- Повышение эффективности работы водяного теплого пола и его КПД
- Система водяного теплого пола: особенности, управление
- Почему так популярны теплые полы
- Хватит ли теплого пола, чтобы отопить дом
- Теплоотдача теплого пола: простой расчет и советы по оптимизации 28.07.2014 – Опубликовано в: Теплый пол – Метки: теплоотдача
- Факторы
- Общие правила
- Расчет потребности в тепле
- Расчет теплоотдачи
- Пленочный нагреватель
- Греющий кабель
- Водяной теплый пол
- Заключение
Повышение эффективности работы водяного теплого пола и его КПД
Коэффициент полезного действия (КПД) – это соотношение выполненной работы с затраченными на ее выполнение ресурсами. Следственно из этого выходит, что чем более высокий КПД у какого-ибо устройства, тем меньше ресурсов потребуется для достижения требуемого результата. Вопрос экономии денежных средств всегда и везде имеет место, вне зависимости от достатка человека, социального статуса и прочих особенностей.
Водяной теплый пол, как и другая система отопления, — это именно то, что очень ярко показывает, насколько все-таки важно, чтобы из одного количества ресурсов получилось как можно больше результата. Побродив по просторам Интернета можно с уверенностью сказать, что огромное количество людей сталкиваются с тем, что работа отопительной системы оказывается неэкономичной и неэффективной. Именно от таких людей поступает самое большое количество жалоб на то, что производители и веб-сайты дают некорректную информацию по поводу выгодности использования водяных теплых полов. Но эти люди, зачастую, и не задумывались о том, что нужно что-то сделать, чтобы увидеть реальную выгоду от работы теплого пола.
В первую очередь эффективность водяного теплого пола зависит от того какой материал был выбран в качестве полового покрытия и для трубопровода. Так, к примеру, большинство видов ламината и паркета являются материалами, обладающими теплоизолирующими свойствами, что приводит к большим потерям тепла, если не принять соответствующие меры при монтаже. В таком случае повышение эффективности и КПД может быть достигнуто путем приобретения специализированных материалов и максимально возможного уменьшения толщины покрытия, которое находится между непосредственно Вашими ногами и трубой теплого пола. В таком случае потери тепла минимизируются, а следственно – повышается эффективность.
Еще один актуальный совет по теме – старайтесь использовать более новые материалы, которые становятся доступными на рынке. В абсолютном большинстве случаев они обладают достаточно хорошими свойствами, которые, к тому же, могут эффективно комбинироваться. Так, к примеру, если раньше в качестве основы и нижней «подушки» для трубопровода теплого водяного пола использовалась цементная стяжка и арматурная мелкоячеистая сетка, вместе с которыми укладывались слои гидроизоляции и теплоизоляции, то теперь можно с легкостью использовать гораздо более эффективный способ – специальную подкладку, которая уже обладает всеми требуемыми свойствами, а также имеет специальные выступы, которые используются в качестве креплений для труб. Все это экономит не только деньги, но и гораздо лучше справляется со своей работой! Никогда не бойтесь вложить немного больше для получения более высокой эффективности, ведь это гарантированно окупится сторицей!
Система водяного теплого пола: особенности, управление
В нашей стране системы напольного отопления появились сравнительно недавно, и длительное время оставались нестандартным способом отопления и одним из признаков состоятельности. Сегодня же они получили повсеместное распространение в сфере частного загородного домостроения, как в комбинированных системах отопления, так и в качестве альтернативы радиаторам. В обоих случаях наиболее востребован водяной теплый пол, при помощи специалиста компании Uponor и участников нашего портала разберемся, на чем основан все возрастающий спрос на эти системы и как их автоматизировать.
- Почему так популярны теплые полы
- Хватит ли теплого пола, чтобы отопить дом
- Управление системой водяного теплого пола
Почему так популярны теплые полы
Главным отличием систем водяного теплого пола от радиаторных является не столько скрытая прокладка контура с теплоносителем, хотя и это база для массы преимуществ, сколько пониженная температура теплоносителя. В европейских странах эти системы успешно прошли проверку временем – более полувека даже в северной части континента именно их используют в качестве основного источника тепла. Естественно, такой выбор обусловлен исключительно практичностью, а не менталитетом.
