- Каким диаметром трубы лучше сделать отопление в доме
- Сложности выбора диаметра трубопровода
- Зависимость размера от скорости теплоносителя
- Параметры объема теплоносителя
- Гидравлические потери
- Формула вычисления диаметра магистрали
- Важные технические характеристики труб
- Порядок расчета коллектора отопления и монтажных гильз
- Последовательность вычисления сечения отопительных магистралей
- Характеристики материалов для изготовления труб
- Полимерные
- Стальные
- Медные
- Какой диаметр трубы лучше использовать для отопления частного дома и почему?
- Влияние типа и размера трубы на работу системы
- Материал труб
- Металлические
- Полимерные
- Оптимальный размер, температура и давление
- Мощность котла и контура
- Методики расчета
- Что нужно знать для расчета
- Порядок расчета
- Вычисление тепловой мощности системы
- Скорость воды в трубах
- Расчёт сопротивления отопительного контура
- Расчет отопительного коллектора
- Примеры
- Расчет для двухтрубного контура
- Определение диаметра труб для однотрубной системы с принудительной циркуляцией
- Особенности расчета сечения металлических труб
- Как подобрать диаметр трубы для отопления
Каким диаметром трубы лучше сделать отопление в доме
Эффективность работы отопительной магистрали зависит от мощности котла, радиаторов, параметров арматуры. Подходящий диаметр труб для отопления определяется посредством онлайн-программ или самостоятельных расчетов, а также технических показателей и материала. Зная все нюансы, собственник дома может подобрать качественные и надежные изделия.
Сложности выбора диаметра трубопровода
Основная сложность подбора диаметра заключается в особенностях планирования магистрали. Учитываются:
- наружный показатель (медь и пластик) – поверхность арматуры может отдавать тепловые потоки в помещение;
- внутренний диаметр (сталь и чугун) – позволяет рассчитать пропускные характеристики отдельного участка;
- условные параметры – округленное значение в дюймах, нужно для теоретических подсчетов.
Для определения сечения учитывают, что на 1 м2 помещения тратиться 100 Вт энергии.
Зависимость размера от скорости теплоносителя
Выбор показателя диаметра определит пропускную способность магистрали с учетом рекомендованной скорости 0,4-0,6 м/сек. При этом учитывается, что при скорости менее 0,2 м/сек образуются воздушные пробки, а при скорости более 0,7 м/сек есть риск повышения давления теплоносителя.
Для исключения теплопотерь и увеличения скорости теплоносителя устанавливается насос
Насколько равномерно распределяется тепловая энергия по контуру и определяет диаметр патрубков. Чем он меньше, тем быстрее движется вода, но у скоростных показателей есть ограничение:
- до 0,25 м/сек – в противном случае есть риски появления воздушных пробок и невозможности их удаления спускниками, теплопотерь в комнате;
- не больше 1,5 м/сек – теплоноситель в процессе циркуляции будет шуметь;
- 0,36-0,7 м/сек – эталонная величина скорости теплоносителя.
Для контроля интенсивности циркуляции без повышения диаметра патрубков используется циркуляционный насос.
Параметры объема теплоносителя
Для систем с естественной циркуляцией лучше выбрать арматуру с увеличенным диаметром. Это снизит потери тепла в процессе трения воды о внутреннюю поверхность. При использовании данного приема следует учесть, что при увеличении объема воды повышаются затраты энергии на ее нагревание.
Гидравлические потери
Явление возникает, если трубопровод сделан из пластиковых изделий разного диаметра. Причина заключается в разности давлений на местах стыков и увеличению гидравлических потерь.
Формула вычисления диаметра магистрали
Правильное определение диаметра трубы, используемой для магистрали отопления многоквартирного или частного дома, производится на основании таблицы и формулы. При работе с таблицей нужно ориентироваться на зеленые клеточки – в них указана оптимальная скорость давления теплоносителя.
Расчет производится по формуле D= √(354*(0.86*Q/∆t)/V), где:
- V – скорость жидкости в трубе (м/с);
- Q – нужное количество тепла для обогрева (кВт);
- ∆t – разница между обратной и прямой подачей (С);
- D – диаметр трубы (мм).
