Гидравлический расчёт системы холодного водоснабжения.
Определив расходы на вводе в здание, переходим к гидравлическому расчёту системы внутреннего трубопровода холодной воды, т.е. к нахождению секундного расхода на каждом расчётном участке, подбору диаметра трубы на этом же участке и определению потерь напора на нём. Результаты расчёта представим в табличной форме (табл. 1).
Гидравлический расчёт начинаем с определения параметров сети по главному направлению, последовательно от диктующего прибора ко вводу в здание. Для монтажа системы внутреннего хозяйственно-питьевого водопровода приняты трубы Фузиотерм ® SDR 11 (PN 10), изготовленные из полипропилена (PP-R).
Имея расчётный расход на участке q c , задаёмся скоростью воды на нём. Скорость движения воды в трубопроводах внутренних водопроводных сетей, в том числе при пожаротушении, не должна превышать 3 м/с. Согласно документации производителя труб – 2 м/с. Принимаем 1,5…2 м/с. Однако максимальные скорости движения воды приводят к значительному увеличению потерь напора, особенно на длинных участках сети. Это приводит к увеличению требуемого напора повысительной установки, как следствие – её удорожание и увеличение эксплуатационных расходов на электроэнергию. При выполнении студенческих работ рекомендуем принимать максимальную скорость движения воды – 1,2 м/с.
Находим значения диаметров, скорости и удельных потерь. Потери напора на расчётном участке с учётом местных сопротивлений определяем по формуле:
где i – гидравлический уклон или удельные потери давления на метр длины трубопровода.
Значения kl следует принимать:
0,3 — в сетях хозяйственно-питьевых водопроводов жилых и общественных зданий;
0,2 — в сетях объединенных хозяйственно-противопожарных водопроводов жилых и общественных зданий, а также в сетях производственных водопроводов;
0,15 — в сетях объединенных производственных противопожарных водопроводов;
0,1 — в сетях противопожарных водопроводов.
Для рассматриваемого случая (хозяйственно-питьевой водопровод жилых зданий) — kl = 0,3.Расчёт начинаем с первого участка 1-2. Длина участка l=0,43м. По участку вода поступает к одному прибору: N=1. Произведение числа приборов на секундную вероятность их действия: N∙P c =1∙0,0068=0,0068. Коэффициент α c =0,2. Секундный расход холодной воды: q c =5∙q c o× α c =5×0,2∙0,2=0,2 л/с. Диаметр подводки принят d c 1-2=20 мм как минимально возможный. Находим, что V=0,97 м/с. Полученная скорость не превысила максимально допустимую 1,2 м/с, следовательно, увеличение диаметра не требуется. Удельные потери напора на участке 1-2 составят R=8,23 мбар/м=8,23∙10,2=83,95 мм в.ст./м. Потери напора на всём участке с учётом местных сопротивлений составят Н1‑2=83,95/1000∙0.43∙(1+0,3)= 0.047 м.
Гидравлический расчёт внутридомового холодного водоснабжения
Учас- ток | Длина l, м | Число приборов N, шт. | N∙Pc | Коэф- фициент αс | qc, л/с (п. 2.1, поз. 6) | d, мм | Ско-рость V, м/с | Удель-ные, мбар/м | На участке, м | С учётом местных сопро-тивле-ний, м |
1-2 | 0.43 | 1 | 0.0068 | 0,200 | 0,200 | 20 | 0.97 | 8.23 | 0.036 | 0.047 |
2-3 | 0.64 | 2 | 0.0136 | 0,201 | 0,201 | 20 | 0.97 | 8.23 | 0.054 | 0.070 |
3-4 | 1.6 | 3 | 0.0204 | 0,215 | 0,215 | 20 | 0.98 | 8.36 | 0.136 | 0.177 |
4-5 | 1.6 | 6 | 0.0408 | 0,258 | 0,258 | 20 | 1 | 8.73 | 0.142 | 0.185 |
5-6 | 1.6 | 9 | 0.0612 | 0,290 | 0,290 | 20 | 1.01 | 9.01 | 0.147 | 0.191 |
6-7 | 1.6 | 12 | 0.0816 | 0,320 | 0,320 | 25 | 0.93 | 5.66 | 0.092 | 0.120 |
7-8 | 2.83 | 15 | 0.1020 | 0,343 | 0,343 | 25 | 0.93 | 5.75 | 0.166 | 0.216 |
8-9 | 2.63 | 45 | 0.3060 | 0,542 | 0,542 | 32 | 0.95 | 4.39 | 0.118 | 0.153 |
9-10 | 9.17 | 75 | 0.5100 | 0,685 | 0,685 | 40 | 0.73 | 2.07 | 0.194 | 0.252 |
10-11 | 2.65 | 105 | 0.7140 | 0,809 | 0,809 | 40 | 0.96 | 3.37 | 0.091 | 0.118 |
11-ввод | 3.2 | 120 | 0.8160 | 0,872 | 0,872 | 40 | 0.97 | 3.42 | 0.112 | 0.145 |
Аналогично выполняем гидравлический расчёт внутриквартальной сети. Для этого разбиваем внутриквартальную сеть на участки.