Ввиду особенностей напольных систем, можно сказать, что они экономичны, экологичны и эстетичны. Низкотемпературные системы поверхностного отопления вырабатывают мягкое лучистое тепло и воздействуют напрямую на человека, без промежуточного прогрева воздушных масс в помещении. Это позволяет снизить температуру в комнатах, при этом сохранить необходимый уровень комфорта и снизить затраты на отопление.
И речь не только о комфорте, но и о предпочтительном микроклимате.
Тепло, излучаемое теплым полом, воспринимается во много раз лучше конвекционного. Это обусловлено биологическим строением нашего тела. По результатам исследований ученых, ощущение комфорта и тепла возникает у человека тогда, когда температура на уровне его ног несколько выше температуры уровня его головы. Оптимальное состояние, когда температура поверхности пола составляет от 20 до 29°C, а на уровне головы – от 19 до 24°C.
Кроме того, что «в здоровом теле здоровый дух», отопление теплым полом еще и выгодно.
- С точки зрения затрат – хотя теплый пол на этапе монтажа обходится дороже, при эксплуатации он выгоднее, за счет меньшего нагрева теплоносителя и равномерного распределения тепла, экономия на энергоносителях варьируется в пределах 12-15 %.
- С точки зрения декоративности – стать украшением интерьера могут только эксклюзивные дизайнерские радиаторы, доступные типовые модели в лучшем случае, не испортят вид. Но и тогда создадут определенные ограничения при оформлении интерьера, в то время как скрытая отопительная система напротив, «развязывает руки».
- С точки зрения практичности – конвективная система отопления, базирующаяся на циркуляции воздушных масс, сопровождается и циркуляцией пыли, оседающей на все поверхности. А это не только лишняя уборка, особенно, если интерьер в темных тонах (не говоря о самих радиаторах и пространстве за ними), но и неблагоприятный фактор для астматиков и аллергиков.
Напольное отопление выбирают и чтобы эстетику сохранить, особенно, когда остекление панорамное, и чтобы «ноги в тепле, а голова в холоде», и в надежде с годами остаться в плюсе. Эффективность же водяного теплого пола доказана практикой – основная масса построенных или реконструированных загородных домов сегодня отапливается преимущественно комбинированной системой, теплый пол и радиаторы, либо только теплым полом. Мало того, подобными системами в качестве единственного источника тепла начали оснащать и многоэтажные дома в жилых комплексах.
Чтобы повысить уровень комфорта жильцов, создать оптимальный микроклимат и сократить затраты на отопление, для одного из ЖК в Санкт-Петербурге была выбрана система водяного теплого пола. В среднем, это позволило снизить потребление энергии в квартирах на 20 %.
- Используемые трубы – сшитый полиэтилен PE-Xa 17×2,0 (с антидиффузионным слоем).
- Укладка – спираль (для обеспечения равномерной теплоотдачи).
- Шаг укладки петель – 200 мм и 100 мм (над окнами и торцевыми стенами).
Для максимальной отдачи системы укомплектованы управляющей автоматикой.
Основная же масса проблем, приписываемых водяному теплому полу (зебра, горячо/холодно, протечки и т. д.), связана не с недостатками системы как таковой, а с ошибками при проектировании, некачественными комплектующими или нарушениями технологии монтажа.
Хватит ли теплого пола, чтобы отопить дом
Как чисто не там, где чаще метут, а там, где не сорят, так и тепло не там где сильнее топят, а там, где теплопотери меньше. Чтобы температура в доме была комфортной для жильцов, подача тепла должна покрывать его отток через ограждающие конструкции. В домах предыдущего поколения этого добивались преимущественно за счет увеличения мощности и просто сильнее «кочегарили» печи или котлы. Теперь с такой системой можно в прямом смысле «вылететь в трубу» на счетах за энергоносители, и все силы брошены на сокращение оттока. А в домах с герметичным контуром тип отопительной системы практически не играет роли, так как за счет утепления теплопотери минимальны и для их восполнения может быть достаточно и обогрева только полом. Однако в каждом конкретном случае необходим точный теплотехнический расчет с учетом индивидуальных параметров дома.
