Как правильно рассчитать теплообменник для отопления

Расчёт и Подбор Теплообменника для системы отопления

Расчёт для ГВС парал. схемы

Расчёт для Отопления

Расчёт для ГВС двухступ. схемы

Устройство и конструкция

Установка и подключение

Данный online расчёт теплообменника сформирует запрос на подбор теплообменного аппарата для системы отопления, а также отправит его производителям пластинчатых теплообменников, разумеется при вашем желании.

Подбор теплообменника

Подбор теплообменника предполагает выбор формы, размеров и количества пластин, а также схемы их укладки в блок теплообменного аппарата. При этом из-за многообразия вариаций даже у одного производителя теплообменников на каждый запрос может быть подобранно несколько различных теплообменных аппаратов.

Пластины для теплообменников изготовленные различными производителями, даже при схожих размерах, не являются взаимозаменяемыми и обладают свойственными только им теплотехническими особенностями, поэтому и подбираются по индивидуальным методикам. Производители теплообменников не раскрывают методики подбора даже своим региональным партнёрам, предоставляя им лишь программное обеспечение, которое после ввода исходных данных выдаёт готовый результат.

Поэтому данный online расчёт поможет вам корректно сформировать запрос на подбор теплообменника и при вашем желании сразу отправит его нескольким производителям.

Расчёт теплообменника для системы отопления

Рассчитывая пластинчатый теплообменник пренебрегают незначительными потерями с корпуса считая, что всё тепло отданное теплоносителем в греющем контуре переходит к теплоносителю в нагреваемом контуре, поэтому в расчёте всегда должен соблюдаться тепловой баланс.

Проверить правильность теплового баланса между греющим и нагреваемым контуром можно по простой формуле.

Q [кВт] = 1.163 · G [т/ч] · dt [°C]

Полученные значения количества тепла после подстановки параметров греющего и нагреваемого контуров должны быть равны.

При расчёте пластинчатого теплообменника для системы отопления исходными являются величины тепловой мощности системы отопления и расчётный температурный график системы отопления и источника тепла. В результате расчёта определят расход теплоносителя в греющем и нагреваемом контурах.

Основной особенностью расчёта теплообменника для системы отопления является то, что теплообменный аппарат должен обеспечивать корректную работу как на максимальном, так и на переходном режимах эксплуатации.

Максимальным режимом при подборе теплообменника считается режим с расчётной для системы отопления температурой наружного воздуха (для Киева это -22°C). В расчётном режиме от источника тепла приходит теплоноситель с максимальной температурой на пике температурного графика (если источником является тепловая сеть, то это может быть 120/70°C, то есть в подаче 120°C, а в обрате 70 °C, а в автономной котельной может быть принят график 95/70 °C), так и в систему отопления вода поступает с максимальной температурой на пике температурного графика например 90/70°C или 80/60 °C, в зависимости от того какой принят при её расчёте.

Переходным режимом считается режим со средней температурой наружного воздуха за отопительный период в местности где предполагается установка теплообменника (для Киева это -0.1°C). Температуры теплоносителя в переходном режиме на вводе источника тепла и на входе в систему отопления соответственно ниже и определяются по температурному графику при соответствующей температуре наружного воздуха.

Для жителей Украины доступна опция выбора города, при этом температуры наружного воздуха для расчётного и переходного режимов будут выбраны автоматически по ДСТУ-Н Б В.1.1-27:2010 «Строительная климатология», а для жителей других стран придётся ввести температуры вручную.

Несколько распространённых ошибок при заполнении формы расчёта

1 Температура греющей воды на выходе из теплообменника должна быть больше температуры нагреваемой воды на входе в него на всех режимах эксплуатации. В противном случае теплообменный аппарат получится бесконечно больших размеров.

Это означает что если у вас температурный график работы источника тепла составляет 130/70°C, а расчётный температурный график системы отопления 90/70°C, то либо следует принять более высокую температуру греющей воды на выходе из теплообменника, например 130/80°C, либо принять более низкий температурный график для системы отопления например 80/60°C. Повышение температуры в обратном трубопроводе источника тепла при независимом подключении системы отопления на 5-10°C разрешается строительными нормами (ДБН).

