электроприводом; 15 — радиаторный терморегулятор; 16 — регулятор температуры с коррекцией по расходу.
Рисунок 8.3 – Схема автоматизации закрытой системы централизованного теплоснабжения здания при независимом присоединении отопления к тепловым сетям
В схеме на рисунке 8.7 погодную компенсацию расхода и температуры теплоносителя в системе отопления в зависимости от температуры наружного воздуха осуществляет одноканальный электронный регулятор (8), используя информацию датчиков температуры (10, 11) и управляя регулирующим клапаном (14), установленном в контуре греющего теплоносителя, и насосом (12) в контуре нагреваемой (водопроводной) воды системы отопления. Процесс регулирования может также корректироваться по дополнительно устанавливаемому в помещении датчику температуры внутреннего воздуха, учитывая инерционность здания и системы отопления.
Регулирование температуры воды в системе горячего водоснабжения (ГВС) выполняет регулятор температуры прямого действия с коррекцией по расходу горячей воды (16). Эта схема регулирования предпочтительна при резком периодическом изменении расхода нагреваемой воды.
Примененный в схеме регулятор обеспечивает быстрый нагрев воды при открытии даже одного водоразборного крана и мгновенно закрывает подачу греющего теплоносителя в водоподогреватель при прекращении водоразбора в системе ГВС.
Для стабилизации гидравлического режима в тепловых сетях и улучшения работы регулирующих клапанов в системах отопления и ГВС в схеме предусмотрен моноблочный регулятор перепада давления (13).
Перепускной клапан (7) устанавливается в том случае, если радиаторы отопления оборудованы терморегуляторами (15), и обеспечивает циркуляцию воды через насос в случае их полного закрытия.
Радиаторные терморегуляторы устанавливаются в системе отопления здания перед отопительными приборами на трубе, подающей в него горячую воду, и позволяют осуществлять автоматическое регулирование температуры воздуха в помещении. Терморегулятор настраивается на температуру воздуха от 6°С до 26°С и автоматически поддерживает заданную температуру, изменяя количество проходящей через отопительный прибор горячей воды и, соответственно, его теплоотдачу без использования электрической или другой внешней энергии.
Сокращая подачу «излишнего» тепла от отопительного прибора в периоды теплопоступлений от солнечных лучей, людей, электробытовых устройств термостат исключает перегрев помещения, обеспечивая в нем комфортную температуру воздуха и экономя при этом до 10-20% потребляемой на отопление энергии. Наибольший эффект достигается совместно с проведением теплосберегающих мероприятий, направленных на снижение теплопотерь здания, которые также описаны в этой главе.
Эффективное отопление дома. Как можно улучшить Ваше отопление?
Сегодня существует множество систем отопления и практически каждой системой можно обеспечить эффективное отопление дома. Но эффективность зависит от многих факторов: какие доступны энергоносители, что из себя представляет сам отапливаемый дом и другое. Затем надо посчитать теплопотери дома. И только после расчетов можно окончательно понять, насколько система будет полезна в наших конкретных условиях
По сути, что такое эффективное отопления дома в нашем случае? Это когда затраты на отопление меньше чем у соседа в разы и при этом ваша система выполняет свою функцию на 100 %, и у Вас в доме тепло и уютно.
Так же необходимо проработать эксплуатацию и ремонт системы отопления. Иначе ни о какой эффективности речи и быть не может.
Комбинация систем отопления
Еще одним аспектом эффективного отопления дома является комбинация систем отопления. Опять же под эффективностью можно понимать как экономию, так и создание уюта и комфорта в вашем жилище.
Например, у вас смонтирована система радиаторного отопления. А вам ту приспичило смонтировать дополнительно систему теплого пола. Так сказать для комфорта.
Будет ли такая комбинированная система эффективной? Если посмотреть со стороны уюта и комфорта, то да, система отопления дома эффективна, так как достигнут определенный тепловой эффект.
Если посмотреть со стороны экономии, то думаю что, система отопления станет менее эффективной, так как добавляется система теплого пола, а это дополнительные расходы.
Другой вопрос неэффективности отопления — это когда выбирается неверная система отопления дома. Например, необходимо смонтировать радиаторы. А заказчикам пришлось в голову смонтировать теплые полы. А ведь было все продумано именно под радиаторы. В итоге тепла не хватает, углы промерзают, надо монтировать дополнительно радиаторную систему отопления и так далее.
