Как посчитать производительность насоса для отопления

Содержание
  1. Расчет циркуляционного насоса для системы отопления: подбор по напору и расходу, формулы, примеры
  2. Что нужно знать для расчета мощности циркуляционного насоса
  3. Как выяснить показатель расхода насоса
  4. Три варианта расчета тепловой мощности
  5. Формула и таблицы расчета гидравлического сопротивления
  6. Усредненные данные по элементам системы
  7. Как рассчитать циркуляционный насос отопления от мощности котла
  8. Видео: подбор циркуляционного насоса отопления
  9. Рекомендации по подбору циркуляционного насоса отопления
  10. Производительность циркуляционного насоса
  11. Расчет напора циркуляционного насоса
  12. Основы выбора циркуляционного насоса для отопления
  13. Как рассчитать параметры циркуляционного насоса
  14. Определение напора циркуляционного насоса
  15. Расчет производительности циркуляционного насоса
  16. Пример расчета
  17. Расчет напора Н
  18. Расчет потока Qpu
  19. Расчет и подбор насоса для отопления: формулы, примеры, инструкции
  20. Для чего нужен насос в системе отопления?
  21. Как рассчитать параметры насоса?
  22. Расчеты производительности насоса
  23. Расчет гидравлического сопротивления системы
  24. Количество скоростей циркуляционного насоса
  25. Несколько важных замечаний
  26. Калькулятор расчета напора циркуляционного насоса — с необходимыми пояснениями
  27. Калькулятор расчета напора циркуляционного насоса
  28. Пояснения к проведению расчетов
  29. Цены на циркуляционные насосы
  30. Расчет и подбор циркуляционного насоса
  31. Основные требования к расчету параметров насоса
  32. Расчет необходимой подачи
  33. Необходимая подача
  34. Определение напора системы отопления
  35. Выбор циркуляционного насоса
  36. Выбор циркуляционного насоса для системы отопления. Часть 3
  37. Применение формулы на практике

Расчет циркуляционного насоса для системы отопления: подбор по напору и расходу, формулы, примеры

Для повышения качества отопления необходимо установить циркуляционный насос. Модель, правильно подобранная по основным параметрам, в несколько раз ускорит движение горячей воды по контуру.

Это даст более равномерный и качественный обогрев и одновременно поможет снизить расход ресурсов. Результат – хорошая работа отопительной системы и минимальная оплата.

Как рассчитать мощность циркуляционного насоса для отопления, чтобы улучшить обогрев дома и оптимизировать расходы на оплату?

Циркуляционный насос в системе отопления

Что нужно знать для расчета мощности циркуляционного насоса

Чтобы рассчитать циркуляционный насос для системы отопления, нужно понимать, какие функции он будет выполнять. У прибора две основные задачи:

  • создание напора воды, достаточного для преодоления гидравлического сопротивления узлов системы;
  • перекачивание по контуру такого объема горячей воды, который обеспечит эффективный прогрев всех помещений здания.

Для полноценного расчета мощности циркуляционного насоса отопления необходимо определить следующие параметры:

  • Расход насоса (его еще называют производительностью или подачей). Это показатель объема воды, который устройство способно перекачать за 1 час. Расход измеряют в м.куб./ч.
  • Напор. Этот показатель определяет гидравлическое сопротивление, которое преодолевает насос и измеряется в метрах.

Желательно, чтобы расчетами занимался опытный инженер. Если нет возможности обратиться к специалисту, можно выяснить нужные показатели с помощью формул и таблиц.

Определив напор и расход насоса, вычисляют нужную производительность и подбирают подходящую модель по каталогу. Если купить прибор с регулируемой производительностью, то задача еще облегчается.

В этом случае небольшие ошибки в расчетах не будут принципиально важны.

Циркуляционный насос Grundfos

Как выяснить показатель расхода насоса

Формула расчета выглядит так: Q=0,86R/TF-TR

Q – расход насоса в м.куб./ч;

  • R – тепловая мощность в кВт;
  • TF – температура теплоносителя в градусах Цельсия на входе в систему,
  • TR – на выходе.

Схема расположения циркуляционного насоса отопления в системе

Три варианта расчета тепловой мощности

С определением показателя тепловой мощности (R) могут возникнуть трудности, поэтому лучше ориентироваться на общепринятые нормативы.

Вариант 1. В европейских странах принято учитывать такие показатели:

  • 100 Вт/м.кв. – для частных домов небольшой площади;
  • 70 Вт/м.кв. – для многоэтажек;
  • 30-50 Вт/м.кв. – для производственных и хорошо утепленных жилых помещений.

Вариант 2. Европейские нормы хорошо подходят для регионов с мягким климатом. Однако в северных районах, где бывают сильные морозы, лучше ориентироваться на нормы СНиП 2.04.07-86 «Тепловые сети», в которых учтена наружная температура до -30 градусов Цельсия:

  • 173-177 Вт/м.кв. – для небольших зданий, этажность которых не превышает двух;
  • 97-101 Вт/м.кв. – для домов от 3-4 этажей.

Вариант 3. Ниже предложена таблица, по которой можно самостоятельно определить необходимую тепловую мощность с учетом назначения, степени износа и теплоизоляции здания.

Таблица: как определить нужную тепловую мощность

Формула и таблицы расчета гидравлического сопротивления

В трубах, запорной арматуре и любых других узлах системы отопления возникает вязкое трение, которое приводит к потерям удельной энергии. Это свойство систем называют гидравлическим сопротивлением.

Различают трение по длине (в трубах) и местные гидравлические потери, связанные с наличием клапанов, поворотов, участков, где изменяется диаметр труб и т.п.

Показатель гидравлического сопротивления обозначают латинской буквой «H» и измеряют в Па (паскалях).

  1. Формула расчета: H=1,3*(R1L1+R2L2+Z1+Z2+….+ZN)/10000
  2. R1, R2 обозначают потери давления (1 – на подаче, 2 – на обратке) в Па/м;
  3. L1, L2 – длина трубопровода (1 – подающего, 2 – обратного) в м;
  4. Z1, Z2, ZN – гидравлическое сопротивление узлов системы в Па.
  5. Чтобы облегчить расчеты потерь давления (R), можно воспользоваться специальной таблицей, где учтены возможные диаметры труб и приведены дополнительные сведения.