В качестве примера можно рассмотреть двухэтажный дом с четырьмя крыльями (по 2 на этаж), подключенный к двухтрубной системе с суммарными теплопотерями 36 кВт, 20 кВт из которых приходится на обогрев 1-го этажа, 16 кВт – второго. Для коммуникаций использовался полипропилен, они работают в режиме 80/60 при температуре 10 градусов.
- Весь объем воды приходится на участок соединения первой ветки с котлом. Это общее количество тепла, равное 38 кВт.
- По таблице нужно найти данную строчку и соответствующие зеленые ячейки. При данных параметрах необходимый диаметр – 40 и 50 мм. Выбор делается в пользу меньшего.
- По развилке видно количество тепла на первом (20 кВт) и втором (16 кВт) этажах. Сечение трубной арматуры по таблице – 32 мм.
- Поскольку на каждом этаже 2 крыла, контур разделен на два ответвления. Для первого этажа 20/2=10 кВт на крыло, для второго – 16/2=8 кВт на крыло.
- По таблице определяется диаметр – 25 мм, используемый до момента падения нагрузки до 5 кВт, потом – 20 мм.
Расчеты для обратки не нужны – используются трубы с аналогичными параметрами.
Важные технические характеристики труб
Качественный обогрев помещения невозможен без учета технических характеристик оборудования. Их можно рассмотреть на примере стандартных изделий из полипропилена марки РN 20 и 30.
Диаметр снаружи, мм | РN 20 | РN 30 | ||
Диаметр внутри | Толщина стенок | Диаметр внутри | Толщина стенок | |
16 | 10,6 | 2,7 | ||
20 | 13,2 | 3,4 | 13,2 | 3,4 |
25 | 16,6 | 4,2 | 16,6 | 4,2 |
32 | 21,2 | 5,4 | 21,2 | 3 |
40 | 26,6 | 6,7 | 26,6 | 3,7 |
При теплоносителе со скоростью 0,4 м/сек требуется учитывать тепловую мощность изделий различного диаметра. При наружных параметрах 20 мм вырабатывается 4,1 кВт, при 25 мм – 6,3 кВт, при 32 мм – 11,5 кВт, при 40 мм – 17 кВт.
Порядок расчета коллектора отопления и монтажных гильз
Коллектором отопления оснащается квартира или частный дом. Устройство обеспечивает разводку теплоносителя по нескольким веткам. Расчет коллектора производится вместе с сечением труб по наружному или внутреннему размеру на основании принципа «трех диаметров» – трубы на трассе удаляются друг от друга на 6 радиусов каждый. Диаметр коллектора также равен этой величине.
Параметры гильз вычисляются после установления сечения магистрали. Элементы подбираются с учетом материала стены и арматуры, степени расширения при нагревании. Например, диаметр трубы из пластика – 20 мм, гильзы – 24 мм.
Последовательность вычисления сечения отопительных магистралей
Для коммуникаций с циркуляционными насосами понадобится учесть объем теплоносителя в системе, общую протяженность теплотрассы, эталонную скорость потока, теплопередачу отопления, мощность оборудования, величину сопротивления и давление без насоса.
Чтобы выяснить размер изделий, понадобится сделать поправку на снижение КПД – сопротивления поворотов, изгибов и фитингов. Вычисления можно проводить по формуле H = λ(L/D)(V2/2g), где:
- Н – высота нулевого давления без напора в м;
- λ – коэффициент сопротивляемости труб;
- L – длина магистрали;
- D – внутренний диаметр трубы в мм;
- V – скорость потока в м/с;
- g – ускорение свободного падения, равное 9,81 м/с2.
В процессе исчислений минимальных потерь тепла нужно проверить несколько вариантов диаметров на предмет минимального сопротивления.
Характеристики материалов для изготовления труб
Производители выпускают трубопроводы из нескольких типов материалов.
Полимерные
Изделия, для которых используется пластиковый материал – сшитый или обычный полиэтилен. После вычислений можно установить, какой диаметр пропиленовых труб нужен для отопления частного дома в зависимости от типа оборудования:
- одна или две батареи – 16 мм;
- радиатор или группа радиаторов с мощностью 1-2 кВт (стандартные), до 5 батарей мощностью до 7 кВт – 20 мм;
- плечо тупиковой разводки (крыло дома), радиаторы до 8 шт. общей мощностью до 11 кВт – для отопления лучше использовать пропиленовые трубы диаметром 25 мм;
- один этаж (до 12 радиаторов с общей мощностью до 19 кВт) – 32 мм;
- магистраль из 20 радиаторов до 30 кВт мощностью – 40 мм.