Гидравлический расчёт внутриквартальных сетей холодного водоснабжения
(P c =0,0068; q c o=0,2 л/с; P tot =0,0126; q tot o=0,3 л/с )
Учас- ток | Длина l, м | Число прибо-ров N, шт. | N∙P | Коэф- фициент α | q, л/с | d, мм | Ско-рость V, м/с | Удель-ные, мбар/м | На участке, м | С учётом местных сопро-тивле-ний, м |
ЖД-1 | 95.70 | 120 | 0,816 | 0,870 | 0,870 | 40 | 1,036 | 3,65 | 3.563 | 4.632 |
1-2 | 217.11 | 360 | 2,448 | 1,644 | 1,644 | 63 | 0.774 | 1.31 | 2.901 | 3.771 |
2-3 | 86.07 | 480 | 3,264 | 1,623 | 1,623 | 63 | 0.772 | 1.31 | 1.150 | 1.495 |
3-ЦТП | 89.4 | 600 | 4.08 | 1,950 | 1,950 | 63 | 0.923 | 1.9 | 1.277 | 1.660 |
ЦТП- ГВ1 | 61.38 | 600 | 7.56 | 3,400 | 5.1 | 110 | 0.805 | 0.705 | 0.134 | 0.175 |
∑Hl,tot вн.кв | 11.733 |
Участок сети ЦТП-ГВ1 (городской водопровод) рассчитан на общий секундный расход q tot для объекта с учётом подачи на приготовление горячей воды.
Внутриквартальные сети прокладываем бесканально. С учётом защемления труб грунтом специальной компенсации температурных удлинений не требуется.
Подбор счётчика воды.
На вводе холодного водопровода от городской сети в ЦТП устанавливается счётчик воды, измеряющий общий расход воды по объекту.
Находим среднечасовой общий расход:
,
где Т – период потребления, ч;
— норма расхода воды в сутки наибольшего водопотребления.
Подбираем водомер с диаметром условного прохода 40 мм и проверяем его на пропуск максимального секундного расхода воды (табл. 2), определяя потери напора в нём и сравнивая их с максимально допустимыми.
что больше допустимых 5 м для крыльчатых счётчиков.
Увеличиваем калибр счётчика до 50 мм. С 50 мм промышленностью выпускаются турбинные счётчики. Максимально допустимые потери напора для них – 2,5 м.
что больше допустимых 2,5 м для турбинных счётчиков.
Увеличиваем калибр счётчика до 60 мм.
Принимаем к установке турбинный счётчик с Dy = 60 мм.
В проектируемом здании устанавливаются свои счётчики для учета расхода холодной и горячей воды. Эти приборы образуют водомерный узел.
Подберём счётчик для холодной воды, расположенный внутри здания.
Устанавливаем среднечасовой расход холодной воды на всё здание:
,
Подбираем счётчик калибром 20 мм.
Принимаем к установке крыльчатый счётчик с Dy = 20 мм.
Дата добавления: 2018-05-02 ; просмотров: 1815 ; Мы поможем в написании вашей работы!