Таблица для определения потерь давления

Усредненные данные по элементам системы

Гидравлическое сопротивление каждого элемента системы отопления приведено в технической документации. В идеале следует воспользоваться характеристиками, указанными производителями. При отсутствии паспортов изделий можно ориентироваться на примерные данные:

  • котлы – 1-5 кПа;
  • радиаторы – 0.5 кПа;
  • вентили – 5-10 кПа;
  • смесители – 2-4 кПа;
  • тепломеры – 15-20 кПа;
  • обратные клапаны– 5-10 кПа;
  • регулирующие клапаны – 10-20 кПа.

Сведения о гидравлическом сопротивлении труб из различных материалов можно вычислить по таблице ниже.

Таблица потерь давления в трубах

Как рассчитать циркуляционный насос отопления от мощности котла

Зачастую случается так, что котел приобретен заранее, а остальные элементы системы подбирают позже, ориентируясь на показатели мощности отопительного прибора, заявленные производителем. Нередко циркуляционный насос покупают для модернизации систем отопления с естественной циркуляцией, чтобы обеспечить возможность ускорения движения теплоносителя.

Если известна мощность котла, используют формулу: Q=N/(t2-t1)

Q – расход насоса в м.куб./ч;

  • N – мощность котла в Вт;
  • t2 – температура воды в градусах Цельсия на выходе из котла (входе в систему);
  • t1 – на обратке.

График соотношения напорной и расходной характеристик. Чем ближе на графике точки А и В, тем лучше насос подходит для системы

Видео: подбор циркуляционного насоса отопления

Выяснив расход и напор циркуляционного насоса, можно найти подходящую по параметрам модель. При этом следует читать техническую документацию к приборам и обращать внимание на маркировку.

Обычно на корпусе насоса указан диаметр патрубков, к которым их можно присоединить (первая цифра маркировки), и высота подъема жидкости в дециметрах (вторая цифра). Зная нужные характеристики, легко определиться.

А качественная трехскоростная модель обеспечит комфортную температуру в доме при любой погоде, даже если расчеты были не идеальны.

Рекомендации по подбору циркуляционного насоса отопления

Насос циркуляции это один из важнейших элементов обязательных устройств в системе отопления частного дома, от правильности его работы зависит гидравлика отопления и теплоотдача батарей либо других источников теплопередачи тепла от греющего котла в отапливаемые помещения.

Рассчитать циркуляционный насос для отопления точно практически не возможно без многочисленных знаний, но приблизительно произвести подбор и сделать расчет напора вполне реальная задача для частника. Важны параметры скорости и проходимости отопительной жидкости по трубопроводам дома.

Рассчитать циркуляционный насос точно практически не возможно, но приблизительно вполне реальная задача, и нужная при устройстве обогрева дома в зимнее время года! Рассмотрим рекомендованные формулы для упрощенного подбора циркуляционных насосов.

Рекомендуется начать расчет насоса с вычисления его производительности.

Важно знать: Высота дома и этажность не имеет значения при подборе циркуляционного насоса!

Производительность циркуляционного насоса

Для расчета производительности циркуляционного насоса для системы отопления в доме необходимо знать один из следующих параметров:

  • а) Отапливаемая площадь помещений;
  • б) Мощность источника тепла (котел).
  • Если Вам известна отапливаемая площадь всех помещений, сначала надо рассчитать необходимую мощность источника тепла по формуле.
  • Формула расчета мощности котла в соотношении отапливаемых помещений:
  • Q — необходимая тепловая мощность, кВт.
  • S — отапливаемая площадь всех помещений, м2
  • Q1 — удельное тепло потребление здания:
  • 80 Вт/м2 — многоквартирный дом более 4 этажей
  • 100 Вт/м2 — офисное здание до 4 этажей
  • 120 Вт/м2 — частный дом не более 4 этажей

пример расчета 90 x 120 / 1000 = 10.8 кВт требуется котел для частного дома 90 квадратных метров.

  1. Далее производим расчет производительности насоса по формуле:
  2. Q2 — подача насоса в м3/ч
  3. Q — необходимая тепловая мощность, кВт.

1.16 — удельная теплоемкость воды, Вт.

  • t1 — температура воды на выходе из котла в C
  • t2 — температура воды на входе в котел в C
  • (t1 – t2 ) это разница температур, обычно задается в зависимости от вида системы отопления, для стандартных радиаторных систем это значение 20 C, теплый пол 5, другие низкотемпературные системы 10 или 15 градусов.
  • Следующим шагом требуется произвести расчет и определить напор насоса.

Расчет напора циркуляционного насоса

Самое важное замечание: напор циркуляционного насоса зависит не от высоты здания! Напор зависит от гидравлического сопротивления отопительной системы в доме. Поэтому необходимо произвести расчет именно сопротивления труб.

Что нужно знать для расчета напора циркуляционного насоса.

Вам нужна схема (проект) системы отопления дома состоящая из всех комплектующих:

  1. Метраж всех трубопроводов отопления в доме
  2. Диаметр этих труб и их сопротивление в Па/м (в интернете легко можно найти таблицы привязанные к вашим трубам в зависимости от выбранного материала)
  3. Количество поворотов и дополнительных деталей (кран, обратный клапан, вентиль).
  1. Расчет сопротивления рассчитывается по формуле:
  2. H — напор насоса в М.
  3. R — сопротивление прямой трубы (шероховатость), Па/м.
  4. I — общая длина труб в доме
  5. ∑ Z — сумма местного сопротивления всех деталей (фитинг, кран, клапан, тройник) Значения этих коэффициентов для деталей трубопровода составляет примерно 30% от потерь в прямой трубе, то есть грубо 1.3
  6. p — плотность перекачиваемой жидкости (вода, незамерзающая жидкость) = 971.6

q — ускорение свободного падения, м/с2. = 9.81

В случаях со старыми зданиями и отсутствия документации по системе отопления можно произвести вариант приблизительного расчета напора циркуляционного насоса, упрощенный вариант формулы.

  • H — напор насоса в М.
  • R — потери на трение в прямой трубе системы отопления, Па/м.
  • Пример расчета напора циркуляционного насоса:
  • Допустим Вы делаете систему отопления из полипропиленовых труб.
  • Сопротивление (шероховатость) полипропиленовых труб в среднем по диаметрам применяемых для строительства частного дома составляет 120 Па/м
  • Ориентировочно на 90 м2 дома уходит 60 метров труб при двухтрубной системе (учитывается длинна от источника тепла до самого дальнего радиатора и обратно) и некоторое количество фитинг деталей по общей длине (20 уголков, 10 тройников, 4 крана, 1 обратный клапан.