Толщина стенок полимерных изделий подбирается по параметрам давления в сети и бывает 1,8-3 мм.
Стальные
Отличаются прочностью и хорошей теплоотдачей, но сложны в плане монтажа. Поверхность арматуры из нержавейки не подвергается коррозии, характеризуется гладкостью. Стальная отопительная арматура по ГОСТ 3262-75 классифицируется по наружному диаметру, от которого зависит толщина стенок. Данные указаны в таблице.
Наружный диаметр | Толщина стенок | ||
Легкие | Стандартные | Усиленные | |
21,3 | 2,5 | 2,8 | 3,2 |
26,8 | 2,5 | 2,8 | 3,2 |
33,5 | 2,8 | 3,2 | 4 |
42,3 | 2,8 | 3,2 | 4 |
48 | 3 | 3,5 | 4 |
Стандартные и легкие модификации применяются для организации квартирного или домашнего отопления.
Медные
Материал отличается хорошей теплопроводностью, стойкостью к коррозии, способностью к растяжению. При замерзании теплоносителя системы может работать, сохраняя герметичность. Особенности размеров медной арматуры указаны в таблице.
Диаметр, мм | Толщина стенки, мм | Вес м.п., гр |
15 | 1,5 | 391 |
18 | 2 | 480 |
22 | 2 | 590 |
28 | 2,5 | 1420 |
42 | 3 | 1700 |
Чтобы провести отопление, стоит использовать медную арматуру со стенками 1,5-2 мм.
При наличии 5-8 радиаторов в квартире и 2-3 развилок в частном доме можно самостоятельно вычислить диаметр трубы для отопительной магистрали. С этой целью допускается работать с формулами и таблицами. Организация сложной системы с несколькими уровнями предусматривает использование специальных онлайн-программ.
Какой диаметр трубы лучше использовать для отопления частного дома и почему?
Как известно, энергоэфективность системы отопления зависит не только от мощности котла и количества радиаторов. Это достаточно сложный параметр, завязанный на климатическом режиме региона, материалах, из которых построен дом, качестве и количестве отопительного оборудования и арматуры. И отопительные трубы играют в теплосистеме роль одной из «первых скрипок».
Какой диаметр трубы лучше использовать для отопления частного дома, чтобы циркуляция теплоносителя в контуре была максимально эффективна? Как правило, для этого используются специальные программы, однако, существует альтернативные концепции, позволяющие производить эту операцию самостоятельно. Мы приоткроем «завесу тайны» и расскажем максимально просто о сложных схемах расчётов, позволяющих оптимизировать обогрев дома таким образом, чтобы в нём было тепло и комфортно и при этом не приходилось выбрасывать деньги на ветер.
Влияние типа и размера трубы на работу системы
Так ли уж важен диаметр трубы? Как показывает практика, чрезвычайно! От него зависит ряд факторов, обеспечивающих высокий КПД всего контура:
- Пропускная способность и коэффициент теплоотдачи. Т.е. общий объём теплоносителя, находящегося в магистрали в определённый период времени и подлежащего нагреву.
- Давление теплоносителя в контуре, температура и скорость его движения.
- Гидравлические потери, возникающие на участках стыковки труб и элементов различного сечения. Чем больше подобных переходов, тем значительнее потери.
- Уровень шума теплосистемы.
Выделяют несколько видов диаметра:
- Внешний. Учитывает сечение внутренней полости и толщину стенок трубы. Используется при проектировании теплосистемы.
- Внутренний. Отражает значение поперечного сечения внутренней полости трубы. Определяет пропускную способность трубопровода.
- Номинальный (условный). Представляет собой усреднённое значение внутренних диаметров, полученное в результате вычислений.
Чтобы теплосистема работала полноценно, кроме сечения труб, следует учитывать ещё ряд факторов:
- Свойства теплоносителя, в качестве которого выступает вода, антифриз или пар.
