Калориферы системы воздушного отопления

Содержание
  1. Преимущества перед радиаторами и критерии выбора калориферов отопления
  2. Эффективность использования калориферов вместо радиаторов отопления
  3. Устройство и принцип действия
  4. Критерии выбора калориферов
  5. Водяной, электрический или паровой
  6. С вентилятором или без него
  7. Форма и материал трубок
  8. Минимально необходимая мощность
  9. Лучшие известные производители и модели: характеристики и цены
  10. Классические КСк-3 и КСк-4
  11. Тепломаш серий TW и MW
  12. Ballu BHP-W3
  13. Стоимость воздушного отопления, расходы на его содержание
  14. Воздушное отопление, его разновидности
  15. Принцип работы воздушного отопления
  16. Виды воздушного отопления
  17. Электрические теплообменники
  18. Газовые устройства
  19. Водяной теплообменник
  20. Гравитационная система воздушного отопления
  21. С принудительной циркуляцией
  22. Преимущества воздушного отопления перед другими видами обогрева помещений
  23. Совмещение воздушного отопления и вентиляции
  24. Расчет системы воздушного отопления
  25. Как выбрать оборудование
  26. Стоимость воздушного отопления, расходы на его содержание

Преимущества перед радиаторами и критерии выбора калориферов отопления

Калориферы отопления – это агрегаты, служащие для быстрого нагревания воздуха в сооружениях с большими пространствами: производственных цехах, торговых центрах, спортивных и выставочных залах, а также для создания тепловых завес у ворот и оазисов с местным обогревом в нужных местах внутри таких зданий.

Конструкция калорифера объединяет в себе три принципа обогрева:

  • теплообменник с ускоренным съемом тепла с нагретой поверхности и обдувом свежим воздухом от вентилятора;
  • конвектор, организующий движение потока нагретого воздуха вверх и забор охлажденного воздуха снизу;
  • излучатель, который, имея повышенную температуру, греет более холодные поверхности излучением тепла.

Устройство представляет собой сеть трубок в которых циркулирует теплоноситель. Через эту сеть вентилятор прогоняет воздух, нагревающийся от соприкосновения с поверхностью тепловых элементов. Во всех подобных системах важна площадь поверхности съема тепла: чем она больше, тем теплоотдача калорифера эффективнее. С этой целью на трубки устанавливаются пластины более сложной формы или навивается проволока. Проходящий по трубкам теплоноситель греет пластины и воздух между ними до заданной температуры, а вентилятор выносит его в помещение.

Читайте в статье

Эффективность использования калориферов вместо радиаторов отопления

Циркулирующий по радиаторам водяного отопления теплоноситель, передает тепловую энергию окружающему воздуху путем теплового излучения, а также посредством движения конвекционных потоков нагретого воздуха вверх, поступления остывшего воздуха снизу.

Калорифер, кроме этих двух пассивных способов передачи тепловой энергии, прогоняет воздух через систему нагретых элементов с гораздо большей площадью и интенсивно передает им тепло. Оценить эффективность калориферов и вентиляторов позволить простой расчет стоимости установленного оборудования для одних и тех же задач.

Пример отопления калориферами помещения сервиса технического обслуживания автомобилей.

Например, необходимо сравнить стоимость радиаторов и калориферов для отопления выставочного зала автосалона с учетом выполнения норм СНИП.

Теплотрасса одна и та же, теплоноситель одной температуры, обвязку и монтаж при упрощенном расчете затрат на основное оборудование можно не учитывать. Для несложного расчета берем известную норму 1 кВт на 10 м 2 отапливаемой площади. Зал площадью 50х20 = 1000 м 2 минимально требует 1000/10 = 100 кВт. С учетом запаса в 15% расчетная минимально необходимая теплопроизводительность отопительного оборудования – 115 кВт.

При использовании радиаторов. Берем одни из наиболее распространенных биметаллических радиаторов Rifar Base 500 x10 (10 секций), одна такая панель выдает 2,04 кВт. Минимально необходимое количество радиаторов составит 115/2,04 = 57 шт. Сразу стоит учитывать, что разместить в таком помещении 57 радиаторов неразумно и практически невозможно. При цене прибора на 10 секций в 7 000 рублей, затраты на покупку радиаторов составят 57*7000 = 399 000 рублей.