120 x 60 x 1.3 = 9360 Па/м.

Основы выбора циркуляционного насоса для отопления

После расчета напора и производительности вам требуется определить рабочую точку, у каждого производителя насосов имеется график с указанием рабочих возможностей всего модельного ряда, как бытовых, так и промышленных. Рассматривая график, например насосов фирмы WILO, нужно найти наиболее близкие показатели. Наиболее оптимальная работа насоса в средней трети графика с гидравлическими характеристиками.

Из расчета примеров для частного дома в 90 м2 с системой отопления из полипропиленовых трубопроводов и алюминиевых радиаторов получается такие данные:

Читайте также:  Инструкция датчика теплого пола vimar

H = 1 м.

Q2 = 0.47 м3/ч.

  1. Как видно из графика Вам подходит насос WILO STAR-RS 25 или 30/2
  2. Модель Star-RS, стандартный циркуляционный
  3. 25 или 30/ — Номинальный внутренний диаметр Rp 1″ или 1 1/4″
  4. 2 — Номинальная высота подачи [м] при расходе Q = 0 м3/ч

Очень часто эта зона выделена толстой линией, очень редко бывает когда расчетная точка совпадает с гидравлической характеристикой насоса. Чаще всего эта точка лежит между характеристиками двух насосов, при выборе конкретной модели насоса не нужно выбирать самый мощный, поскольку даже менее мощный циркуляционный насос полностью обеспечит систему отопления.

В свободной продаже можно найти и други марки циркуляционных насосов согласно расчетным характеристикам, например при выборе марки GRUNDFOS Вы получите более дорогой, но в тоже время более надежный циркуляционный насос. Конечно присутствуют и более выгодные по цене предложения «ХОЗЯИН», средний сегмент AQUARIO.

В современном мире становится жить проще, нам помогает продвинутая интеллектуальная техника и самостоятельный расчет и подбор насоса уходит в прошлое.

Компания ГРУНДФОС производит специальные насосы с функцией AUTOADAPT, автоматическая настройка рабочих характеристик GRUNDFOS модель ALPHA2 25/60 с учетом расхода теплоносителя сопративление труб.

Анализируя нагрузку на отопительную систему, насос сам производит расчет и обеспечивает баланс между максимальным уровнем комфорта и минимальным энергопотреблением. GRUNDFOS ALPHA2 спроектированы для циркуляции жидкостей в системах отопления.

Как рассчитать параметры циркуляционного насоса

В данной статье рассказывается о том, как рассчитать параметры циркуляционного насоса в отопительной системе, руководствуясь при этом малым объемом технической информации об особенностях и характеристиках данной системы. Этот метод расчета применяется в основном для частных малоэтажных зданий.

Мы подготовили пример расчета, чтобы наглядно вам показать, что на самом деле произвести расчет важных параметров для определения оптимальных характеристик циркуляционного насоса намного легче, чем может показаться на первый взгляд.

Циркуляционный насос выбирается по двум основным характеристикам: H — напору, выраженному в метрах; Q — расходу, выраженному в м3/час.

Определение напора циркуляционного насоса

Насос должен создавать необходимое давление, чтобы жидкость могла преодолевать все препятствия в системе отопления и заполнять радиаторы теплоносителем.

При проектировании новой системы возможны точные расчеты с учетом сопротивления всех элементов нитки (труб, фитингов, арматуры и приборов); обычно необходимые сведения приводятся в паспортах на оборудование.

Если такой информации нет, можно использовать формулу:

Символ формулы Описание
R Потери давления в системе. Полученные опытным путем данные свидетельствуют, что сопротивление прямых участков трубы (R) составляет порядка от 50 до 150 Па/м. Там где используются, например, двухдюймовые трубы, что часто бывает в старых домах, потери давления меньше. Можно принимать в расчет значение 50 Па/м. 150 Па/м обычно в трубах меньшего диаметра.
L Длина труб в метрах всего контура отопления (подача и обратка), по которому циркулирует теплоноситель. Чтобы упростить вычисления можно взять размеры дома, они рассчитываются таким образом: (длина + широта + высота) * 2 .
ZF Дополнительные коэффициенты сопротивления в виде арматуры и фасонной части, которые имеют следующие значения:
  • 1,2 — смесителя/устройства, предотвращающего естественную циркуляцию;
  • если установка не оснащена ни терморегулирующим вентилем, ни смесителем, ZF = 1,3;
  • для контура с терморегулирующим вентилем ZF = 1,3 х 1,7 = 2,2;
  • когда система включает оба прибора ZF = 1,3 х 1,7 х 1,2 = 2,6.
10 000 коэффициент для преобразования метров водного столба в Па

Расчет производительности циркуляционного насоса

Для того, чтобы вычислить производительность циркуляционного насоса Qpu, необходимо знать тепловую мощность Q, удельную теплоемкость теплоносителя Cw, его плотность p и разность температур конструкции Δt .

Подача насоса в расчетной точке вычисляется при помощи следующей формулы:

Символ формулы Описание
Q Тепловой поток или тепловая мощность. В этом случае речь идет о необходимой тепловой нагрузке или имеющейся мощности котла, которые должны соответствовать поставленной задаче.
p Плотность теплоносителя. В данном случае можно принять ≈ 1 кг/л. (вода).
Cw Удельная теплоемкость. Считается как 1,16 Вт*ч/кг*К (вода).
Δt Разница температур Δt зависит от вида отопительной системы: Δt=20 °С для стандартных двухтрубных систем; Δt=10 °С для низкотемпературных отопительных систем и теплых полов.

Пример расчета

Руководствуясь данным примером, вы сможете достоверно разобраться с тем, как совершать расчеты, чтобы определить параметры циркуляционного насоса. Помимо этого, представленный ниже эскиз имеет все необходимые данные для расчета производительности и высоты подъема.

Эскиз для примера расчета

Посмотрев на эскиз можно определить следующие значения:

  • ширина – 15 м;
  • длина – 20 м;
  • высота – 12 м;
  • год постройки – 1990;
  • ZF = 2,2 (фитинги + клапан термостата);
  • потери давления – 120Па/м;
  • потери тепла – 80 кВт;
  • температуры в системе отопления – 75/55.