Гидравлический расчет водопровода: простые методы
Для чего выполняется гидравлический расчет водопроводной сети? Какие именно параметры нуждаются в расчете? Существуют ли какие-то простые схемы расчетов, доступные для новичка? Сразу оговорим: этот материал ориентирован прежде всего на владельцев небольших частных домов; соответственно, такие параметры, как вероятность одновременного использования всех сантехнических приборов в здании, нам определять не нужно.
Как и любая инженерная система, водопровод нуждается в расчете.
Что рассчитывается
Гидравлический расчет внутреннего водопровода сводится к определению следующих параметров:
- Расчетного расхода воды на отдельных участках водопровода.
- Скорости потока воды в трубах.
Подсказка: для внутренних водопроводов нормой считаются скорости от 0,7 до 1,5 м/с. Для пожарного водопровода допустима скорость до 3 м/с.
- Оптимального диаметра водопровода, обеспечивающего приемлемое падение напора. Как вариант – может определяться потеря напора при известном диаметре каждого участка. Если с учетом потерь напор на сантехнических приборах будет меньше нормированного, локальная сеть водоснабжения нуждается в установке подкачки.
Несложный опыт наглядно демонстрирует падение напора в водопроводе.
Расход воды
Нормативы расхода воды отдельными сантехническими приборами можно обнаружить в одном из приложений к СНиП 2.04.01-85, регламентирующему сооружение внутренних водопроводов и канализационных сетей. Приведем часть соответствующей таблицы.
Прибор | Расход ХВС, л/с | Общий расход (ХВС и ГВС), л/с |
Умывальник (водоразборный кран) | 0,10 | 0,10 |
Умывальник (смеситель) | 0,08 | 0,12 |
Мойка (смеситель) | 0,08 | 0,12 |
Ванна (смеситель) | 0,17 | 0,25 |
Душевая кабинка (смеситель) | 0,08 | 0,12 |
Унитаз со сливным бачком | 0,10 | 0,10 |
Унитаз с краном прямой подачи воды | 1,4 | 1,4 |
Кран для полива | 0,3 | 0,3 |
В случае предполагаемого одновременного использования нескольких сантехнических приборов расход суммируется. Так, если одновременно с использованием туалета на первом этаже предполагается работа душевой кабинки на втором – будет вполне логичным сложить расход воды через оба сантехнических прибора: 0,10+0,12=0,22 л/с.
При последовательном подключении приборов расход воды суммируется.
Особый случай
Для пожарных водопроводов действует норма расхода в 2,5 л/сна одну струю. При этом расчетное количество струй на один пожарный гидрант при пожаротушении вполне предсказуемо определяется типом здания и его площадью.
На фото – пожарный гидрант.
Параметры здания | Количество струй при тушении пожара |
Жилое здание в 12 – 16 этажей | 1 |
То же, при длине коридора более 10 метров | 2 |
Жилое здание в 16 – 25 этажей | 2 |
То же, при длине коридора более 10 метров | 3 |
Здания управления (6 – 10 этажей) | 1 |
То же, при объеме более 25 тыс. м3 | 2 |
Здания управления (10 и более этажей, объем до 25000 м3) | 2 |
То же, объем больше 25 тыс. м3 | 3 |
Общественные здания (до 10 этажей, объем 5 – 25 тыс. м3) | 1 |
То же, объем больше 25 тыс. м3 | 2 |
Общественные здания (более 10 этажей, объем до 25 тыс. м3) | 2 |
То же, объем больше 25 тыс. м3 | 3 |
Администрации предприятий (объем 5 – 25 тыс. м3) | 1 |
То же, объем более 25000 м3 | 2 |
Скорость потока
Предположим, что наша задача – гидравлический расчет тупиковой водопроводной сети с известным пиковым расходом через нее. Нам нужно определить диаметр, который обеспечит приемлемую скорость движения потока через трубопровод (напомним, 0,7-1,5 м/с).
Большая скорость потока вызывает появление гидравлических шумов.
Формулы
Расход воды, скорость ее потока и размер трубопровода увязываются друг с другом следующей последовательностью формул:
- S – площадь сечения трубы в квадратных метрах;
- π – число “пи”, принимаемой равным 3,1415;
- r – радиус внутреннего сечения в метрах.
Полезно: для стальных и чугунных труб радиус обычно принимается равным половине их ДУ (условного прохода).