При отопления калориферами. Для отопления прямоугольной площади с целью равномерного распределения тепла делаем подбор из 5 водяных калориферов Ballu BHP-W3-20-S производительностью 3200 м 3 /час каждый с близкой суммарной мощностью: 25*5 = 125 кВт. Затраты на оборудование составят 22900*5 = 114 500 рублей.

Изначальная стоимость калориферов практически в 4 раза меньше, чем покупка эффективных биметаллических радиаторов.

Сравнивая по цене установленные мощности радиаторов и калориферов, в расчете нужно учесть, что одним из главных показателей стандартных калориферов является производительность теплого воздуха. При высоте потолка 6 метров в нашем примере, объем выставочного зала составит 1000*6 = 6 000 м 3 . Пять калориферов производительностью в 3200 м 3 /час почти три раза за час обновят воздух в зале, что обеспечат его нормальное качество для работников и посетителей не только по температуре, но и по составу.

Основная область применения калориферов – организация отопления помещений с большими пространствами для движения воздуха:

  • производственные цеха, ангары, склады;
  • спортивные залы, выставочные павильоны, ТРЦ;
  • сельскохозяйственные фермы, теплицы.

Компактное устройства, позволяющие быстро нагревать воздух от 70°C до 100°C, легко встраиваемые в общую систему автоматического управления отоплением целесообразно использовать в сооружениях с надежным доступом к теплоносителю (воде, пару, электроэнергии).

Теплоотдача радиаторов отопления: сравнение показателей и способы расчета

Преимуществами водяных калориферов являются:

  1. Высокая рентабельность использования (низкая стоимость оборудования, высокая теплоотдача, легкость и дешевизна монтажа, минимальные эксплуатационные расходы).
  2. Быстрый нагрев воздуха, легкость изменения и локализация потока тепла (тепловые завесы и оазисы).
  3. Надежность конструкции, легкость автоматизации и современный дизайн.
  4. Безопасность в применении даже в зданиях с повышенной опасностью.
  5. Крайне компактные размеры при высокой теплопроизводительности.

Недостатки этих приборов связаны со свойствами теплоносителя:

  1. При температуре ниже нуля, калорифер легко заморозить. Не слитая вовремя вода из трубок может их порвать в случае отключения от магистрали.
  2. При применении воды с большим количеством примесей тоже можно вывести прибор из строя, поэтому использование в быту без фильтров и подключение к центральной системе – нецелесообразны.
  3. Стоит отметить, что калориферы сильно сушат воздух. При использовании, например, в выставочном зале, необходима увлажняющая климатическая техника.
Читайте также:  Ремонт системы отопления своем доме

Устройство и принцип действия

Калорифер способен поднять температуру проходящего через него воздушного потока на 110 градусов используя входящий воздух отрицательной температуры (до -25°С). Подключение таких приборов к источнику теплоснабжения происходит до коллектора внутренних теплосетей, чтобы не снижать температуру теплоносителя системы. Электрические и паровые калориферы подключаются по параллельной схеме, а водяные – по последовательной.

Принцип работы водяного калорифера состоит в следующем:

  1. Вода из магистрали отопления с температурой от +80°С до 180°С поступает в блок тепловых элементов, расположенных горизонтально. Каждый тепловой элемент представляет собой стальную, алюминиевую, биметаллическую или медную трубку.
  2. Трубки нагревают воздух внутри прибора.
  3. Вентилятор, встроенный в агрегат, забирает воздух из помещения или с улицы и продувает его через тепловые элементы, обеспечивая движение горячего воздуха внутрь помещения.

Стандартный водяной калорифер с вентилятором.

Конструктивно ряды горизонтальных тепловых элементов по торцам стянуты в секции прямоугольного или (реже) круглого сечения боковыми крышками в виде швеллеров. Собранная такими способом многоходовая конструкция является элементом наращивания мощности калорифера, который включает в себя несколько рядов таких секций.