Расчет напора Н

  1. R = 120 Па/м;
  2. L = (15+20+12)*2=94 м
  3. ZF = 2.2

Расчет потока Qpu

  1. Q = 80 кВт
  2. p = 1 кг/л
  3. Cw = 1,16 (Вт*ч)/(кг*К)
  4. Δt = 75C-55C = 20К

Наиболее важные данные для определения оптимальных параметров циркуляционного насоса успешно рассчитаны. На следующем этапе пользуясь каталогом, или проконсультировавшись с продавцами в магазине, необходимо определить группу насосов, в параметры которых попадает необходимая рабочая точка.

Расчет и подбор насоса для отопления: формулы, примеры, инструкции

Современную автономную систему отопления невозможно представить без хорошего циркуляционного насоса.

С помощью этого полезного устройства можно в несколько раз повысить качество обогрева жилища и эффективность работы отопительного оборудования.

Чтобы выбрать из многочисленных предложений производителей модель, которая подходит конкретной системе, следует выполнить правильный расчет насоса для отопления, а также учесть ряд важных практических нюансов.

Для чего нужен насос в системе отопления?

Большинству жителей верхних этажей в многоквартирных домах хорошо знакомо такое явление как холодные батареи. Это результат отсутствия в системе давления, необходимого для ее нормальной работы. Теплоноситель перемещается по трубам медленно и остывает уже на нижних этажах.

С такой же ситуацией могут столкнуться и владельцы частного дома: в самой дальней точке отопительной системы трубы и радиаторы слишком холодные. Эффективно решить проблему поможет циркуляционный насос.

Обратите внимание, что системы отопления с естественной циркуляцией теплоносителя могут быть вполне эффективны в небольших частных домах, но даже в этом случае имеет смысл подумать о принудительной циркуляции, поскольку при правильной настройке системы это позволит снизить общие расходы на отопление.

Упрощенно такой насос представляет собой мотор с ротором, который погружен в теплоноситель. Ротор вращается, заставляя воду или другую нагретую жидкость перемещаться по системе с заданной скоростью, создавая необходимое давление. Насос может работать в различных режимах.

Например, установив устройство на максимум, можно быстро прогреть остывший в отсутствие хозяев дом. Затем восстанавливают настройки, которые позволяют получить наибольшее количество тепла при минимальных расходах. Различают модели циркуляционных насосов с «сухим» и «мокрым» ротором.

В первом случае ротор насоса погружен в жидкость только частично, а во втором случае — полностью. Насосы с «мокрым» ротором издают при работе меньше шума.

Как рассчитать параметры насоса?

Правильно подобранный водяной насос для отопления должен решать две задачи:

  • создавать в системе напор, способный преодолеть гидравлическое сопротивление отдельных ее элементов;
  • обеспечивать перемещение по системе достаточного для обогрева здания количества тепла.

Исходя из этого, при выборе циркуляционного насоса следует рассчитать потребность здания в тепловой энергии, а также общее гидравлическое сопротивление всей отопительной системы. Без этих двух показателей подобрать подходящий насос просто невозможно.

Полезная информация о выборе циркуляционного насоса содержится в следующем видеоматериале:

Расчеты производительности насоса

Производительность насоса, которую в расчетных формулах обычно обозначают как Q, отражает количество тепла, которое может быть перемещено за единицу времени. Формула для расчетов выглядит так:

  • Q — объемный расход, куб. м./ч;
  • R — необходимая тепловая мощность для помещения, кВт;
  • TF — температура на подаче в систему, градусов Цельсия;
  • TR — температура на выходе из системы, градусов Цельсия.

Потребность помещения в тепле (R) рассчитывается в зависимости от условий. В Европе принято рассчитывать этот показатель, исходя из норматива:

  • 100 Вт/кв. м площади небольшого частного дома, в котором не более двух квартир;
  • 70 Вт/кв. м площади многоквартирного дома.

Если же расчеты проводятся для зданий с низкой теплоизоляцией, значение показателя следует увеличить. Для расчетов по помещениям на производстве, а также по зданиям с очень высокой степенью теплоизоляции рекомендуется использовать показатель в пределах 30-50 кВт/ кв. м.

С помощью этой таблицы можно более точно рассчитать потребность в тепловой энергии для помещений различного назначения и с различным уровнем теплоизоляции

Расчет гидравлического сопротивления системы

Следующий важный показатель — гидравлическое сопротивление, которое необходимо будет преодолеть циркуляционному насосу. Для этого следует рассчитать высоту всасывания насоса. Обычно этот показатель обозначают как «H». Можно использовать следующую формулу:

  • R1, R2 – потеря давления на подаче и обратке, Па/м;
  • L1,L2 – длина линии подающего и обратного трубопровода, м;
  • Z1,Z2…..ZN – сопротивление отдельных элементов отопительной системы, Па.

Для определения R1 и R2 следует воспользоваться приведенной ниже таблицей:

В этой таблице представлены дополнительные данные для более точного расчета гидравлического сопротивления, возникающего в отопительной системе частного дома

Гидравлическое сопротивление отдельных элементов и узлов отопительной системы обычно указано в сопровождающей их технической документации. Если по какой-то причине такая документация отсутствует, можно воспользоваться примерными данными:

  • котел — 1000-2000 Па;
  • смеситель — 2000-4000 Па;
  • термостатический вентиль — 5000-10000 Па;
  • тепломер — 1000-15000 Па.

Для других частей отопительной системы смотрите данные в этой таблице:

Если техническая документация по каким-то причинам утрачена, можно рассчитать гидравлическое сопротивление отдельных элементов отопительной системы с помощью данных, приведенных в этой таблице

Количество скоростей циркуляционного насоса

Большинство современных моделей циркуляционных насосов снабжены возможностью регулировать скорость работы устройства.

Чаще всего это трехскоростные модели, с помощью которых можно корректировать количества тепла, поступающего в помещение.

Так, при резком похолодании скорость работы насоса увеличивают, а в случае потепления — уменьшают, чтобы температура воздуха в комнатах оставалась комфортной для проживания.

Для переключения скоростей существует специальный рычаг, размещенный на корпусе устройства. Большой популярностью пользуются модели циркуляционных насосов, снабженные системой автоматического регулирования скорости работы устройства в зависимости от изменения температуры наружного воздуха.

Следует отметить, что это лишь один из вариантов такого рода расчетов. Некоторые производители используют при подборе насоса несколько иную методику вычислений. Можно попросить выполнить все расчеты квалифицированного специалиста, сообщив ему подробности устройства конкретной отопительной системы и описав условия ее работы.

Обычно рассчитываются показатели максимальной нагрузки, при которой будет работать система. В реальных условиях нагрузка на оборудование будет ниже, поэтому можно смело приобретать циркуляционный насос, характеристики которого несколько ниже расчетных показателей.