И, конечно же, совсем неэффективно — это когда по всем расчетам и возможностям необходимо монтировать, например, систему обогрева полом (теплые полы), а заказчики монтируют радиаторы.
Так же я хочу упомянуть, что современное эффективное отопление дома включает в себя еще и приготовление горячей воды. Это опять же рассчитывается в комплексе и дает потрясающую экономию.
Повышение эффективности путем утепления
Есть еще вариант с утеплением дома. У вас, например, радиаторное отопление. И по сути своей не эффективно, так как приходится греть потолок. Но вот Вы утеплили свой дом, и вуаля — система радиаторного отопления стала эффективней.
В другом случае у вас смонтирована гравитационная, открытая система отопления и работает самотеком.
Уменьшение теплоносителя
По всем параметрам система считается неэффективной, так как в такой системе большой объем теплоносителя, который надо нагреть и поддерживать температуру. Но вот вы пригласили грамотного сантехника и он из вашей гравитационной системы сделал закрытую систему с возможностью принудительной циркуляции. И даже в этом случае система становиться эффективней на 20-30 процентов.
Итак, для того что бы система отопления дома была эффективной, нужно чтобы количество теплоносителя в ней было как можно меньше и чтобы при этом система отопления обогревала ваш дом на ваших условиях.
И если сегодня посмотреть на представленные системы отопления домов, то можно выделить несколько систем, которые подойдут под эффективное отопление дома.
Радиаторная система
Так как сегодня больше всего смонтировано радиаторов, с них и начнем. Например, у Вас система радиаторного отопления с чугунными радиаторами. Неэффективно. Что делать, что бы сделать систему более эффективной? Конечно, поменять радиаторы. И чем объем теплоносителя в радиаторе меньше, тем лучше.
Самое простое поменять чугунные радиаторы на алюминиевые. Самое идеальное поменять на медно-алюминиевые радиаторы и так далее. Так же можно поменять котел на более современный и экономичный. Вы в итоге получите более эффективное отопление дома.
Помимо замены котла можно добавить другой энергоноситель или даже тепловой насос.
Теплый пол
Но если говорить о том, какое сегодня эффективное отопление дома, то безусловно на первый план выходит система отопления полом или система теплого пола.
Эффективность достигается за счет того, что для работы системы необходима более низкая температура теплоносителя чем, например, для работы системы радиаторного отопления.
Системы теплого пола очень гибки в проектировании и монтаже. Системы теплого пола не занимают пространство в помещении. Системы теплого пола подходят для любого интерьера и решают помимо отопления массу других задач. Об этих задачах я вам расскажу в следующих статьях.
Если все сделать правильно, то системы теплого пола экономят до 75-ти процентов затрат на отоплении. Вот это я понимаю эффективное отопление дома.
Спасибо, что прочитали эту статью. Делитесь этой статьей в комментариях, ставьте лайки и пишите комментарии на тему, что нужно сделать, что бы поднять эффективность вашей системы отопления?
Как повысить эффективность отопительной системы и сократить расходы
Тарифы на энергоресурсы неуклонно ползут вверх, невзирая на падение цен на энергоносители и падение доходов сограждан. Вследствие этого расходы на отопление частного дома забирают все большую часть семейного бюджета. Судите сами: за 7 месяцев отопительного сезона (климатические условия средней полосы России) затраты на отопление среднестатистического индивидуального дома в 150 кв. м сжиженным газом или соляркой составят не менее 50-60 тыс. рублей! Больше повезло тем, к чьему дому проведена газовая магистраль, в этом случае заплатить за «теплую зимовку» придется намного меньше – около 10 тыс. рублей. Но к этому стоит прибавить еще единовременные вложения на оплату работ по присоединению дома к магистрали – до 100-150 тыс. рублей, да и цены на «голубое топливо» также растут опережающими темпами.
Неудивительно, что каждый домовладелец ищет способы сократить затраты на отопление. Многие начинают с повышения энергоэффективности дома – утепляют стены и кровлю, меняют старые окна на современные, устанавливают рекуператоры тепла на систему вентиляции. Всё это действительно нужные и важные направления модернизации, но они довольно затратны и окупаются, в лучшем случае, за несколько отопительных сезонов. Поэтому начинать борьбу за удешевление тепла стоит с системы теплоснабжения дома. При сравнительно небольших вложениях экономический эффект такой оптимизации может быть очень впечатляющим.
Итак, разберем подробнее, как именно можно повысить эффективность отопительной системы и сократить расходы на ее работу.