Поддерживать комфортную температуру в доме – задача всей, правильно спроектированной системы отопления. Если по тепловому расчету выходит так, что теплого пола, с нормированной температурой поверхности, хватает для достижения комфортной температуры, значит, больше ничего не нужно. Если нет, то необходимо добавить другие отопительные приборы.
Теплоотдача теплого пола: простой расчет и советы по оптимизации 28.07.2014 – Опубликовано в: Теплый пол – Метки: теплоотдача
Сколько тепла способен отдать теплый пол известной площади? Как увеличить эффективность работы низкотемпературного отопления?
В статье мы ответим на эти вопросы, а также разберем максимально простые способы приблизительной оценки потребности в тепле и дадим ряд советов по оптимизации работы теплых полов разных типов.
Теплый пол – прекрасная альтернатива радиаторам отопления.
Факторы
Давайте разобьем задачу на составляющие.
Что именно нам нужно рассчитать?
- Потребность помещения в тепле. Она определяется площадью, качеством теплоизоляции и климатической зоной.
- Затем нам нужно выяснить, на какую удельную мощность отопления в пересчете на квадрат площади обогреваемой поверхности стоит рассчитывать.
Обратите внимание: в холодном климате нередки ситуации, когда низкотемпературное отопление в принципе не может обеспечить нужный тепловой поток.
В этом случае теплый пол сочетается с радиаторным отоплением.
Среди прочего, при монтаже водяного теплого пола это решает проблему слишком горячей для низкотемпературного отопления подачи: оно получает теплоноситель из обратного трубопровода радиаторного контура.
Чаще, впрочем, используется схема с узлом смешения: она позволяет сделать контуры полностью независимыми.
- Наконец, нам предстоит выяснить, можно ли покрыть потребность помещения в тепле за счет возможностей системы теплого пола.
Общие правила
Прежде чем перейти к подсчетам, сформулируем несколько правил общего характера, применимых при монтаже систем теплого пола своими руками.
- Все материалы над уровнем нагревательного элемента (трубы, кабеля или пленки) должны иметь максимальную теплопроводность. Инструкция связана с тем, что эффективная теплоотдача прямо пропорциональна тепловой мощности нагревательного элемента и обратно – тепловому сопротивлению покрытия.
- Ниже нагревательного элемента необходима, напротив, максимально эффективная теплоизоляция. Мы не заинтересованы в потерях тепла через перекрытие. В идеале теплоизоляционный материал должен не только блокировать передачу тепла за счет прямого контакта или конвекции, но и отражать тепловое излучение.
- Чем лучше теплоизоляция дома в целом, тем меньше потребности в тепловой мощности. Рекомендации и нормативы несложно найти в СНиП “Тепловая защита зданий” (23-02-2003); там же в приложении приводятся значения теплопроводности различных материалов, используемых в строительстве.
- Теплые полы под мебелью с массивным основанием – пустая трата денег. Поверхность все равно будет надежно теплоизолирована от комнаты. В случае пленочного нагревательного элемента или резистивного греющего кабеля высокая степень теплоизоляции участка пола грозит еще и перегревом с последующим выходом нагревательного элемента из строя.
Практическое следствие: если точное расположение предметов мебели неизвестно, в общем случае по периметру помещения оставляется участок пола без обогрева шириной примерно 30 сантиметров.
Схема укладки для кухни. Пол под мебелью не обогревается.
Расчет потребности в тепле
Предельно грубая оценка для квартиры в многоквартирном доме выполняется по формуле Q=S/10, где Q – потребность в тепле в киловаттах, S – площадь отапливаемого помещения в квадратных метрах. Так, для обогрева комнаты площадью 30 м2 согласно этой формуле требуется 30/10=3 КВт тепловой мощности.
Простой способ, разумеется, дает весьма значительные погрешности:
- Он актуален для потолков высотой около 2,5 метров. Однако во многих многоквартирных новостройках, в сталинках и частных домах потолки выше 3 метров – норма.
- Утечки тепла через стены сильно зависят от климатической зоны. Один и тот же дом, размещенный в Крыму и в Якутии, придется обогревать весьма по-разному.
- Квартиры в середине многоквартирного дома и у его торцевых стен тоже различаются потребностью в тепле.