Приобретение более мощного насоса не целесообразно, поскольку это приведет к ненужным расходам, но работу системы не улучшит.

После того, как все необходимые данные получены, следует изучить напорно-расходные характеристики каждой модели с учетом разных скоростей работы. Эти характеристики могут быть представлены в виде графика. Ниже приведен пример такого графика, на котором отмечены и расчетные характеристики устройства.

С помощью этого графика можно подобрать подходящую модель циркуляционного насоса для отопления по показателям, рассчитанным для системы конкретного частного дома

Точка А соответствует необходимым показателям, а точкой В обозначены реальные данные конкретной модели насоса, максимально приближенные к теоретическим расчетам. Чем меньше расстояние между точками А и В, тем лучше подходит модель насоса для конкретных условий эксплуатации.

Читайте также:  Отопление чума устройство очага ненецкого народа

Несколько важных замечаний

Как уже отмечалось выше, различают циркуляционные насосы с «сухим» и «мокрым» ротором, а также с автоматической или ручной системой регулировки скоростей.

Специалисты рекомендуют использовать насосы, ротор которых полностью погружен в воду, не только из-за пониженного уровня шума, но и потому, что такие модели справляются с нагрузкой более успешно.

Установку насоса осуществляют таким образом, чтобы вал ротора располагался горизонтально. Подробнее про установку читайте здесь.

При производстве высококачественных моделей используется прочная сталь, а также керамический вал и подшипники. Срок эксплуатации такого устройства составляет не менее 20 лет. Не стоит выбирать для системы горячего водоснабжения насос с чугунным корпусом, поскольку в таких условиях он быстро разрушится. Предпочтение стоит отдать нержавейке, латуни или бронзе.

Если при работе насоса в системе появляется шум, это не всегда говорит о поломке. Нередко причина этого явления — воздух, оставшийся в системе после запуска. Перед пуском системы следует спустить воздух через специальные клапаны. После того, как система проработает несколько минут, нужно повторить эту процедуру, а затем отрегулировать работу насоса.

Если запуск производится с использованием насоса с ручной регулировкой, необходимо сначала установить прибор на максимальную скорость работы, в регулируемых моделях при пуске отопительной системы следует просто отключить блокировку.

Калькулятор расчета напора циркуляционного насоса — с необходимыми пояснениями

Чтобы система отопления с принудительной циркуляцией работала с требуемой эффективностью, необходимо, чтобы насос не только обеспечивал перекачивание определенного объёма теплоносителя за единицу времени. Чрезвычайно важное значение имеет создаваемый циркуляционным насосом напор.

Калькулятор расчета напора циркуляционного насоса

Несоответствие этого параметра реальным условиям может привести к «запиранию» контуров, то есть неработоспособности отдельных участков или даже всей системы отопления в целом. Правильно определиться с нужной характеристикой прибора поможет калькулятор расчета напора циркуляционного насоса.

Ниже будут приведены и необходимые пояснения

Калькулятор расчета напора циркуляционного насоса

Перейти к расчётам

Пояснения к проведению расчетов

Циркуляционный насос имеет основную задачу — он должен обеспечивать перекачку теплоносителя в определенных объемах для доставки требуемого количества тепловой энергии на все приборы теплообмена. Провести расчет производительности — несложно: можно воспользоваться специальным калькулятором.

Но для того чтобы в полной мере справиться со своей функцией, насос должен обладать способностью преодолеть гидравлическое сопротивление контуров отопления. А оно может быть весьма немалым.

  • Во-первых, любая система отопления, даже самая простейшая – это определенная длина труб, которые обязательно обладают своим гидравлическим сопротивлением.
  • Во-вторых, серьезными препятствиями для свободного перемещения теплоносителя становятся элементы запорной и регулировочной арматуры. Особенно это актуально для систем отопления, оснащенных термостатическими приборами регулировки температуры в приборах теплообмена.

Формулы расчета суммарного гидравлического сопротивления системы – достаточно слоны и громоздки.

Но в предлагаемом калькуляторе применен упрощенный алгоритм, который, однако, дает результат со вполне допустимой погрешностью, и имеющий определенный эксплуатационный резерв.

Таким образом, приобретая насос с показателями, не ниже расчётных, можно быть уверенным в работоспособности системы по этому критерию.

Цены на циркуляционные насосы

  • В калькуляторе будет запрошена длина труб в системе. Указывается полная, суммарная длина всех вертикальных и горизонтальных участков, и подачи и «обратки».
  • В поле особенностей применяемой запорно-регулировочной арматуры следует выбрать пункт, наиболее близко подходящий к условиям создаваемой системы отопления.

Что еще важно знать о циркуляционных насосах?

Подробная информация об устройстве этих приборов, об их основных характеристиках, критериях выбора, о правилах врезки в систему – в специальной статье, посвящённой циркуляционным насосам для отопления.

Расчет и подбор циркуляционного насоса

Как известно, при проектировании любой системы первостепенное значение имеет точность расчета ее параметров.

Однако бывают случаи, когда этого сделать невозможно, поэтому приходится полагаться на приблизительные расчеты, например, при замене циркуляционного насоса в старом здании.

Какие же факторы являются решающими при подборе наиболее оптимального циркуляционного насоса и какие практические советы можно дать инженерам и проектировщикам при решении этой задачи?

Циркуляционный насос выполняет функцию принудительной циркуляции теплоносителя в системах отопления закрытого и открытого типов.

Циркуляционный ускоритель Вильгельма Оплендера конструкции 1929 года

Основные требования к расчету параметров насоса

С изобретением циркуляционного насоса был сделан решающий шаг от системы отопления с естественной циркуляцией к системе с принудительной циркуляцией горячей воды. Учитывая это, вполне справедливым представляется название, которое дал изобретатель в 20-х годах прошлого столетия первой подобной конструкции, – «циркуляционный ускоритель».

Теперь циркуляция воды с помощью насоса, как носителя энергии, не только ускоряется, но и отвечает всем требованиям современной техники автоматического регулирования.

Поэтому, чтобы сделать правильный выбор и настройка циркуляционного насоса, проектировщик должен рассматривать отопительную систему в ее целостном функциональном назначении.

Количественные значения тепловой энергии, которая производится и поставляется, рассчитываются согласно величины общего теплопотребления дома. Перенос энергии к поверхности нагрева обеспечивается насосом.