Патрубки входа и выхода водяных многоходовых калориферов размещены с одной стороны для обеспечения слива воды самотеком при необходимости. Водяные приборы отопления могут оснащаться различными системами управления, защиты и сигнализации в зависимости от потребностей заказчика.

Критерии выбора калориферов

При выборе калорифера, помимо теплопроизводительности, производительности по объему воздуха и поверхности теплообмена, необходимо определиться с критериями, перечисленными ниже.

Водяной, электрический или паровой

Изначально вид калорифера определяет теплоноситель: горячая вода, пар или электроэнергия.

Водяной калорифер, подключенный к системе теплоснабжения, делает ее надежнее и экономичнее, чем электрический. Эти приборы наиболее широко используются в названых выше областях применения.

Паровые приборы КПСк во многом схожи с водяными калориферами. Главное отличие – в трубки нагревательных элементов подается водяной пар с температурой +190 °С. Их использование обосновано экономически там, где пар идет в технологии для производства и его избыток можно применить для обогрева помещений (ТЭЦ).

Там, где нет надежных источников горячей воды и пара вполне разумно применение электрических калориферов. Они просты в монтаже, легки в управлении и автоматизации, не боятся низких температур окружающего воздуха. Несмотря на большие эксплуатационные расходы на нагрев ТЭНов из-за дороговизны электроэнергии и стоимости самого оборудования, электрические калориферы востребованы как канальные нагреватели.

С вентилятором или без него

Основная задача калорифера с вентилятором – создание теплого воздушного потока для обогрева помещения. Прогонять воздух через пластины трубок – это функция вентилятора. В случае нештатной ситуации с отказом вентилятор, циркуляция воды через трубки должна быть прекращена.

При отсутствии вентилятора возможности калорифера ограничены, такие приборы сегодня неэффективны и лишь незначительно превосходят радиаторы. В сущности, они становится конвектором, создающим конвекционные потоки и тепловое излучение.

Форма и материал трубок

Основа нагревательного элемента калорифера – стальная трубка из которой собрана решетка секции. Существуют три варианта конструкции трубок:

  • гладкотрубные – обычные трубки расположены рядом друг с другом, теплоотдача наиболее низкая из возможных;
  • пластинчатые – на гладкие трубки напрессованы пластины для увеличения площади теплоотдачи.
  • биметаллические – стальные или медные трубки с навитой, сложной по форме алюминиевой лентой. Теплоотдача в этом случае наиболее эффективна, медные трубки более теплопроводные.

Минимально необходимая мощность

Для определения минимальной мощности нагрева можно использовать довольно простой расчет, приведенный в сравнительном расчете между радиаторами и калориферами ранее. Но поскольку калориферы не только излучают тепловую энергию, но и прогоняют воздух вентилятором, есть более точный способ определения мощности с учетом табличных коэффициентов. Для автосалона с размерами 50х20х6 м:

  1. Объем воздуха автосалона V = 50*20*6 = 6 000 м 3 (нужно нагреть за 1 час).
  2. Наружная температура Tул = -20⁰C.
  3. Температура в салоне Tком = +20⁰C.
  4. Плотность воздуха, p = 1,293 кг/м 3 при средней температуре (-20⁰C +20⁰C)/2 = 0. Удельная теплоемкость воздуха, с =1009 Дж/(кг*K) при температуре снаружи -20⁰C — из таблицы.
  5. Производительность по воздуху G = L*p = 6 000*1,293 =7 758 м 3 /час.
  6. Минимальная мощность по формуле: Q (кВт) = G/3600*c*(Tком – Tул) = 7758/3600*1009*40 = 86,976 кВт.
  7. С учетом запаса мощности в 15% минимально необходимая теплопроизводительность = 100,02 кВт.

Для относительно точных расчетов существует множество методов. Но для конкретных проектов лучше обращаться к теплотехникам или в специализированные компании.

Лучшие известные производители и модели: характеристики и цены

Среди калориферов для промышленных цехов на рынке в основном отечественное оборудование: вполне качественное, адаптированное к воде и приемлемое по цене. На бытовом же уровне, для частного дома, проявляют себя европейские производители.