- Материал, из которого изготовлены трубы.
- Скорость движения теплоносителя.
- Тип системы отопления: одно- или двухтрубная.
- Тип циркуляции: естественная или принудительная.
Материал труб
Прежде чем определять, какой диаметр трубы лучше подойдет для отопления частного дома, необходимо решить из какого материала будет выполнен сам трубопровод. Это позволяет обозначить способ монтажа, стоимость проекта и заранее спрогнозировать возможные теплопотери. Прежде всего, трубы подразделяются на металлические и полимерные.
Металлические
- Сталь (чёрная, нержавеющая, оцинкованная).
Характеризуются отменной прочностью и устойчивостью к механическим повреждениям. Срок эксплуатации – не менее 15 лет (при антикоррозийной обработке до 50 лет).
Рабочая температура — 130⁰C. Максимальное давление в трубе — до 30 атмосфер. Не горючи. Однако тяжелы, сложны в монтаже (потребуется специальное оборудование и существенные временные затраты), подвержены коррозии. Высокий коэффициент теплопередачи повышает теплопотери ещё на этапе транспортировки теплоносителя к радиаторам. Требуется постмонтажная окраска. Внутренняя поверхность шероховата, что провоцирует накопление отложений внутри системы.
Нержавейка не нуждается в окрашивании и не подвержена коррозийным процессам, что существенно продлевает срок эксплуатации самих труб и отопительного контура в целом.
Максимальная температура рабочей среды — 250⁰C. Рабочее давление – 30 атмосфер и более. Эксплуатационный ресурс – более 100 лет. Высокая устойчивость к замерзанию носителя и коррозии.
Последнее накладывает ограничение на совместное использование меди с другими материалами (алюминием, сталью, нержавейкой); медь совместима только с латунью. Гладкость внутренних стен предотвращает образование налёта и не ухудшает пропускную способность трубопровода, что снижает гидравлическое сопротивление и даёт возможность использования труб меньшего диаметра. Пластичность, лёгкий вес и простая технология соединения (пайка, фитинги). Малая толщина стенок и соединительных фитингов сводит на нет гидравлические потери.
Самый значимый недостаток – крайне высокая стоимость, цена на медные трубы превышает цену на пластиковые аналоги в 5-7 раз. Кроме того мягкость материала делает его уязвимым в отношении находящихся в теплосистеме механических частиц (примесей), которые в результате абразивного трения приводят к износу труб изнутри. Чтобы продлить срок жизни медных труб, систему рекомендуется укомплектовывать специальными фильтрами.
Высокая теплопроводность меди для предотвращения теплопотерь требует обустройства изоляционных рукавов, однако она же делает его незаменимым материалом для систем «тёплых полов».
Полимерные
Могут быть полиэтиленовыми, полипропиленовыми, металлопластиковыми. Каждая модификация обладает собственными техническими характеристиками в зависимости от технологии производства, используемых добавок и специфики строения.
Срок службы – 30 лет. Температура носителя — 95⁰C (кратковременно — 130⁰C); излишний нагрев приводит к деформации труб, сокращая эксплуатационный ресурс. Характеризуются недостаточной устойчивостью к замерзанию теплоносителя, в результате чего разрываются. Гладкость внутреннего покрытия предотвращает образование налёта, улучшая тем самым гидродинамические показатели трубопровода.
Пластичность материала позволяет прокладывать трубы без использования резки, сокращая тем самым количество фитинговых соединений. Пластик не вступает в реакцию с бетоном и не ржавеет, что позволяет скрыть теплопровод в полу и обустраивать «тёплые полы». Особым преимуществом пластиковых труб считается хорошие звукоизоляционные свойства.
Полиэтиленовые трубы под воздействием высоких температур склонны к значительному линейному расширению, что требует обустройства дополнительных компенсационных петель и точек крепления.
Полипропиленовые аналоги должны содержать в структуре «антидиффузный слой», предотвращающий завоздушивание контура.
Уровень давления в контуре предопределяет не только диаметр полимерных труб, но и толщину стенок, которая варьируется в диапазоне от 1,8 до 3 мм. Фитинговые соединения упрощают монтаж контура, но увеличивают гидравлические потери.
