- Как рассчитать теплоотдачу радиаторов отопления – порядок, примеры и дополнительные факторы
- Основные характеристики радиатора отопления:
- Что такое теплоотдача и чем она определяется
- Самостоятельный расчет теплоотдачи
- Дополнительные факторы, влияющие на теплоотдачу
- Эффективные системы отопления: виды и характеристики радиаторов, существующие способы повышения теплоотдачи
- Существующие виды радиаторов
- По конструктивному решению приборы бывают:
- По виду материала различают:
- По способу теплопередачи радиаторы можно подразделить на:
- Технические характеристики некоторых видов радиаторов
- Теплоотдача радиаторов отопления
- Факторы, влияющие на теплоотдачу
- Существующие способы повышения мощности отопительного прибора
Как рассчитать теплоотдачу радиаторов отопления – порядок, примеры и дополнительные факторы
Задача любой системы отопления является эффективная передача энергии от теплоносителя (горячей воды) в помещение. Обогрев одними трубами неэффективен, так как они имеют малую площадь нагреваемой поверхности. Для этого используют специальные элементы системы отопления – радиаторы.
Радиаторы предназначены для повышения теплопередачи накопившейся в системе тепловой энергии в помещение. Они представляют собой секционную или монолитную конструкцию, внутри которой циркулирует теплоноситель. Радиаторы подключаются последовательно или параллельно в системе отопления.
Основные характеристики радиатора отопления:
- Материал изготовления.
- Тип конструкции.
- Габаритные размеры (кол-во секций).
- Теплоотдача.
Последнее является существенным показателем, так как определяет фактическое количество энергии, передаваемое от поверхности радиатора в комнату.
Что такое теплоотдача и чем она определяется
Теплоотдача – это процесс передачи тепловой энергии от нагретого тела (радиатора) во внешнее пространство (помещение). Данный показатель измеряется в Вт. От чего же зависит теплоотдача?
[box type=”success” ]Основная задача радиаторов отопления – передача тепловой энергии от системы отопления в квартиру. Эффективность определяется теплопроводностью материала, т.е. тепловыми потерями.[/box]
Теплопроводность – это показатель, определяющий тепловые потери энергии, проходящей через материал определенного объема за 1 мин. Измеряется в Вт/(м*К).
В таблице 1 показаны коэффициенты теплопроводности для основных материалов изготовления радиаторов.
Материал | Теплопроводность, Вт/(м*К) |
Сталь | 58 |
Алюминий | 230 |
Чугун | 50 |
Медь | 380 |
Чем выше этот показатель, тем меньше тепловых потерь будет при передаче энергии от теплоносителя в помещение. Как видно, лучший материал для изготовления радиаторов – это медь. Но из-за высокой стоимости и технологической сложности изготовления они менее всего популярны. Чаще используют стальные или алюминиевые модели. Нередко применение в конструкции сочетание вышеописанных элементов.
Каждый из производителей указывает мощность теплоотдачи для своих изделий. Она напрямую зависит от температуры воды в системе отопления на начальном (выход из котла) и конечном (ввод обратки в котел) отрезке и температуры в помещении. Определяется по формуле:
Практически все производители указывают величину перепада температуры в системе 90/70. Именно для этой величины определена теплоотдача в паспорте радиатора. Но если система высокоэффективная и теплоноситель не имеет большую тепловую разницу на входе и выходе?
Самостоятельный расчет теплоотдачи
Для проведения расчета теплоотдачи(Q) необходимо знать следующие параметры:
- ΔT – температурный напор системы.
- Коэффициент теплопроводности радиатора (k).
- Площадь секций (S).
Расчет мощности проводится по формуле:
Возьмем в качестве примера систему с эффективным нагревом теплоносителя и для комнатной температуры 22°С:
Далее, рассчитываем мощность теплоотдачи радиатора по показателям:
- Материал изготовления – сталь (k=52 Вт/(м*К).
- Площадь – 1,125*0,57= 0,64 м².
При этом необходимо учитывать и потери тепла в помещении, способ подключения радиаторов и место их установки.
Дополнительные факторы, влияющие на теплоотдачу
Помимо физических свойств радиаторов существуют и внешние показатели, которые могут существенным образом влиять на его КПД.
Первое, на что необходимо обратить внимание- это способы подключения радиаторов. На рисунке 1 показаны варианты подсоединения труб отопления и % потери энергии при этом.
Способы подключения радиаторов
Как видно из рисунка, оптимальным является 1-й способ подключения, когда подводящий патрубок находится в верхней части радиатора, а выводящий -в нижней, на другой стороне системы. Но не всегда такой способ возможно сделать по факту, так как многое зависит от разводки отопительного трубопровода.
Так же существенное влияние оказывает и место установки радиатора относительно оконной конструкции. На рис. 2 показаны, как изменится теплоотдача в зависимости от монтажа.