Классические КСк-3 и КСк-4

Водяные калориферы с тепловыми элементами из трубок с биметаллическим и алюминиевым оребрением спирально-накатным способом. Используется для подогрева воздуха водой с температурой до +190°С, подаваемой циркуляционными насосами под давлением до 1,2 Мпа (12 бар). Диапазон производительности по воздуху от 2000 до 2500 м 3 /час, по теплу для КСк-3 – от 37 до 556,4 кВт; для КСк-4 – от 43,4 до 648,1 кВт. Главным преимуществом является доступная в виду несложной конструкции, отечественного производства и простейшего внешнего вида цена.

Читайте также:  Капает радиатор отопления снизу

Стоимость: от 9 000 руб.

Тепломаш серий TW и MW

Водяные калориферы Тепломаш КЭВ TW/MW с диапазоном мощностей по теплу от 3,1 до 31 кВт и производительностью по воздуху от 600 до 3000 м 3 /час для TW; для MW мощность по теплу от 11,7 до 120 кВт, по воздуху от 3000 до 7000 м 3 / час. Температура теплоносителя до +150°C, рабочая температура окружающего воздуха: от -10°C до +40°C. Серия TW выполнена в металлическом, а MW в пластиковом корпусе.

Стоимость: от 18 000 руб.

Ballu BHP-W3

Бытовые водяные тепловентиляторы с однорядным медно-алюминиевым теплообменником (W) для экономного обогрева с тремя режимами работы. Температура теплоносителя до +150°C, максимальная тепловая мощность – 24,55 кВт, нагрев воздуха до +23°C. Пластиковый корпус (навесной или настенный), привлекательный дизайн, низкий уровень шума. Разработка нидерландская, производство КНР. Это один из лучших вариантов как для бытовых нужд, так и для промышленного сектора, когда бюджет не ограничен.

Стоимость воздушного отопления, расходы на его содержание

Воздушное отопление, его разновидности

Воздушное отопление — это способ обогрева помещений путем подачи в них горячего (точнее, нагретого до необходимой температуры) воздуха. В зависимости от размеров или объема помещения этот вариант обогрева имеет большую или меньшую эффективность, причем, с возрастанием площади эффективность повышается. Это связано с тем, что другие способы обогрева используют в той или иной степени конвекцию воздуха, которая не обеспечивает ровного распределения тепловой энергии, образуя более теплые или менее нагретые участки площади. Некоторые системы нагрева прямым образом тяготеют к малой площади обслуживания, например, теплые полы или ИК-излучатели при больших площадях становятся нерентабельны. Воздушное отопление имеет обратный эффект, становится наиболее удачным вариантом именно при использовании в больших залах, цехах, жилых помещениях большого объема или сложной конфигурации.

Принцип работы воздушного отопления

Принцип работы воздушного отопления состоит в нагреве воздушного потока, подаваемого вентилятором. Этот нагрев производится при прохождении воздушной струи сквозь различные устройства, имеющие большую горячую поверхность. Струя воздуха омывает ее, забирает тепловую энергию, после чего направляется по сети воздуховодов в помещения здания. Принцип един, но имеются разные варианты выполнения системы. Наиболее распространенным типом являются калориферы, хорошо зарекомендовавшие себя в работе, обладающие высоким КПД, практически не имеющие потерь энергии.

Виды воздушного отопления

Все разновидности и варианты воплощения основаны лишь на различных способах нагрева теплообменника, таких как:

Электрические теплообменники

Электрические теплообменники продаются в готовом к использованию виде, достаточно лишь подключить их к сети. При этом, расходы на электрическое отопление самые высокие, делают использование таких устройств чисто временным, эпизодическим.

Газовые устройства

Газовые устройства достаточно эффективны, но требуют наличия топлива — газа, что в свою очередь требует налаженного снабжения. Все это требует расходов, кроме того, использование газовых приборов имеет определенную степень опасности.

Водяной теплообменник

Наиболее экономичным признается водяной тип теплообменника, поскольку горячую воду можно получать либо из сети ЦО или ГВС, либо греть в собственном котле, т.е. автономным образом. Независимость от поставщиков ресурсов — большой бонус, который позволяет получить заметную экономию средств или расширить возможности отопительной системы.