Решая, какой диаметр выбрать, следует учитывать специфику маркировки различных труб:
- пластиковые и медные маркируются по внешнему сечению;
- стальные и металлопластиковые – по внутреннему;
- часто сечение обозначается в дюймах, для проведения расчёта их требуется перевести в миллиметры. 1 дюйм = 25,4 мм.
Чтобы определить внутренний диаметр трубы, зная размеры внешнего сечения и толщины стенок, следует от внешнего диаметра отминусовать удвоенное значение толщины стенок.
Оптимальный размер, температура и давление
При обустройстве небольшого отопительного контура стандартного типа некоторые рекомендации специалистов позволят обойтись без сложных вычислений:
- Для трубопроводов с естественной циркуляцией носителя рекомендуется использовать трубы с внутренним сечением в 30-40 мм. Увеличение параметров грозит необоснованным расходом теплоносителя, снижению скорости его движения и падением внутриконтурного давления.
- Слишком малый диаметр труб вызовет перегруз внутри магистрали, что может спровоцировать её прорыв в местах соединительных элементов.
- Чтобы обеспечить необходимую скорость движения теплоносителя и нужное давление внутри контура с принудительной циркуляцией, предпочтение отдаётся трубам с сечением не более 30 мм. Чем больше сечение трубы и длиннее магистраль, тем мощнее выбирается циркуляционный насос.
Важно! Обустройство эффективной теплосистемы предполагает использование на разных участках магистрали труб различного сечения.
Уровень рабочего давления контура не должен превышать предел устойчивости:
- встроенного в котёл теплообменника (max — 3 атм или 0,3 Мпа);
- или 0,6 Мпа (при радиаторной схеме).
Оптимальным для теплосистем с циркулярным насосом считается показатель в диапазоне от 1,5 до 2,5 атм. В условиях естественной циркуляции – от 0,7 до 1,5 атм. Превышение норматива неизбежно станет причиной аварии. Чтобы контролировать уровень давления в теплосистемах обустраиваются расширительные баки и манометры.
Автономное отопление позволяет регулировать температуру теплоносителя самостоятельно в зависимости от сезона и индивидуальных потребностей жильцов дома. Оптимальной считается температура в диапазоне от 70 до 80⁰C, в паровых теплосистемах – 120-130⁰C. Наилучшим решением станет использование газовых или электрических котлов, позволяющих контролировать и регулировать нагрев контура, чего не скажешь о твердотопливном оборудовании.
Конструктивные особенности отопительных систем также предопределяют особенности температурного режима:
- максимальный нагрев носителя в одноконтурной разводке — 105⁰C, в двухконтурной — 95⁰C.
- в пластиковых трубопроводах температура носителя ограничивается 95⁰C, в стальных — 130⁰C.
Разница температуры между подачей и обраткой – 20⁰C.
Мощность котла и контура
На эффективность работы котла, выполняющего одну из ключевых ролей в теплосистеме, влияет не только диаметр труб, но и:
- вид используемого топлива;
- месторасположение котла (вынос котельного блока за пределы дома требует повышенной мощности, большего сечения и утепления магистрали на участке вне помещения);
- уровень теплоизоляции внешних стен дома;
- использование отопительного контура для горячего водоснабжения.
Выбирая котёл, следует учитывать вышеозначенные факторы и делать запас мощности в 1,5-2 раза.
Методики расчета
Как рассчитать диаметр труб отопления? Существует несколько методик:
- По специальным таблицам. Однако их использование всё равно предполагает проведение предварительных вычислений: мощности теплосистемы, скорости движения теплоносителя, а также теплопотерь по ходу магистрали.
- По тепловой мощности.
- По коэффициенту сопротивления.
Что нужно знать для расчета
Для проведения расчёта потребуются следующие данные:
- Потребность в тепле (тепловая мощность) всего дома и каждого помещения в отдельности;
- Суммарная мощность используемых отопительных приборов (котла и радиаторов).
- Тепловая нагрузка на отдельные участки контура.
- Суммарные теплопотери дома и каждой комнаты по отдельности в максимально холодный зимний период.
- Значение сопротивления. Оно определяется по схеме разводки, длине магистрали, количестве и форме изгибов, соединений, поворотов.