При этом она должна преодолевать сопротивление трения во всех трубопроводах и различных компонентах системы отопления. Этим объясняются оба требования, которые выдвигаются к конструктивным данным циркуляционной помпы: необходимой подаче и обеспечения напора достаточно высокого уровня.

Оптимальное положение расчетной точки, которое впоследствии определяется более точно, – правая часть средней трети. При выборе циркуляционного насоса необходимой мощности следует, кроме того, учитывать конкретные условия ее использования при проектировании нового дома или для переоснащения старого.

Расчет необходимой подачи

Параметры системы отопления нового дома с высоким уровнем точности определяются с помощью компьютерного проектирования. Теплопотребление дома и производительность насоса определяются по нормативам.

Потери в результате трения в трубопроводах (в единицах измерения давления – мбар или ГПа) определяются по ненормированным, но стандартизированным методом вычисления, применяемого для расчета систем трубопроводов.

Этот метод также позволяет вычислить напор насоса в метрах.

Поскольку проектная документация старых зданий, как правило, долго не хранится, а технические характеристики трубопроводов таких домов (например, диаметр, пути прокладки и т.п.) определить практически невозможно, при их реставрации или переоснащении приходится полагаться на приблизительную оценку и расчеты.

Необходимая подача

Необходимая подача насоса вычисляется по формуле: час

  • где Q – теплопотребления дома, кВт;
  • 1,163 – удельная теплоемкость воды, Вт•ч/(кг К);
  • ∆υ – разница температуры подающего и обратного потока воды, К

Применение циркуляционных насосов в новых домах

Расчеты по приведенной выше формуле осуществляются автоматически в пределах расчетной программы. Согласно нормативам теплопотребления здания – это сумма величин теплопотребления отдельных помещений. Потери тепла вследствие влияния холодного наружного воздуха составляют не более 50% от суммы, поскольку ветер обдувает лишь один сторону дома.

Однако увеличение величины этих потерь добавлением доли на передачу тепла может привести к выбору большего котла и помпы, чем это необходимо.

Если теплопотребления помещения рассчитать по этой рекомендации как для квартиры с «частично ограниченным отоплением», то для каждого отапливаемого соседнего помещения учитывается перепад температуры величиной 5 К (рис 3).

Нормативный тепловой поток в доме

Этот метод вычисления наиболее пригоден для расчета мощности отопительного радиатора, необходимого для обеспечения потребности в тепле в каждом конкретном случае. Полученные при этом показатели мощности котла на 15-20% завышены. Поэтому при определении параметров насоса необходимо учитывать следующую закономерность:

Q необх. потребл.=0,85*Q норм. потребл.

Специалисты на основании многолетнего опыта придерживаются мнения, что в случае получения предельного значения следует выбирать меньшее из двух насосов. Причиной этого является отклонение реальных данных от расчетных.

Применение циркуляционных насосов в старых домах

Теплопотребления старого дома можно определить лишь приблизительно. При этом основой расчетов является удельное теплопотребление на квадратный метр отапливаемой полезной площади. В ряде нормативных таблиц приводятся ориентировочные значения теплопотребления зданий в зависимости от года их постройки.

В нормативе HeizAnlV (Германия) указано, что можно отказаться от осуществления основательного исчисления теплопотребления, если приборы, которые производят тепло, заменено центральным отоплением и их номинальная тепловая мощность не превышает 0,07 кВт на 1 м2 полезной площади дома; для отдельно стоящих домов, состоящих не более чем из двух квартир, этот показатель составляет 0,10 кВт/м2. Опираясь на вышеприведенную формулу, можно вычислить удельный подачу насоса:

  • где V – удельная подача насоса, л/(ч • м2);
  • Q- удельный тепловой поток, Вт/м2 (номинальная тепловая мощность равна 70 Вт/м2 в многоквартирных домах и 100 Вт/м2 в отдельных домах на одну или две семьи).

Взяв за пример систему отопления в многоквартирном доме со стандартной разницей температуры подающего и обратного потока 20 К, получаем следующие расчеты:

V=70 Вт/м2: (1,63 Вт*час/(кг*К)*20К)= 3,0[л/(час*м2)]

Следовательно, на каждый квадратный метр жилой площади помпа должна подавать за час 3 литра воды. Специалисты-теплотехники должны всегда помнить эту величину. Если величина перепада температур другая, с помощью расчетных таблиц можно быстро осуществить необходимые перерасчеты.

Определение производительности по удельным теплопотреблением

Сделаем расчеты для дома средней величины, состоящий из 12 квартир по 80 м2 каждая, общей площадью около 1000 м2. Как видно из таблицы, циркуляционный насос при ∆υ = 20 К должен обеспечивать подачу 3м3/ч. Для обеспечения потребности в тепле такого дома временно избирается нерегулируемый насос типа Star-RS 30/6.

Более точный подбор соответствующего насоса возможен только после определения величины необходимого напора.

Определение напора системы отопления

Потери давления в системе отопления определяются через расчеты параметров сети отопительных трубопроводов. При этом рассматривается самая длинная нить трубопровода, поскольку в ней, как правило, наибольшие потери давления. Поэтому необходимым является выравнивание давления во всех нитях трубопроводов, которое обеспечивается применением дифференциального регулятора давления .

В противном случае вода, идя по пути наименьшего сопротивления, будет течь короткими участками трубопроводов обратно к отопительному котлу и сбалансированное поставки тепла будет невозможным.

Вычисление параметров тепловых насосов

Основой исчисления параметров насоса, необходимого для использования в системе отопления старого здания, является определение потерь давления, которые включают, с одной стороны, потери в прямых отрезках трубопроводов, в фитингах и сантехническом оборудовании, а с другой – в других компонентах системы отопления (котел, смесители, и т.д.). Эти расчеты осуществляются по следующей формуле:

  • где R – удельная потеря давления в прямых отрезках трубопроводов, Па/м (можно взять с номограмм);
  • l – длина самой длинной нити трубопровода (суммарная длина подающего и обратного трубопроводов), м;
  • Z – работа показатели дополнительной потери давления в фитингах и других элементах трубопроводов, Па.

Напор циркуляционного насоса высчитывается по формуле:

где p- плотность среды, что подается, кг/м3;
g – ускорение свободного падения, м/с2.

В вычислительных программах сначала добавляют потери давления на разных участках трубопровода, а затем делят на обе полученные величины:

Величина напора наносится на вертикальную ось кривой характеристики насоса.