САМЫЙ ГЛАВНЫЙ ПРИБОР В ДОМЕ
Центральным элементом системы отопления является котел, так что логично начинать оптимизацию именно с него. Можно обозначить три направления снижения расходов, связанных с эксплуатацией котла – это увеличение эффективности сжигания топлива, уменьшение стоимости использования котла и, наконец, повышение регулируемости его работы.
Современные газовые котлы имеют КПД 90-95%, и, казалось бы, повышать эффективность их работы уже практически некуда. Но в начале 80-х годов были разработаны конденсационные котлы, которые благодаря особой конструкции камеры сгорания и более сложному и эффективному теплообменнику научились использовать скрытую теплоту парообразования отходящих газов. При конденсации водяного пара, содержащегося в дымовых газах, высвобождается скрытая теплота, которая передается циркулирующему теплоносителю. Благодаря этому процессу котлы с применением конденсационной технологии более чем на 15% эффективнее традиционных аналогов. Так что формальный КПД конденсационного котла (например, двухконтурного GenusPremiumот Ariston) достигает 107%. Экономия газа оказывается очень существенной.
В каком случае есть смысл менять старый котел на конденсационный? Александр Назаров, старший технический специалист компании Ariston, подчеркивает, что преимущества таких агрегатов раскрываются в низкотемпературных системах отопления, в которых температура теплоносителя в обратной линии составляет 30-40°С. Следует учитывать, что большинство автономных отопительных систем в нашей стране рассчитаны на режим работы 90/70°С. В таких условиях эффективность конденсационного котла несколько ниже, так как в экономном режиме он будет работать около 30% времени – в самые холодные недели зимы.
Помимо аспекта экономичности котла, есть другой не менее важный – срок службы этого агрегата, а также частота и стоимость технического обслуживания. К примеру, самые распространенные сейчас двухконтурные котлы имеют битермический теплообменник – то есть вторичный (в котором готовится вода для ГВС) находится внутри первичного (где нагревается теплоноситель для системы отопления). Как утверждают специалисты, такая конструкция быстро изнашивается и нуждается в ежегодном недешевом обслуживании. Альтернативой тут является агрегат с двумя раздельными теплообменниками (например, котел Ariston BS) – один из которых работает на отопление, другой на ГВС. Такая конструкция долговечнее и не нуждается в частом обслуживании. То есть при одинаковой цене и КПД моделей с битермическим и раздельным теплообменниками стоимость эксплуатации последнего будет ниже и в целом он будет выгоднее в эксплуатации.
Для сокращения расходов на отопление также крайне полезны «интеллектуальные» функции, которые появились в современных моделях котлов. В качестве примера приведем хотя бы плавное изменение тепловой мощности, которое обеспечивается работой модулирующих газовых клапанов с электронными системами управления. Это позволяет регулировать расход газа в зависимости от потребности дома в тепле, что выливается в немалую экономию энергоресурсов.
Вообще, использование электронного управления в современных котлах открывает широчайшие возможности для оптимизации расходов и окупается довольно быстро. Например, с помощью устройства Clima Manager обитатели дома могут программировать режим работы котла в зависимости от времени суток (понижать температуру в ночные часы) или дня недели. Также котел может осуществлять погодозависимую регуляцию – получать данные с температурных датчиков на улице и в комнате и автоматически корректировать мощность в зависимости от их показаний.
«ВЕЧНЫЙ» ДВИГАТЕЛЬ
Циркуляционный насос – неотъемлемый элемент эффективной системы отопления, благодаря которому теплоноситель циркулирует с заданной скоростью по замкнутому контуру. Однако, по свидетельству специалистов компании Grundfos, производителя насосов, недостатком старых агрегатов является чрезмерная энергетическая «прожорливость». В результате в частных домах до 30% всех расходов на электричество, необходимое для поддержания работы системы отопления, связано именно с насосами.
Подсчитано, что в условиях нашего климата циркуляционный насос работает не менее 5-6 тыс. часов в год, потребляя при этом электроэнергию, как мощная лампа накаливания. Так что очевидным путем повышения экономичности системы является замена этого агрегата на более энергоэффективный.
Согласно международной классификации, самыми энергоэффективными являются насосы класса «А». Их экономичность достигается за счет использования частотно-регулируемых электродвигателей, которые изменяют скорость работы в зависимости от гидродинамического сопротивления системы и потребности дома в тепле. Подсчитано, что за счет экономии электроэнергии насосы с классом энергоэффективности «А» окупаются за 3-4 отопительных сезона.