Читайте также:  Вакуумные тепловые трубки для отопления

2 Не задавайте допустимые потери давления в теплообменнике ниже 10кПа (1м.вод.ст), если это не принципиальное условие. Чем меньше вы задали допустимые потери давления, тем большим будет теплообменный аппарат и соответственно большей его цена.

Тепловой расчет теплообменных аппаратов

Введение

Теплообменный аппарат – это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации – проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Уравнение теплопередачи имеет следующий вид:

  • Q – размер теплового потока, Вт;
  • F – площадь рабочей поверхности, м2;
  • k – коэффициент передачи тепла;
  • Δt – разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором.

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

  • G1 и G2 – расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • cp1 и cp2 – удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит – с другой. Эти величины (t1 вх ;t1 вых и t2 вх ;t2 вых ) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

  • Температура греющего носителя при входе t1 вх = 14 ºС;
  • Температура греющего носителя при выходе t1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t2 вых = 12 ºС;
  • Расход массы греющего носителя G1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости ср =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим мощность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 – 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 – 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

Читайте также:  Диагональное подключение радиаторов отопления своими руками

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Вы можете самостоятельно провести тепловой расчет на основе уравнений выше и получить результат в pdf-формате (в полях «Допустимые потери», «Давление расч.» и «Tmax» можно указать произвольные данные, единственное ограничение: Tmax > t1).

ВАЖНО: Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата – основные взаимосвязанные показатели качества работы теплообменника. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности механического расчета теплообменника, поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Базовые понятия теплообмена для расчета теплообменников

Когда проводится расчет теплообменников, используются базовые знания о законах теплообмена, открытые на сегодняшний день.

В частности используются такие понятия как удельная теплоемкость и теплосодержание (энтальпия), а также удельная теплота химических превращений (и фазовых превращений).

Под удельной теплоемкость понимается количество тепла, которое необходимо для нагрева одного килограмма вещества ровно на один градус. На основании данных о теплоемкости можно судить об интенсивности аккумулирования тепла.

При тепловых расчетах используются средняя теплоемкость, исчисляемую в заданном температурном интервале.

Под понятием удельной энтальпии понимается количество тепла, которое потребуется для нагрева одного килограмма от нуля до заданной температуры.

Под удельной теплотой химических превращений понимается то количество тепла, которое будет выделяться при химической трансформации одной единицы массы данного вещества.

Под удельной теплотой фазовых превращений понимается то количество тепла, которое будет поглощаться или выделяться при изменении агрегатного состояния единицы массы данного вещества.

Расчет теплообменников и различные методы составления теплового баланса

При расчете теплообменников могут использоваться внутренний и внешний методы составления теплового баланса. При внутреннем методе используются величины теплоемкостей. При внешнем методе используются величины удельных энтальпий.

При применении внутреннего метода тепловая нагрузка рассчитывается по разным формулам, в зависимости от характера протекания теплообменных процессов.

Если теплообмен происходит без каких-либо химических и фазовых превращений, а соответственно и без выделений или поглощений тепла.

Соответственно тепловая нагрузка рассчитывается по формуле

Если в процессе теплообмена происходит конденсация пара или испарение жидкости, протекают какие-либо химические реакции, то используется другая форму для вычисления теплового баланса.

При использовании внешнего метода расчет теплового баланса ведется на основании того, что в теплообменный аппарат за какую-то единицу времени поступает и выходит равное количество тепла.
Если при внутреннем методе используются данные о теплообменных процессах в самом агрегате, то при внешнем методе используются данные внешних показателей.

Для расчета теплового баланса по внешнему методу используется формула
.

Под Q1 подразумевается то количество тепла, которое поступает в агрегат и ходит из него за единицу времени.
Под подразумевается энтальпия веществ, которые входит в агрегат и выходят из него.

Читайте также:  Схема отопления газовый котел безопасность

Можно также вычислить разность энтальпий для того, чтобы установить то количество тепла, которое было передано между разными средами. Для этого используется формула .

