- ЖКХ в России
- Гидравлические потери и коэффициент затекания воды в отопительный прибор
- Отношение воды к схемам подключения радиаторов отопления.
- Гидравлические потери
- Коэффициент затекания воды в отопительный прибор
- Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия
- Расчет гидравлики водяной системы отопления
- Расчет диаметра труб
- Вычисление местных сопротивлений
- Гидравлическая увязка
- Определение потерь
- Гидравлический расчет системы отопления – пример расчета
- Видео на тему
ЖКХ в России
Гидравлические потери и коэффициент затекания воды в отопительный прибор
Отношение воды к схемам подключения радиаторов отопления.
Вода – не дура, она, как и мы с вами, хорошо знает законы гидравлики и гидродинамики. Даже больше – в отличие от нас, людей, вода эти законы не только знает, но и выполняет! Ей больше некуда деваться, как только протекать (или – не протекать) по тем изгибам и сужениям труб, которые мы придумали и смонтировали.
В этой статье мы говорим только об однотрубной системе отопления. Двухтрубная система в подробных разъяснениях не нуждается, поэтому она и применяется, пожалуй, во всем мире, кроме России.
Если мы хотим, чтобы в наших квартирах было тепло, тем, кто забыл, придется вспомнить кратко то, чему нас пытались научить еще в школе (в техникуме, в институте) любимые учители физики (гидравлики)*.
Некоторые основные понятия в гидравлике:
- гидравлические потери;
- коэффициент затекания воды в отопительный прибор.
Гидравлические потери
Гидравлические потери — вид потерь энергии в трубопроводах и другом гидрооборудовании, обусловленный работой сил вязкого трения между слоями жидкости, а также силами взаимодействия между жидкостью и контактирующими с ней твёрдыми телами.
Гидравлические потери принято разделять на три вида:
- потери на трение воды о внутреннюю поверхность трубы по ее длине, которые определяются по формуле Дарси-Вейсбаха (наименование формул я привожу только для того, чтобы Вы убедились, что вода – тоже умная и течет по нашим трубам и радиаторам только по этим формулам!);
- потери в оборудовании (отопительном радиаторе). Эти потери называются «характеристика сопротивления радиатора», определяются как потеря давления в нем при расходе теплоносителя 360 кг/час, измеряются в Па/(кг/с) 2 и обозначаются Sн у.
Характеристики сопротивления некоторых типов радиаторов см. в конце статьи в таблице 2. - местные гидравлические потери ζну, связанные с изменением сечения или конфигурации участка системы отопления.
Примеры местных потерь – входное и выходное отверстие радиатора, внезапное или постепенное расширение или сужение трубы, повороты трубы, запорный или регулировочный вентиль и др. Коэффициенты местных потерь (коэффициенты Дарси) вычисляются по эмпирическим формулам.
Коэффициенты местных потерь (местного сопротивления) радиаторов и ряда деталей трубопроводов отопления см. в конце статьи в таблицах 2 и 3.
Вы хотите, чтобы больше горячей воды затекало в ваши радиаторы, и меньше — протекало мимо, по стояку отопления? Тогда продолжайте внимательно читать дальше.
Коэффициент затекания воды в отопительный прибор
Коэффициент затекания воды в отопительный прибор – это доля воды, поступающей в отопительный прибор (далее наз. – радиатор), от всей массы воды, протекающей по стояку до места ответвления к радиатору.
Чем меньше коэффициент затекания воды в отопительный прибор (далее наз. – коэффициент затекания), тем меньшая часть воды из стояка поступает в радиатор.
Значения коэффициентов затекания зависят:
- от различных сочетаний диаметров труб стояков (dст), байпасов (смещённых замыкающих участков) (dзу), подводящих труб от стояков к радиаторам (dп).