Например, циркуляционный насос Alpha2, соответствующий классу «А» энергоэффективности, тратит энергии меньше, чем лампочка в 75 Вт. Таким образом, годовое потребление электроэнергии в доме площадью до 200 м2 составит всего 90 кВт∙ч. Такой экономичности удалось добиться за счет применения технологии автоматической адаптации, которая позволяет агрегату распознать требования системы отопления и точно подобрать необходимую настройку для работы насоса.
«Самостоятельность» насоса обеспечивает простоту и удобство в эксплуатации. «Это очень важно для потребителя, – комментирует Сергей Захаров, специалист сегмента бытового оборудования компании. – Кроме того, благодаря «интеллектуальности» устройства домовладелец в любой момент может узнать о величине потребления энергии и общем состоянии системы отопления».
НЕ ТРАТИТЬ ЛИШНЕГО
Еще с советских времен, когда энергоресурсы стоили копейки и мало кто знал слово «энергоэффективность», мы привыкли регулировать температуру в комнатах, открывая и закрывая форточки. Сейчас такого расточительства – отапливать улицу – никто не может себе позволить. Для изменения теплоотдачи радиаторов используются терморегуляторы. По словам специалистов компании Danfoss, современные автоматические термостаты дают возможность устанавливать и поддерживать произвольную температуру в диапазоне от 6 до 26оС с точностью в 1оС. То есть в каждой конкретной комнате можно установить наиболее комфортную или уместную в данном случае температуру. Например, по желанию обитателей дома температуру можно снизить до 14-16°С на ночь для лучшего сна или если одна из комнат временно не используется.
Практика показывает, что применение термостатов позволяет экономить до 20% энергоресурсов. Учитывая их невысокую цену, это вложение окупается очень быстро и может быть рекомендовано для дома с любой схемой разводки (однотрубной или двухтрубной).
ОТРЕГУЛИРОВАЛ – ЗНАЧИТ, СЭКОНОМИЛ!
Существует еще один метод оптимизации, о котором обитатели индивидуальных домов порой даже не догадываются. Дело в том, что в подавляющем большинстве случаев неудовлетворительная работа системы теплоснабжения коттеджа связана с тем, что в разных частях системы циркуляция теплоносителя происходит с разной скоростью. Это частая проблема возникает при сложной конфигурации системы отопления с большим количеством контуров, использованием радиаторов разных размеров и «теплых полов», расположенных на двух-трех этажах. Как следствие, некоторые комнаты и радиаторы могут попасть в «застойные зоны», куда тепло попросту не доходит. В результате часть дома получает избыточное количество тепла, а другая часть – замерзает. При несбалансированной системе отопления практически нельзя достичь желаемой температуры в отдельно взятом помещении, даже при наличии терморегуляторов.
Для исправления такого положения важно добиться перераспределения теплоносителя по участкам контура таким образом, чтобы через каждый отопительный прибор протекал расчетный объем теплоносителя. Для достижения этой цели применяются балансировочные клапаны – как ручные, так и автоматические. Такие варианты производит ряд зарубежных компаний, например: Tour&Andersson (Швеция), Oventrop (Германия), Herz (Австрия). Они монтируются в разных частях отопительного контура и позволяют точно отрегулировать расход теплоносителя в каждой точке системы таким образом, чтобы все радиаторы получали нужное количество тепла.
В зависимости от конфигурации системы отопления и точности балансировки экономия тепла может составить до 30-40%. При этом вложения в оптимизацию (стоимость балансировочных клапанов + процедура настройки) обычно составляет менее 1% от стоимости всей инженерной системы. То есть расходы окупаются за считанные недели.
Кстати, прямая экономия энергоресурсов – не единственная выгода использования балансировочных клапанов. Стоит учесть, что в отрегулированной системе циркуляционный насос может работать на минимально возможной скорости, что сокращает затраты на электроэнергию и продлевает срок его службы. Да и в целом гидравлическая балансировка становится залогом долговечной работы всего отопительного оборудования: котлов, радиаторов, труб и регулировочной арматуры.
ВЫВОДЫ
«Ни одна калория тепла не должна пропасть понапрасну!» – вот основной тезис, которым стоит руководствоваться частному домовладельцу. Внеся минимальные изменения в существующую систему отопления, можно существенно повысить ее эффективность и тем самым каждый отопительный сезон экономить десятки тысяч рублей.
Источник: пресс-служба Ariston