- Общий объём теплоносителя, загружаемый в тепломагистраль.
- Скорость движения потока.
- Мощность циркуляционного насоса (для отопления принудительного типа).
- Давление в магистрали.
Расчёт сечения труб для теплосистем с принудительной циркуляцией воздуха:
Порядок расчета
- Вычисление требуемой тепловой мощности.
- Определение скорости циркуляции носителя в теплосистеме.
- Расчёт сопротивления отопительного контура.
- Вычисление необходимого сечения трубопровода.
- Вычисление оптимального диаметра отопительного коллектора (при необходимости).
Вычисление тепловой мощности системы
Способ 1. Самый простой способ расчёта тепловой мощности базируется на установленном нормативе в 100 ватт на 1м² помещения. Т.е. при площади дома в 180м², мощность отопительного контура составит 18000 ватт или 18 кВт (180×100=18000).
Способ 2. Ниже приведена формула, позволяющая откорректировать данные с учётом запаса мощности на случай сильных морозов:
Однако данные методики характеризуется рядом погрешностей, т.к. не учитывает спектр факторов, влияющих на теплопотери:
- высоту потолков, которая может варьироваться в диапазоне от 2 до 4 и более метров, а значит, объём отапливаемых помещений даже при одинаковой площади не будет постоянным.
- качество утепления фасада дома и процент потерь тепла через внешние стены, двери и окна, пол и крышу;
- теплопроводность стеклопакетов и материалов, из которых построен дом.
- Климатические условия регионов.
Способ 3. Представленный ниже метод учитывает все необходимые факторы.
- Подсчитывается объём дома целиком или каждой комнаты по отдельности по формуле:
- V – Объём обогреваемого помещения.
- h – Высота потолков.
- S – Площадь обогреваемого помещения.
- Рассчитывается суммарная мощность контура:
Часто применяется и следующая формула:
При этом региональный поправочный коэффициент берётся из следующей таблицы:
Поправочный коэффициент теплопотерь (К) напрямую зависит от теплоизоляции здания. Принято пользоваться следующими усреднёнными значениями:
- При минимальной теплоизоляции (типовая деревянная или металлоконструкция из тонкого листа) в расчёт берётся коэффициент в диапазоне от 3 до 4;
- Одинарная кирпичная кладка – 2-2,9;
- Средний уровень утепления (двойная кирпичная кладка) – 1-1,9;
- Высококачественная теплоизоляция фасада – 0,6-0,9.
Скорость воды в трубах
Равномерность распределения тепловой энергии по элементам контура зависит от того, с какой скоростью движется жидкость, и чем меньше диаметр трубопровода, тем быстрее происходит его перемещение. Существуют ограничения скоростных показателей:
- не меньше 0,25 м/сек, иначе в контуре образовываются воздушные пробки, препятствующие движению теплоносителя и провоцирующие потери тепла. При недостаточном напоре воздушные пробки не дойдут до установленных кранов Маевского и воздухоотводчиков, а, значит, они будут бесполезны;
- не более 1,5 м/сек, иначе циркуляция носителя сопровождается шумом.
Эталонный показатель скорости потока — от 0,36 до 0,7 м/сек.
На это следует ориентироваться, выбирая подходящее сечение труб. Посредством установки циркуляционного насоса появляется возможность контролировать циркуляцию теплоносителя в контуре, не увеличивая диаметр трубопровода.
Расчёт сопротивления отопительного контура
При расчёте сечения труб по коэффициенту сопротивления, первым делом определяется давление в трубопроводе:
Затем, подставляя значения диаметров труб, подбирается минимальное значение теплопотерь. Соответственно, тот диаметр, который будет удовлетворять приемлемым условиям сопротивления, и будет искомым.
Расчет отопительного коллектора
Если теплосистема предусматривает обустройство распределительного коллектора, то определение его диаметра основано на подсчёте сечений подключаемых к нему трубопроводов:
Расстояние же между патрубками коллектора должно быть равно их утроенному диаметру.
Примеры
Разбираемся на примерах.
Расчет для двухтрубного контура
- Двухэтажный дом площадью в 340м².
- Строительный материал – инкерманский камень (природный известняк), характеризуемый низкой теплопроводностью. → Коэффициент утепления дома = 1.