Наиболее распространенные сочетания диаметров dст х dзу х dп (мм):
[15х15х15], [20х15х15] и [20х15х20] (см. таблицу 1);
от геометрической конфигурации узла подводки к радиатору (см. схемы 1 – 10). В зависимости от схемы подключения радиатора к стояку коэффициент затекания
изменяется от 0,15 (схемы 3 и 6) до 1,0 (схемы 2 и 5);
Усреднённые значения коэффициентов затекания αпр узлов однотрубных систем водяного отопления с чугунными радиаторами МС-110 при расходе теплоносителя по стояку более 100 кг/ч
Значения αпр при сочетании диаметров труб
Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия
Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.
Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.
Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.
Расчет гидравлики водяной системы отопления
Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.
Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.
Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.
Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.
На данном этапе проектирования определяются:
- диаметр труб и их пропускная способность;
- местные потери давления по отдельным участкам системы отопления;
- требования гидравлической увязки;
- потери давления по всей системе (общие);
- оптимальный расход теплоносителя.
Для производства гидравлического расчета необходимо проделать некую подготовку:
- Собрать исходные данные и систематизировать их.
- Выбрать методику расчета.
Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.
Схематичное изображение отопительной системы в частном доме
На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:
- мощности радиаторов;
- расхода теплоносителя;
- расстановки теплового оборудования и пр.
Расчет диаметра труб
Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:
- для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
- для однотрубной – расход теплоносителя G, кг/ч.
Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.
При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.
Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени
Q (Вт) = W (Дж)/t (с)
Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.
Таблица параметров участков
Обозначение участка | Длина участка в метрах | Количество приборов а участке, шт. |
1-2 | 1,8 | 1 |
2-3 | 3,0 | 1 |
3-4 | 2,8 | 2 |
4-5 | 2,9 | 2 |
Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.
Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.
Вычисление местных сопротивлений
Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:
- шероховатость внутренней поверхности трубы;
- наличие мест расширения или сужения внутреннего диаметра трубопровода;
- повороты;
- протяженность;
- наличие тройников, шаровых кранов, приборов балансировки и их количество.
Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).
Исходные данные для расчета:
- длина расчетного участка – l, м;
- диаметр трубы – d, мм;
- заданная скорость теплоносителя – u, мм;
- характеристики регулирующей арматуры, предоставляемые производителем;
- коэффициент трения (зависит от материала трубы), λ;
- потери на трение – ∆Pl, Па;
- плотность теплоносителя (расчетная) – ρ = 971,8 кг/м 3 ;
- толщина стенки трубы – dн х δ, мм;
- эквивалентная шероховатость трубы – kэ, мм.
Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.
Символ ξ в формуле означает коэффициент местного сопротивления.
Если в доме стоит печка, отопить она сможет лишь небольшое помещение. Установка батарей отопления в частном доме большой площади обязательна, так как в противном случае отдаленные от печи комнаты отапливаться не будут.
Основные характеристики газового котла Buderus представлены в этом обзоре.
О том, как запустить газовый котел, расскажем в этой статье.
Гидравлическая увязка
Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.
Гидравлическая увязка системы производится на основании:
- проектной нагрузки (массового расхода теплоносителя);
- данных производителей труб по динамическому сопротивлению;
- количества местных сопротивлений на рассматриваемом участке;
- технических характеристик арматуры.
Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.
Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где
S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).
Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.
Определение потерь
Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:
- первичного контура – ∆Plk;
- местных систем – ∆Plм;
- генератора тепла – ∆Pтг;
- теплообменника ∆Pто.
Гидравлический расчет системы отопления – пример расчета
В качестве примера рассмотрим двухтрубную гравитационную систему отопления.
Исходные данные для расчета:
- расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
- параметры системы – tг = 75 0 С, tо = 60 0 С;
- расход теплоносителя (расчетный) – Vсо = 7,6 м 3 /ч;
- присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
- автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 80 0 С;
- автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
- система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).
Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.
На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.
На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:
0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.
Варианты двухтрубной отопительной системы
Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.
Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.
Самодельная печь хорошо подойдет для обогрева дачного домика или подсобного помещения. Печка из газового баллона своими руками – смотрите инструкцию по изготовлению.
Как собрать пресс для топливных брикетов своими руками, вы узнаете в этой статье.
Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.