- В частном доме к утечкам через стены добавляется потеря тепла через пол и крышу. То же самое (хоть и в меньшей степени) относится к квартирам на крайних этажах.
- Наконец, окна и двери обладают куда большей теплопроводностью по сравнению с капитальными стенами.
Уточненный расчет выглядит так:
- На кубометр объема помещения берется 40 ватт тепла.
- Для крайних этажей и торцевых квартир используется дополнительный коэффициент 1,2 – 1,3. Для частных домов, у которых тепло теряется через все ограждающие конструкции (теплых квартир за стенкой там, сами понимаете, нет) – 1,5.
- На каждое окно среднего размера (150х145 см) добавляется 100 ватт. Для каждой ведущей на улицу или балкон двери – 200 ватт.
- Вводится региональный коэффициент: для Сочи, Ялты и Краснодара он равен 0,7 – 0,9, для центра России – 1,2 – 1,3, для Сибири и регионов Крайнего Севера – 1,5 – 2,0.
Давайте снова рассчитаем потребность в тепле для нашей 30-метровой комнаты, уточнив ряд параметров:
- При размере 5х6 метров мы сделаем высоту потолка равной 3,2 метра.
- Мысленно поместим ее в Верхоянск (средняя температура января – -45,4 С, абсолютный минимум – -67,8 С).
- Расположим в частном доме и снабдим двумя стандартного размера окнами и одной дверью.
Объем комнаты равен 5х6х3,2=96 м3.
Базовая потребность в тепле – 40х96=3840 ватт.
Расположение в частном доме увеличивает ее до 3840х1,5=5760Вт.
Добавляем к ней 400 Вт на окна и двери. 5760 + 400 = 6160.
Региональный коэффициент с учетом климата можно смело брать максимальным – 2,0. 6160х2=12320. Не правда ли, разница с упрощенным расчетом более, чем ощутима?
Типичный отопительный прибор в северных регионах имеет теплоотдачу не меньше 2 КВт. В угловых комнатах ставится как минимум два таких прибора.
Уточним: и эта методика представляет собой в некотором роде профанацию.
Более точен расчет, учитывающий теплопроводность каждого из слоев ограждающих конструкций с учетом их толщины.
Для окон и дверей тоже используются точные расчеты с учетом их структуры и материалов.
Расчет теплоотдачи
Пленочный нагреватель
Номинальная мощность пленочного нагревателя, укладываемого под чистовое покрытие, составляет 150 – 220 ватт.
Казалось бы, дальнейший расчет прост; однако стоит учесть еще пару факторов.
- Типичная теплоизоляция пленочного теплого пола представляет собой слой фольгоизола – вспененного полиэтилена с фольгированной поверхностью. Поскольку ее эффективность ограничена небольшой (как правило, не более 4 миллиметров) толщиной, часть тепла неизбежно рассеивается в перекрытии.
- Если теплоизоляция более эффективна (к примеру, нагреватель уложен по сухой стяжке или деревянному перекрытию с мощным слоем теплоизоляционного материала), фактическая средняя теплоотдача все равно будет ниже номинальной мощности. Она ограничена верхним пределом температуры пола.
Существующие терморегуляторы позволяют задать ее в диапазоне до 40 градусов. После достижения этой температуры нагревательный элемент отключается, и пол какое-то время остывает. Комфортной нормой для жилого помещения и вовсе считается значение не выше 33 С.
На фото – электромеханический терморегулятор для пленочного теплого пола. Максимально допустимая температура ограничена значением в 40 С.
Что в результате? А в результате средняя эффективная теплоотдача поверхности пола равна примерно 70 ваттам на квадратный метр.
Вернемся к нашей 30-метровой комнате. При укладке нагревательной пленке по всей ее поверхности, за исключением 30-сантиметрорвой зоны по периметру, площадь обогрева составит 5,7х4,7=26,79 м2. Теплоотдача будет равна 26,79х70=1875 ватта.
Как легко заметить, для суровой климатической зоны этого количества тепла явно недостаточно. Быть может, его хватит в более теплом регионе?