- Толщина стен – 40 см.
- Окна – пластиковые, однокамерные.
- Теплопотери 1 этажа – 20 кВт; второго – 18 кВт.
- Двухтрубный контур с отдельным крылом на каждом этаже.
- Материал труб – полипропилен.
- Температура подачи — 80⁰C.
- Температура на выходе — 60⁰C.
- Дельта температур — 20⁰C.
- Высота потолков – 3 м.
- Регион – Крым (юг).
- Средняя температура пяти самых холодных дней зимы – (-12⁰C).
- 340×3=1020 (м³) – объём помещения;
- 20- (-12)=32 (⁰C) – разница (дельта) температур между помещением и улицей;
- 1020×1×32/860≈38 (кВт) – мощность отопительного контура;
- Определение сечения трубы на первом участке от котла до разветвления. Согласно таблице, приведённой ниже, для передачи тепловой мощности в 38 кВт подходят трубы с сечением в 50, 63 или 75 мм. Первый вариант предпочтительнее, т.к. обеспечивает наибольшую скорость движения носителя.
- Для разводки потока носителя на первый и второй этаж, справочники предписывать трубы с диаметром в 32 мм и 40 мм для мощностей 18 и 20 кВт соответственно.
- На каждом этаже контур делится на две магистрали с равноценной нагрузкой по 10 и 9 кВт соответственно и сечением в 25 мм.
- По мере снижения нагрузки вследствие остывания теплоносителя диаметр труб следует уменьшить до 20 мм (на первом этаже – после второго радиатора, на втором – после третьего).
- Обратная разводка производится в той же последовательности.
Для вычисления по формуле D = √354х(0.86хQ/∆t)/V, берём скорость носителя в 0,6 м/с. Получаем следующие данные √354х(0.86×38/20)/0,6≈31 мм. Это номинальный диаметр трубопровода. Для реализации на практике следует подбирать различные диаметру труб на разных участках трубопровода, которые в среднем сведутся к расчётным данным согласно алгоритму, описанному в пунктах 4-7.
Определение диаметра труб для однотрубной системы с принудительной циркуляцией
Как и в предыдущем случае, расчёт производится по обозначенной схеме. Единственное исключение заключается в действии насосного оборудования, увеличивающего скорость движения носителя и обеспечивающего равномерность его температуры в контуре.
- Значительное снижение мощности (до 8,5 кВт) происходит только на четвёртом радиаторе, где и осуществляется переход на диаметр в 15 мм.
- После пятого радиатора происходит переход на сечение в 12 мм.
Важно! Использование труб из другого материала внесут свои коррективы в расчёт, т.к. каждый материал обладает разным уровнем теплопроводности. Особенно принципиально учитывать потери тепла металлического трубопровода.
Особенности расчета сечения металлических труб
Теплосистемы, выполненные из металлических труб, должны учитывать коэффициент потерь тепла через стенки. Особенно это важно при значительной протяжённости трубопровода, когда теплопотери на каждом погонном метре могут иметь катастрофические последствия для конечных радиаторов.
Металл | Коэффициент теплопроводности, Вт/(м×град) |
Сталь | 45,4 |
Чугун | 62,8 |
Медь | 389,6 |
Латунь | 85,5 |
Посредством закладывания в энергосистему запаса мощности и правильного выбора диаметра труб удаётся не допустить существенных утечек тепла.
Как подобрать диаметр трубы для отопления
Производимые расчёты позволяют определить сечения трубопровода в удельных (приблизительных) значениях. Помимо сложных формул существуют специальные таблицы, упрощающие определение нужного сечения при знании основных параметров теплосистемы.
С помощью таблицы и значений тепловой мощности, режима температур подачи и обратки, а также разумной скорости теплоносителя (выделен розовым цветом), подбирается нужный диаметр труб.
Получается, произвести расчёт диаметра труб не так уж сложно. Пренебрегать эти вопросом не стоит, потому что правильно подобранное сечение трубопровода позволит создать высокоэффективную и экономичную теплосистему не только в частном доме, но и в квартире многоэтажки с индивидуальным отоплением.
А пока предлагаем посмотреть видео по теме.
Подписывайтесь на рассылку и до скорых встреч!