Осуществление расчетов параметров насоса, необходимого для обеспечения отопления старого здания, связанные с определенными трудностями.

В то время как размеры и другие характеристики наружных стен старых зданий можно достаточно точно измерить, определить параметры проложенных в нем трубопроводов практически невозможно.

Так же невозможно получить данные о состоянии внутренней поверхности труб, например, о возможных отложений, коррозии и т.д.

Читайте также:  Системы противопожарной защиты источники наружного водоснабжения требования пожарной безопасности

В таком случае специалисты прибегают к так называемой методики предельного значения, которая заключается в определении предельной величины потери давления, которая влечет возникновение механического шума в отопительных трубопроводах, и настройке теплового насоса с помощью дифференциального регулятора давления на это предельное значение (см. рис. 5), в результате чего удается обеспечить равномерное распределение тепла по всей отопительной сети.

Последовательность этого процесса такова: исходя из размеров дома определяется самая длинная нить трубопровода от котла до самого отдаленного радиатора отопления (суммарная величина длины, ширины и высоты дома, умноженная на два с учетом длины подающего и обратного трубопроводов). Практический опыт свидетельствует, что величина сопротивления старых трубопроводов колеблется в пределах 100-150 Па/м. Следовательно, разница потерь давления определяется по формуле:

  • где R – удельная потеря давления на трение, Па/м;
  • l – максимальная длина (суммарная длина длина подающего и обратного трубопроводов), м;
  • Dk – дополнительный коэффициент.

Показатели дополнительных коэффициентов взято из практического опыта. Потери давления в прямых отрезках трубопроводов составляют:

  • в фитингах и сантехническом оборудовании – около 30 % эустомыПК1 = 1,3;
  • в термостатических вентилях – около 70 % эустомыДК2 = 1,7;
  • смесители – около 20 % эустомы ДК3 = 1,2.

Дополнительный коэффициент при наличии фитингов и термостатических вентилей (1,3•1,7) составляет 2,2; при наличии фитингов, термостатических вентилей и смесителя(1,3•1,7•1,2) – 2,6.

Пример 12-квартирного дома

Рассмотрим подробнее упомянутый выше пример 12-квартирного дома, который состоит из 3 этажей по 4 квартиры каждый. Отопительный котел находится в центре дома под лестничной клеткой.

Поскольку оба отопительные контуры являются параллельными и имеют одинаковую длину, можно отказаться от выравнивания давления с помощью дифференциального регулятора давления. Максимальная длина трубопроводов составляет 30 м, отсюда суммарная длина подающего и обратного трубопроводов составляет около 60 м.

Предполагается, что внутреннее сопротивление труб равна 130 Па/м. Система отопления оснащена смесителем. В ходе ремонта дома в отопительную систему монтируют новые термостатические вентили.

  • Примерные параметры для дома после ремонта в соответствии с формулой ∆p = R • l • ДК являются следующими:
    130 Па/м • 60 м • 2,6 = 20280 Па = 203 ГПа.
  • Для определения параметров помпы, как известно, действительны следующие соотношения:
  • 1 ГПа = 1мбар = 1 см.
  • Таким образом, необходимый напор циркуляционной помпы составляет H = 203 см = 2,0 м.

Выбор циркуляционного насоса

Предварительно выбранная помпа Star-RS 30/6 (см. таблицу) полностью соответствует требованиям этого дома. Ее было вмонтировано вместо помпы типа S 40/80 r, которая была слишком большой.

ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ

Главной составной кривой характеристики насоса есть изображение потребляемой мощности двигателя насоса (см. нижнюю часть рис. 4). Как видно из рисунка, потребляемая мощность повышается с увеличением подачи. Три линии соответствуют изменении мощности при относительно постоянной частоте вращения насоса.

  1. Описанные в статье формулы и последовательность осуществления расчетов приведены на рисунке, из которого видно, что расчеты для новых и старых зданий осуществляются по-разному.
  2. При подборе соответствующего циркуляционного насоса для системы отопления старого дома следует также учитывать следующие факторы:
    • ранее использовались большие насосы;
    • в связи с техническим развитием наблюдается значительное повышение уровня гидравлической мощности;
  3. • теплоизоляция старых домов неоднократно совершенствовалась, соответственно, уровень потребления тепловой энергии уменьшался, что, в свою очередь, позволило использовать в системе отопления котлы и насосы меньших размеров.
  4. Таким образом, если невозможно получить точные расчеты, как, например, в случае со старыми зданиями, при подборе соответствующего циркуляционного насоса приходится полагаться на приблизительные оценки, большинство из которых проверена временем и подтверждена практическим опытом.

Ергардт Бушер, Клаус Вальтер “Вибрать помпу несложно. Шаг за шагом к правильному выбору циркуляционной помпы необходимой мощности”
(журнал “М+Т” №01.2003)

Выбор циркуляционного насоса для системы отопления. Часть 3

Определение напора насоса.

Следующим важным параметром, по которому подбирается циркуляционный насос, является напор.

Как мы уже отмечали в предыдущей статье, насос «заставляет» теплоноситель «бегать» по замкнутому контуру, разнося тепло по комнатам дома.

На своем пути вода встречает повороты, ответвления, сужения и расширения участков трубопровода. Кроме того, ей приходится проходить целый ряд важных элементов системы отопления: фильтр грубой очистки, запорную и регулировочную арматуры, теплообменник котла и т.д.

Все перечисленные участки пути, по которым бежит вода, оказывают сопротивление ее движению. Чтобы преодолеть это сопротивление и вовремя доставить тепло нуждающимся в этом помещениям, воде нужно передать определенную побуждающую силу.

Вот этой силой и является такая важная характеристика, как напор, который измеряется в метрах водяного столба. Этот параметр, по сути, показывает: на какую высоту данный насос может поднять воду.

Если он может поднять воду на эту высоту, то, соответственно, передаст воде такую же силу для преодоления гидравлического сопротивления трубопровода и элементов системы отопления на всем пути ее следования.

Спешим, однако, сказать, что в системе отопления сама геодезическая составляющая (количество этажей в здании, этаж, на котором стоит циркуляционный насос, а также этаж, на котором находится самый последний по высоте отопительный прибор и т.д.

) не имеет никакого значения. В отличие от системы водоснабжения, где насосу приходится поднимать воду от одной точки до другой и создавать избыточное давление, система отопления является замкнутой.

Теплоноситель в контуре течет за счет перепада давления, которое создает насос.

Как же все это посчитать и понять, какой напор нужен насосу?