Если же в процессе теплообмена происходили какие-либо химические или фазовые превращения, используется формула.

Механизмы теплопередачи в расчете теплообменников

Теплообмен осуществляется посредством трех основных видов теплопередачи. Это конвекция, теплопроводность и излучение.

При теплообменных процессах, которые протекают по принципам механизма теплопроводности передача тепла происходит как перенос энергии упругих колебаний молекул и атомов. Данная энергия переходит от одних атомов к другим в направлении уменьшения.

При проведении расчетов параметров передачи тепла по принципу теплопроводности используется закон Фурье:.

Для вычисления количества тепла используются данные о времени прохождения потока, площади поверхности, градиенте температуры, а также о коэффициенте теплопроводности. Под градиентом температуры понимается ее изменение в направлении теплопередачи на одну единицу длины.

Под коэффициентом теплопроводности понимается скорость теплообмена, то есть то количество тепла, которое проходит через одну единицу поверхности в единицу времени.

При любых тепловых расчетах учитывается, что самый большой коэффициент теплопроводности имеют металлы. Различные твердые тела имеют гораздо меньший коэффициент. А у жидкостей этот показатель, как правило, ниже, чем у любого из твердых тел.

При расчете теплообменников, где передача тепла от одной среды к другой идет через стенку, также используется уравнение Фурье для получения данных о количестве передаваемого тепла. Оно вычисляется как количество тепла, которое проходит через плоскость с бесконечно малой толщиной:
.

Если проинтегрировать показатели температурных изменений по толщине стенки, получится

Исход из этого получается, что температура внутри стенки падает по закону прямой линии.

Конвекционный механизм передачи тепла: расчеты

Еще один механизм передачи тепла – конвекция. Это передача тепла объемами среды посредством их взаимного перемещения. При этом передача тепла от среды к стенке и наоборот, от стенке к рабочей среде называется теплоотдачей. Чтобы определить количество тепла, которое передается, используется закон Ньютона

В данной формуле a — это коэффициент теплоотдачи. При турбулентном движении рабочей среды этот коэффициент зависит от многих дополнительных величин:

  • физических параметров текучей среды, в частности теплоемкости, теплопроводности, плотности, вязкости;
  • условий омывания газом или жидкостью теплоотдающей поверхности, в частности скорости текучей среды, ее направления;
  • пространственных условий, которые ограничивают поток (длина, диаметр, форма поверхности, ее шероховатости).

Следовательно, коэффициент теплоотдачи — функция многих величин, что показано в формуле

Метод анализа размерностей позволяет вывести функциональную связь критериев подобия, которые характеризуют теплоотдачу при турбулентном характере движения потока в гладких, прямых и длинных трубах.

Это вычисляется по формуле
.

Коэффициент теплоотдачи в расчете теплообменников

В химической технологии нередко встречаются случаи обмена тепловой энергией между двумя текучими средами через разделяющую стенку. Теплообменный процесс проходит три стадии. Тепловой поток для установившегося процесса остается неизменным.

Проводится расчет теплового потока, проходящего от первой рабочей среды к стенке, затем через стенку теплопередающей поверхности и затем от стенки ко второй рабочей среде.

Соответственно для проведения расчетов используется три формулы:

В результате совместного решения уравнений получаем

Величина

и есть коэффициент теплопередачи.

Расчет средней разности температур

Когда при помощи теплового баланса определено необходимое количество тепла, необходимо провести расчет поверхности теплообмена (F).

При расчете необходимой теплообменной поверхности используется то же уравнение, что и при предыдущих расчетах:

В большинстве случаев температура рабочих сред будет меняться в процессе протекания теплообменных процессов. Значит вдоль теплообменной поверхности будет меняться разность температур. Поэтому проводится расчет средней разности температур. А в связи с тем, что изменение температур не линейно, рассчитывают логарифмическую разность
. В отличие от прямоточного потока, при противоточном движении рабочих сред необходимая площадь теплообменной поверхности должна быть меньше. Если в одном и том же ходу теплообменника используется и прямоточный, и противоточный потоки, разность температур определяется, исходя из соотношения
.

Оцените статью