Мысленно перенесем нашу комнату в Ялту (средняя температура января – +4,4 С), условимся, что она находится в середине многоквартирного дома и имеет высоту потолка 2,5 метра. Потребность в тепле в этом случае можно оценить в (5х6х2,5)х40х0,7=2100 ватт. Как мы видим, даже в этом случае в теории для полноценного обогрева потребуются дополнительные источники тепла.
Однако: фактически в так называемых энергоэффективных домах благодаря наружной теплоизоляции и комплексу прочих мер по экономии тепла реальная потребность в тепле может опускаться до 20 ватт на кубометр воздуха.
Понятно, что с этой оговоркой пленочный теплый пол может быть единственным отопительным прибором.
Греющий кабель
Типичный резистивный греющий кабель имеет удельную теплоотдачу в 20-30 ватт на погонный метр.
Двужильный резистивный греющий кабель.
При расчете его количества и шага укладки стоит учитывать несколько факторов.
- Минимальный шаг при укладке в стяжку (кабель предназначен именно для этого способа монтажа) – 10 сантиметров. Максимальный – 30. При большем шаге будет ощущаться неравномерность нагрева покрытия.
- Метраж кабеля рассчитывается как L=S/Dх1,1, где S – площадь пола в квадратных метрах, D – шаг укладки, а 1,1 – коэффициент, позволяющий учесть изгибы между витками. Так, при шаге в 15 см для обогрева одного квадрата потребуется 1/0,15х1,1=7,33 метра.
Таким образом, для получения расчетной теплоотдачи в 150 ватт на квадратный метр нам в идеале нужно укладывать 20-ваттный кабель с шагом 15 см (7,33х20=146,6).
На практике, однако, лучше взять кабель с удельным тепловыделением в 30 ватт/м2:
- Кабель будет, как и пленка, укладываться не по всей площади помещения.
- Даже в идеальном с точки зрения эффективности случае (100 миллиметров экструдированного пенополистирола в качестве теплоизолирующей подушки между стяжкой и перекрытием и кафель в качестве чистового покрытия) фактическая средняя теплоотдача кабеля будет снижаться терморегулятором при достижении пороговой температуры. Теплопроводность стяжки и кафеля довольно велика, но не бесконечна.
Фактический максимум тепла, который можно получить с квадратного метра поверхности пола – что-то около 120 ватт. Увеличить значение можно, но лишь подняв температуру пола выше комфортного значения.
Водяной теплый пол
Если в вашем распоряжении есть источник тепла, при использовании которого цена киловатта существенно ниже, чем киловатта электроэнергии (магистральный газ, дрова и т.д.), единственным разумным выбором становится водяной теплый пол.
Теплообменник представляет собой трубу, уложенную под чистовое покрытие.
От чего зависит теплоотдача водяного теплого пола?
- От температуры теплоносителя. Она может быть несколько выше температуры поверхности, но не превышает, как правило, 50 градусов. Типичный перепад температуры на контуре – 45/35 С.
- От температуры воздуха. Чем она ниже, тем больше тепловой поток между полом и помещением.
- От все того же шага укладки труб теплого пола. Чем он меньше, чем больше тепла передается стяжке.
- В гораздо меньшей степени – от диаметра трубы, по которой двигается теплоноситель.
Полезно: в абсолютном большинстве случаев используется труба минимального диаметра – 16 миллиметров.
В изданной в Вене в 2008 году “Настольной книге проектировщика” приводится таблица теплоотдачы теплого пола для следующих условий: температура подачи/обратки – те самые 45/35 С, температура воздуха – 18 С, покрытие пола – кафель.
- При шаге между витками трубы 250 миллиметров квадратный метр пола отдает 82 ватта тепла.
- При шаге 150 мм – 101 ватт.
- При шаге 100 мм – 117 ватт.
Примерно от этих значений и можно отталкиваться при проектировании.
Зависимость теплового потока от шага труб и температуры теплоносителя.
Заключение
Наконец, приведем еще одну универсальную формулу расчета. Тепловой поток с поверхности пола можно рассчитать как 12,6 ватта/(м2хС). Значение прямо пропорционально перепаду температуры между воздухом и полом.
Таким образом, при температуре пола 33 С и воздуха в 18 С теоретическим максимумом для одного квадрата становится количество тепла в 12,6(33-18)=189 ватт.