Изменение теплоотдачи радиаторов (k)
При максимальной изоляции радиаторов происходит сохранение их теплоотдачи, так как энергия в результате отражения от дополнительных поверхностей частично возвращается на поверхность радиатора. Но при этом понижается эффективность нагрева помещения. При планировании монтажа следует соблюсти «золотую середину». Для средних комнат (15-20 м²) предпочтителен открытый монтаж, с таким расчетом, чтобы подоконник закрывал радиатор на 2/3.
Выбор мощности радиатора зависит от характеристик помещения и отопительной системы. Применяя комплексный анализ и систему расчета можно подобрать оптимальный размер и мощность отопительного прибора. И тогда, даже при низких температурах на улице, в доме сохранится тепло и уют.
Эффективные системы отопления: виды и характеристики радиаторов, существующие способы повышения теплоотдачи
Опубликовано 31 декабря 2014 в 1:49
Как известно, обеспечение комфортного микроклимата, т.е. поддержание оптимальной температуры в помещениях в зимний период во многом зависит от способности установленных приборов отдавать тепло. Следовательно, одним из параметров эффективности системы теплоснабжения можно назвать применяемые типы радиаторов отопления.
На сегодняшний день на рынке представлено несколько видов батарей, каждый из которых имеет свои преимущества и недостатки.
Существующие виды радиаторов
В современных системах отопления могут применяться различные радиаторы, которые можно классифицировать следующим образом.
По конструктивному решению приборы бывают:
- секционными – наиболее распространенный вид; как понятно из названия, они представляют собой набор последовательно соединенных секций, а эффективность их функционирования будет зависеть от материала, из которого они выполнены, габаритных размеров и количества элементов; основными их достоинствами можно назвать возможность наращивания в процессе эксплуатации при недостаточной мощности радиаторов, а также надежность, долговечность;
Рисунок 1 – Секционные радиаторы отопления
- панельными – в отличие от всех остальных видов этот вид имеет привлекательный внешний вид, широкий ряд типоразмеров; устройство таких приборов достаточно простое: две панели между которыми расположены коллектор и вертикальные тонкие пластины; такая конструкция обеспечивает высокий коэффициент теплоотдачи при минимальном объеме теплоносителя; имеют небольшой вес, невысокую стоимость; однако нужно учитывать, что такие изделия имеют небольшой срок эксплуатации вследствие низкой устойчивости к гидравлическим ударам и подверженности к частому засорению накипью и другими отложениями;
Рисунок 2 — Панельные отопительные приборы
- пластинчатыми – их часто называют конвекторными; это самый дешевый и простой вариант радиаторов, представляющий собой сердечник в виде трубы отопления, к которому приварены тонкостенные стальные пластины; несмотря на надежность, такие приборы не очень популярны, т.к. имеют низкий коэффициент теплоотдачи (по имеющимся данным, он на 35-40 % ниже, чем у секционных), неравномерное распределение тепла, непрезентабельный вид;
Рисунок 3 – Пластинчатый радиатор
- трубчатыми – представляют собой цельнометаллическую конструкцию, в устройство которой, как правило, входят нижний и верхний коллекторы, соединенные между собой изогнутыми вертикальными рубками; такие радиаторы отличаются оригинальным внешним видом, надежностью, равномерностью прогрева помещения, однако имеют высокую стоимость.
Рисунок 4 – Трубчатый прибор отопления
По виду материала различают:
- чугунные приборы отопления – выпускаются секционными, считаются традиционными и до недавнего времени были наиболее популярными вследствие высокой инерционности (способности удерживать тепло длительное время), теплоотдачи, долговечности, коррозионной стойкости, устойчивости к гидравлическим ударам; в качестве недостатков отмечают большой вес и хрупкость;
Следует отметить, что ранние модели чугунных радиаторов имели непривлекательный вид, но в последние годы на рынке появились приборы с красивым дизайном, что обусловило их востребованность в современных системах отопления, несмотря на появление новых видов приборов.
Рисунок 5 – Современные чугунные радиаторы отопления
- алюминиевые радиаторы – они также производятся секционными, но в отличие от чугунных, за счет конструктивной особенности каждая секция имеет большую поверхность теплоотдачи; такие приборы отличаются легкостью, невысокой стоимостью, внешней привлекательностью, способностью выдерживать высокое (до 1,8 МПа) давление в системе; могут иметь различные размеры, позволяющие подобрать оптимальный вариант для каждого конкретного случая;
Необходимо иметь в виду, что алюминиевые радиаторы имеют ограничения по применению. Вследствие низкой коррозионной стойкости их не рекомендуется использовать в централизованных схемах отопления, в которых состав теплоносителя непостоянен.
Рисунок 6 – Алюминиевые приборы для систем отопления
- медные батареи отличаются надежностью, долговечностью, повышенной теплоотдачей, стойкостью к агрессивным средам; однако они имеют высокую стоимость и достаточно сложный и дорогостоящий монтаж, что ограничивает их применение;
Рисунок 7 – Медный пластинчатый радиатор
- стальные приборы – бывают панельными, пластинчатыми и трубчатыми; отличаются высокой скоростью прогрева и степенью теплоотдачи, имеют небольшой вес, но имеют недостаточную коррозионную стойкость;
Требуется помнить, что стальные радиаторы характеризуются пониженной инерционностью, поэтому при снижении температуры теплоносителя в системе отопления, они быстро остывают.