У большинства пластиковых труб внутренний диаметр на шаг меньше номинального наружного: так, у полипропиленовой трубы наружным диаметром 40 мм внутренний приблизительно равен 32 мм.
Условный проход примерно соответствует внутреннему диаметру стальной трубы.
- Q – расход воды (м3);
- V – скорость водяного потока (м/с) ;
- S – площадь сечения в квадратных метрах.
Пример
Давайте выполним гидравлический расчет пожарного водопровода для одной струи с расходом 2,5 л/с.
Как мы уже выяснили, в этом случае скорость водяного потока ограничена м/с.
- Пересчитываем расход в единицы СИ: 2,5 л/с = 0,0025 м3/с.
- Вычисляем по второй формуле минимальную площадь сечения. При скорости в 3 м/с она равна 0,0025/3=0,00083 м3.
- Рассчитываем радиус внутреннего сечения трубы: r^2 = 0,00083/3,1415 = 0,000264; r = 0,016 м.
- Внутренний диаметр трубопровода, таким образом, должен быть равен как минимум 0,016 х 2 = 0,032 м, или 32 миллиметра. Это соответствует параметрам стальной трубы ДУ32.
Обратите внимание: при получении промежуточных значений между стандартными размерами труб округление выполняется в большую сторону.
Цена труб с диаметром, отличающимся на шаг, различается не слишком сильно; между тем уменьшение диаметра на 20% влечет за собой почти полуторакратное падение пропускной способности водопровода.
Пропускная способность первой и третьей труб различается вчетверо.
Простой расчет диаметра
Для быстрого расчета может использоваться следующая таблица, непосредственно увязывающая расход через трубопровод с его размером.
Расход, л/с | Минимальный ДУ трубопровода, мм |
0,2 | 10 |
0,6 | 15 |
1,2 | 20 |
2,4 | 25 |
4 | 32 |
6 | 40 |
10 | 50 |
Потеря напора
Формулы
Инструкция по расчету потери напора на участке известной длины довольно проста, но подразумевает знание изрядного количества переменных. К счастью, при желании их можно найти в справочниках.
Формула имеет вид H = iL(1+K).
- H – искомое значение потери напора в метрах.
Справка: избыточное давление в 1 атмосферу (1 кгс/см2) при атмосферном давлении соответствует водяному столбу в 10 метров.
Для компенсации падения напора в 10 метров, таким образом, давление на входе в водораспределительную сеть нужно поднять на 1 кгс/см2.
- i – гидравлический уклон трубопровода.
- L – его длина в метрах.
- K – коэффициент, зависящий от назначения сети.
Формула сильно упрощена. На практике изгибы трубопровода и запорная арматура тоже вызывают падение напора.
Некоторые элементы формулы явно требуют комментариев.
Проще всего с коэффициентом К. Его значения заложены в уже упоминавшийся нами СНиП за номером 2.04.01-85:
Назначение водопровода | Значение коэффициента |
Хозяйственно-питьевой | 0,3 |
Производственный, хозяйственно-противопожарный | 0,2 |
Производственно-противопожарный | 0,15 |
Противопожарный | 0,1 |
А вот с понятием гидравлического уклона куда сложнее. Он отражает то сопротивление, которое труба оказывает движению воды.
Гидравлический уклон зависит от трех параметров:
- Скорости потока. Чем она выше, тем больше гидравлическое сопротивление трубопровода.
- Диаметра трубы. Здесь зависимость обратная: уменьшение сечения приводит к росту гидравлического сопротивления.
- Шероховатости стенок. Она, в свою очередь, зависит от материала трубы (сталь обладает менее гладкой поверхностью по сравнению с полипропиленом или ПНД) и, в некоторых случаях, от возраста трубы (ржавчина и известковые отложения увеличивают шероховатость).
К счастью, проблему определения гидравлического уклона полностью решает таблица гидравлического расчета водопроводных труб (таблица Шевелева). В ней приводятся значения для разных материалов, диаметров и скоростей потока; кроме того, таблица содержит коэффициенты поправок для старых труб.
Уточним: поправки на возраст не требуются всем типам полимерных трубопроводов.
Металлопластик, полипропилен, обычный и сшитый полиэтилен не меняют структуру поверхности весь период эксплуатации.