  • Отталкиваться нужно от потерь давления в самой системе отопления.
  • Представьте, что вам нужно перевезти мебель из одного места в другое.
  • С чего вы начнете решение этой задачи?
  • Вы станете заказывать машину или сначала посмотрите объем мебели?

Конечно же, прежде чем заказывать машину, вам нужно увидеть объем перевозимого груза. Это поможет определиться с маркой машины, ее грузоподъемностью и вместимостью.

  1. Также обстоит дело и при выборе напора насоса.
  2. Чтобы понять, какой нужен напор, необходимо посчитать каким гидравлическим сопротивлением обладает сама система отопления, и какое препятствие она будет создавать движению воды.
  3. Для этого расчета используют формулу:
  4. ΔP = 1,3 * Σ [R * L] + ΣZ, где
  5. ΔP — потеря давления в системе, Па (измеряется в Паскалях);

Как мы уже говорили, напор насоса измеряется в метрах, а систему считаем в Паскалях. Как соизмерить эти единицы, поговорим чуть дальше.

R — потери давления в трубах, Па/м;

L — длина труб в метрах всего контура отопления (подача и обратка), по которому циркулирует теплоноситель. Расчет ведется по самому длинному и нагруженному контуру (если контуров несколько). Также следует учитывать изменение диаметра трубопровода на разных участках. Поэтому длина конкретного участка считается отдельно.

Z — потери в других элементах системы, Па;

Σ — сумма (символ не несет конкретной цифры, а обозначает сумму тех чисел или параметров, который следуют за ним).

Применение формулы на практике

По нанесенной на план схеме отопления, где уже проставлена тепловая нагрузка на каждый участок системы (нагрузку считаем, используя методику, приведенную в предыдущей статье), находим самое длинное циркуляционное кольцо. Если диаметр трубопровода на протяжении всего кольца не меняется, то просто записываем его длину. Если кольцо имеет трубы разного диаметра, то считаем общую длину труб каждого диаметра, включая подачу и обратку.

Дальше можно воспользоваться одним из двух способов определения сопротивления системы:

  1. сопротивление, заложенное в проекте (от 100 до 150 Па/м);
  2. сопротивление, создаваемое величиной расхода в зависимости от выбранной скорости движения теплоносителя — оптимальной считается скорость равная 0,3 — 0,7 м/c (по принципу: чем больше расход теплоносителя протекает через одно и то же сечение трубы, тем больше сопротивление движению теплоносителя оказывают внутренние стенки трубы и других элементов системы).

Первый способ — самый легкий для расчета. Сопротивление участков трубы закладывается на стадии проекта по показателям, выверенным на практике и прошедших апробацию в течение продолжительного времени.

  • Что это за показатели?
  • Это закладываемое сопротивление участка трубы вне зависимости от ее внутреннего диаметра, равное 100 — 150 Па/м.
  • Как это делается?
  • Практикой установлено, что гидравлическое сопротивление трубопровода, равное 100 — 150 Па/м, является наиболее приемлемым с точки зрения оптимизации по: стоимости материала, трудозатратам, выполнению требований СНиП, а также будущим энергозатратам, связанным с работой циркуляционного насоса и других устройств.

Поэтому, заложив, к примеру, сопротивление, равное 100 Па/м, проектировщик приступает к расчету расхода теплоносителя на магистралях, ветках, стояках и т.д., по которым тепло движется в отапливаемые помещения.

Рассчитав тепловые нагрузки и пользуясь заложенными в проект сопротивлением (100 Па/м), проектировщик увеличивает или уменьшает внутренний диаметр трубопровода.

А чем пользуется проектировщик, чтобы понять: когда сопротивление трубопровода при расчетной величине лежит в пределах заложенного сопротивления, а когда выходит за этот предел?

Хотя для этого есть специальные формулы, в большинстве случаев пользуются готовым таблицами, взятыми у производителя трубопровода или из приложений справочников. Пример такой таблицы вы можете посмотреть ниже (для увеличения картинки кликните левой кнопкой мышки по изображению).

  1. Итак, чем же прост этот способ расчета сопротивления отопительной системы дома?
  2. Тем, что измерив длину труб самого протяженного циркуляционного кольца (включая подачу и обратку), вы умножаете ее на 100 Па/м и получаете гидравлическое сопротивление основного циркуляционного кольца.
  3. Затем полученную цифру увеличиваете на 30% (в большинстве случаев этого достаточно, чтобы учесть потери давления на угольниках, тройниках, не считая их количество и их КМС — коэффициент местного сопротивления).

Далее к полученной цифре вы прибавляете потери давления на фильтре грубой очистки в чистом состоянии (данные берутся в каталоге конкретного производителя), потери давления в котле и потери давления на запорной и регулировочной арматуре. Все перечисленные данные берутся из паспортов или каталогов конкретного производителя.

Выполнив все действия, вы рассчитали потери давления в основном циркуляционном кольце системы отопления.

«Очень долго и сложно», — скажете вы.

Нет! На самом деле, на практике все происходит гораздо быстрее. И пример, рассмотренный ниже, доказательство этому.

Давайте посчитаем потери давления в системе отопления жилого дома, для которого мы рассчитывали расход теплоносителя.

Напомним, площадь дома равна 490 м2.

Предположим, что дом четырехуровневый с цокольным этажом, где находится котел и насос. В результате замера, учитывая выбранную схему системы отопления, длина всех труб самого длинного циркуляционного кольца (включая подачу и обратку) у вас получилась 90 м.

В проекте вы решили заложить потери давления в трубопроводе, равные 150 Па/м. В системе у вас заложен фильтр грубой очистки с потерями давления 5000 Па (из каталога производителя). Также установлен котел, потери давления в котором составляют 1770 Па. И не забудем добавить 30% потерь давления от потерь трубопровода на повороты, сужения и ответвления.

  • Подставляем полученные значения в формулу и получаем:
  • 1,3 * (90 * 150) + 1770 + 5000 = 24320 Па.
  • Таковы потери давления в нашей системе.
  • Чтобы подобрать насос, переведем Паскали в метры.
  • 1 м = 9807 Па (или приблизительно в 1 м — 10000 Па).
  • В нашем случае мы получили потерю давления в системе отопления, равную
  • 24320 / 9807 = 2,48 м.
  • А теперь будем подбирать насос, но сначала поговорим о таких понятиях как:
  • кривая работы насоса;
  • рабочая точка насоса;
  • КПД.
Оцените статью