Гравитационная система воздушного отопления

Самая простая система воздушного отопления — гравитационная — основана на свойстве горячего воздуха подниматься вверх. Она обходится совсем недорого, действует вполне устойчиво, но любой сквозняк нарушает режим движения потоков, приводит систему воздушного отопления в нерабочее состояние.

С принудительной циркуляцией

Второй тип отопительных систем — с принудительной циркуляцией воздушных потоков.

Этот тип позволяет организовать равномерное перемещение воздушных потоков, не зависящее от посторонних вмешательств, сквозняков или прочих паразитных потоков от нагретого оборудования, работающих приборов и т.д. Этот тип системы позволяет создавать отфильтрованный воздушный поток с определенной температурой, которую можно гибко регулировать или настраивать.

Малая инерционность дает возможность в короткий срок получить нужное изменение микроклимата, которое сразу же чувствуется, не заставляет много раз корректировать систему по мере достижения определенной температуры, как это происходит с водяным типом отопления.

Преимущества воздушного отопления перед другими видами обогрева помещений

Воздушное отопление имеет массу достоинств , превосходя все другие способы обогрева по ряду позиций:

  • возможность создания в помещениях комфортного микроклимата как для людей, так и для выполнения технологических процессов
  • возможность равномерного, качественного нагрева больших площадей или объемов
  • высокая скорость отдачи системы , позволяющая почувствовать тепло буквально в первые минуты после запуска
  • низкая инерционность, мгновенное реагирование на регулировочные воздействия
  • экономичность , возможность создания полностью автономной системы, не зависящей от внешних факторов
  • высокая ремонтопригодность системы, возможность самостоятельного монтажа
  • безопасность отопления , отсутствие вредных или огнеопасных веществ

При этом, имеются недостатки:

  • для функционирования воздушного отопления требуется наличие подключения к электрической сети
  • низкая инерционность имеет и отрицательный эффект — при отключении электроэнергии в помещениях практически сразу начинает понемногу падать температура
  • система при работе издает шум , иногда довольно сильный

Недостатки имеют вполне преодолимый характер, их наличие обусловлено спецификой устройства воздушного отопления и не имеет решающего значения. Основным преимуществом является простота, ремонтопригодность системы и возможность самостоятельного создания. Система воздушного отопления для частного дома и коттеджа является одной из наиболее удобных, безопасных и экономичных.

Читайте также:  Расчет системы отопления для комнаты

Совмещение воздушного отопления и вентиляции

Воздушное отопление должно быть согласовано с вентиляцией . Это необходимо потому, что теплый воздух из обогревательной системы смешивается с более холодным из вентиляции, в результате чего температура в помещении становится ниже расчетной. Другой вариант — когда подача горячего воздуха не в состоянии обеспечить потребность помещения в свежей приточной струе. Для устранения такого эффекта системы обогрева и вентиляции совмещают. Это позволяет одним комплектом оборудования решить обе задачи и исключить возможность ошибок или нестыковок в подаче нужных количеств свежего воздуха и в обеспечении правильной температуры.

Важно! Для экономии тепловой энергии используется рекуперация, т.е. возврат тепла из выводимого отработанного воздуха обратно в помещение. Этот процесс также зависит от вентиляционной системы, что требует ее объединения с отопительным комплексом.

Расчет системы воздушного отопления

Система воздушного отопления, как и любая другая, не может быть создана наобум. Для обеспечения медицинской нормы температуры и свежего воздуха в помещении потребуется комплект оборудования, выбор которого основывается на точном расчете. Существует несколько методик расчета воздушного отопления, разной степени сложности и точности. Обычная проблема расчетов такого типа состоит в отсутствии учета влияния тонких эффектов, предусмотреть которые не всегда имеется возможность.

Поэтому производить самостоятельный расчет, не будучи специалистом в сфере отопления и вентиляции, чревато появлением ошибок или просчетов. Тем не менее, можно выбрать наиболее доступный способ, основанный на выборе мощности системы обогрева.