Размер таблиц Шевелева делает невозможной их публикацию целиком; однако для ознакомления мы приведем небольшую выдержку из них.
Вот справочные данные для пластиковой трубы диаметром 16 мм.
Расход в литрах в секунду | Скорость в метрах в секунду | 1000i (гидравлический уклон для протяженности в 1000 метров) |
0,08 | 0,71 | 84 |
0,09 | 0,8 | 103,5 |
0,1 | 0,88 | 124,7 |
0,13 | 1,15 | 198,7 |
0,14 | 1,24 | 226,6 |
0,15 | 1,33 | 256,1 |
0,16 | 1,41 | 287,2 |
0,17 | 1,50 | 319,8 |
При расчете падения напора нужно учитывать, что большая часть сантехнических приборов для нормальной работы требует определенного избыточного давления. В СНиП тридцатилетней давности приводятся данные для устаревшей сантехники; более современные образцы бытовой и санитарной техники требуют для нормальной работы избыточного давления, равного как минимум 0,3 кгс/см (3 метра напора).
Датчик не даст проточному нагревателю включиться при давлении воды ниже 0,3 кгс/см2.
Однако: на практике лучше закладывать в расчет несколько большее избыточное давление – 0,5 кгс/см2.
Запас нужен для компенсации неучтенных потерь на подводках к приборам и их собственного гидравлического сопротивления.
Примеры
Давайте приведем пример гидравлического расчета водопровода, выполненного своими руками.
Предположим, что нам нужно вычислить потерю напора в домашнем пластиковом водопроводе диаметром 15 мм при его длине в 28 метров и максимально допустимой скорости потока воды, равной 1,5 м/с.
Трубы этого размера чаще всего используются для разводки воды в пределах квартиры или небольшого коттеджа.
- Гидравлический уклон для длины в 1000 метров будет равным 319,8. Поскольку в формуле расчета падения напора используется i, а не 1000i, это значение следует разделить на 1000: 319,8 / 1000 = 0,3198.
- Коэффициент К для хозяйственно-питьевого водопровода будет равным 0,3.
- Формула в целом приобретет вид H = 0,3198 х 28 х (1 + 0,3) = 11,64 метра.
Таким образом, избыточное давление в 0,5 атмосферы на концевом сантехническом приборе мы будем иметь при давлении в магистральном водопроводе в 0,5+1,164=1,6 кгс/см2. Условие вполне выполнимо: давление в магистрали обычно не ниже 2,5 – 3 атмосфер.
К слову: испытания водопровода при сдаче в эксплуатацию проводятся давлением, как минимум равным рабочему с коэффициентом 1,3.
Акт гидравлических испытаний водопровода должен включать отметки как об их продолжительности, так и об испытательном давлении.
Образец акта гидравлических испытаний.
А теперь давайте выполним обратный расчет: определим минимальный диаметр пластикового трубопровода, обеспечивающего приемлемое давление на концевом смесителе для следующих условий:
- Давление в трассе составляет 2,5 атмосферы.
- Протяженность водопровода до концевого смесителя равна 144 метрам.
- Переходы диаметра отсутствуют: весь внутренний водопровод будет монтироваться одним размером.
- Пиковый расход воды составляет 0,2 литра в секунду.
- Допустимая потеря давления составляет 2,5-0,5=2 атмосферы, что соответствует напору в 20 метров.
- Коэффициент К и в этом случае равен 0,3.
- Формула, таким образом, будет иметь вид 20=iх144х(1+0,3). Несложный расчет даст значение i в 0,106. 1000i, соответственно, будет равным 106.
- Следующий этап – поиск в таблице Шевелева диаметра, соответствующего 1000i = 106 при искомом расходе. Ближайшее значение – 108,1 – соответствует диаметру полимерной трубы в 20 мм.
Зависимость между внутренним и наружным диаметром полипропиленового трубопровода.
Заключение
Надеемся, что не переутомили уважаемого читателя избытком цифр и формул. Как уже упоминалось, нами приведены предельно простые схемы расчетов; профессионалы вынуждены использовать куда более сложные решения. Как обычно, дополнительная тематическая информация найдется в видео в этой статье. Успехов!