- биметаллические батареи – это современный вид, сочетающий в себе достоинства секционных и пластинчатых моделей; конструктивно представляют собой стальной или медный сердечник, к которому присоединены алюминиевые панели (секции). Среди достоинств таких радиаторов можно отметить высокую теплоотдачу, надежность (нечувствительны к перепадам давления в системе и химическому составу теплоносителя, исключают протечки). Среди недостатков следует назвать высокую стоимость, сложность очистки внешних поверхностей.
Нужно учитывать, что наличие воздуха (кислорода) в воде может вызывать коррозию стального элемента биметаллических приборов отопления, а, следовательно, снижать их долговечность.
Рисунок 8 – Устройство биметаллической батареи
По способу теплопередачи радиаторы можно подразделить на:
- излучательные (радиационные) – к ним относят секционные (чугунные), трубчатые приборы;
- конвекционные – панельные и пластинчатые модели;
- конвекционно-радиационные – биметаллические, алюминиевые и стальные секционные радиаторы.
Необходимо отметить, что это разделение условное, т.к. все отопительные приборы в общем случае передают тепло посредством и конвекции, и излучения, но отличаются преобладанием каждого из указанных процессов.
Технические характеристики некоторых видов радиаторов
Основным параметром, определяющим эффективность, является мощность радиаторов отопления (теплоотдача), поэтому в таблице, представленной ниже, основной акцент будет сделан на этот показатель, а также на максимальную температуру и рабочее давление в системе.
Модель радиатора | Основные характеристики | ||||||||
Вид | Тип | Номинальная мощность одной секции (прибора), Вт | Размеры секции (прибора), LxBxH, мм | Рабочее давление в системе, МПа | Максимальная температура теплоносителя, 0С | Страна-производитель | |||
Viadrus KALOR 500/70 | Чугунный | Секционный | 107,3 | 580х70х70 | 1,8 | 115 | Чехия | ||
МС-140-300 | Чугунный | Секционный | 120 | 376х108х140 | 0,9 | 130 | Россия | ||
GLOBAL KLASS 350 | Алюминиевый | Секционный | 131 | 432х80х80 | 1,6 | 110 | Италия | ||
ELSOTHERM AL N 500/85 | Алюминиевый | Секционный | 181 | 580х85х80 | 1,6 | 120 | Россия, Китай | ||
PURMO Compact 11 | Стальной | Панельный | 694 | 800х500х60 | до 1,0 | 110 | Финляндия, Польша | ||
PURMO Compact 22 | Стальной | Панельный | 1764 | 1200х500х102 | до 1,0 | 110 | Финляндия, Польша | ||
RADIKO 500B x10 | Биметаллический | Секционный | 190 | 580х80х85 | 2,5 | 110 | Италия | ||
Rifar Base 8 | Биметаллический | Секционный | 204 | 570х80х100 | 2,0 | 110 | Россия |
Теплоотдача радиаторов отопления
Теплоотдачей называют количество теплоты, передаваемое отопительным прибором в единицу времени и измеряемое в Ваттах.
Следует иметь в виду, что в литературе можно встретить и другую терминологию: мощность радиаторов отопления (теплового потока), тепловая мощность. Кроме того, некоторые производители в паспорте на технические изделия теплоотдачу указывают в кал/час, поэтому для определения ее в Вт следует воспользоваться переводным коэффициентом, равным 859,85.
Факторы, влияющие на теплоотдачу
На отдачу радиаторами тепла оказывают влияние:
- материал и тип отопительного прибора, определяющие его технические характеристики;
- параметры радиаторов, в том числе габаритные размеры (например, длина и ширина батареи должна занимать не менее 50 % площади под оконным проемом) и количество секций;
Требуется указать, что приборы, имеющие одинаковую конструкцию и размеры, но выполненные из разных материалов, имеют, как правило, разные показатели мощности.
- корректность монтажа – батареи должны быть установлены строго вертикально, без уклонов по горизонтали, с соблюдением всех нормативных расстояний до строительных конструкций и мебели;
- схема подключения радиатора к магистральному трубопроводу;
- особенности установки приборов (ниши);
- наличие защитных и декоративных экранов, плотных штор и т.д.;
- вид запорно-регулирующей арматуры.
Существующие способы повышения мощности отопительного прибора
На сегодняшний день известно несколько вариантов оптимизации передачи тепловой энергии каждым радиатором.
- В случае использования чугунных батарей можно изменить их размеры путем установки дополнительных секций.
- Установленные приборы должны регулярно очищаться от грязи и пыли.
- Для окрашивания (в случае необходимости) рекомендуется применять специальные красочные составы, не оказывающие существенное влияние на мощность батареи.
Необходимо помнить, что несколько слоев краски препятствуют оптимальному теплообмену, поэтому рекомендуется снимать старое покрытие перед нанесением нового.