Смысл этой методики состоит в том, что мощность приборов отопления, вне зависимости от их типа, должна компенсировать теплопотери здания. Таким образом, найдя теплопотери, получаем величину мощности нагрева, по которой можно выбрать конкретное устройство.

Формула определения теплопотерь:

  • Q — величина теплопотерь (вт)
  • S — площадь всех конструкций здания (помещения)
  • T — разница внутренней и внешней температур
  • R — тепловое сопротивление ограждающих конструкций

Здание площадью 800 м2 (20×40 м), высотой 5 м, имеется 10 окон размером 1,5×2 м. Находим площадь конструкций:
800 + 800 = 1600 м2 (площадь пола и потолка)
1,5 × 2 × 10 = 30 м2 (площадь окон)
(20 + 40) × 2 × 5 = 600 м2 (площадь стен). Вычитаем отсюда площадь окон, получаем «чистую» площадь стен 570 м2

В таблицах СНиП находим тепловое сопротивление бетонных стен, перекрытия и пола и окон. Можно определить его самостоятельно по формуле:

  • R — тепловое сопротивление
  • D — толщина материала
  • K — коэффициент теплопроводности

Для простоты примем толщину стен и пола с потолком одинаковой, равной 20 см. Тогда тепловое сопротивление будет равно 0,2 м / 1,3= 0,15 (м2*К)/Вт
Тепловое сопротивление окон выберем из таблиц: R = 0,4 (м2*К)/Вт
Разницу температур примем за 20°С (20°С внутри и 0°С снаружи). Тогда для стен получаем:

  • 2150 м2 × 20°С / 0,15 = 286666=286 кВт
  • Для окон: 30 м2 × 20°С/ 0,4 = 1500=1,5 кВт.
  • Суммарные теплопотери: 286 + 1,5 = 297,5 кВт.

Такова величина теплопотерь, которые необходимо компенсировать при помощи воздушного отопления мощностью около 300 кВт.

Примечательно, что при использовании утепления пола и стен теплопотери снижаются как минимум на порядок.

Как выбрать оборудование

Выбор оборудования обусловлен величиной теплопотерь. Мощность отопительного комплекса должна быть на 15-20% выше , чтобы имелся некоторый запас на случай сильных морозов или иных нештатных ситуаций.

Выбор конкретного устройства, агрегата или комплекта производится по каталогам или таблицам. На сегодняшний день существует большое количество готовых комплексов, имеющих определенную мощность и источник нагрева. Из них можно подобрать наиболее подходящий вариант по характеристикам, цене и прочим параметрам, учитываемым исходя из условий эксплуатации и назначения здания.

Стоимость воздушного отопления, расходы на его содержание

Стоимость комплекта зависит от источника нагрева. Если используется теплоноситель из системы ЦО, то для создания воздушного отопления можно обойтись приобретением водяного калорифера и вентилятора. Если возможности использования сетевых ресурсов не имеется, то расходы увеличиваются на стоимость котла. Кроме того, понадобится сделать разводку воздуховодов, обеспечить приточную и вытяжную вентиляцию, рекуперацию и т.д. Окончательная цена зависит от размеров здания, типа оборудования, производителя и прочих обстоятельств.

Расходы на содержание воздушного отопления зависят от величины потребления электроэнергии вентиляторами и количества теплоносителя, циркулирующего в системе. Если используется собственный котел, то к стоимости электроэнергии прибавляется цена топлива. Общая сумма расходов зависит от времени года, размеров дома, климатических условий в регионе и т.д. В целом, воздушное отопление однозначно признается наиболее экономичным вариантом, высокий КПД и возможность автономного существования позволяет снизить расходы на обогрев до минимума.

Воздушное отопление частного дома или промышленного здания — удобный и экономичный тип нагрева, позволяющий сократить количество необходимого оборудования до минимума и совместить его с вентиляционной системой.

Экономичность и простота системы дают удобство монтажа своими руками, высокая ремонтопригодность позволяет выполнять все требующиеся операции собственными силами и в короткие сроки. Учитывая доступность и разнообразие источников первичного нагрева, можно систему воздушного отопления назвать наиболее эффективной и привлекательной для всех видов помещений.

Оцените статью