Количество тепла от труб отопления

Теплоотдача 1 м. стальной трубы

Расчёт теплоотдачи трубы требуется при проектировании отопления, и нужен, чтобы понять, какой объём тепла потребуется, чтобы прогреть помещения и, сколько времени на это уйдёт. Если монтаж производится не по типовым проектам, то такой расчёт необходим.

Для каких систем нужен расчёт?

Коэффициент теплоотдачи считается для тёплого пола. Всё реже эта система делается из стальных труб, но если в качестве теплоносителей выбраны изделия из этого материала, то произвести расчёт необходимо. Змеевик – ещё одна система, при монтаже которой необходимо учесть коэффициент отдачи тепла.

Радиатор из стальных труб

Регистры – представлены в виде толстых труб, соединённых перемычками. Теплоотдача 1 метра такой конструкции в среднем – 550 Вт. Диаметр же колеблется в пределах от 32 до 219 мм. Сваривается конструкция так, чтобы не было взаимного подогрева элементов. Тогда теплоотдача увеличивается. Если грамотно собрать регистры, то можно получить хороший прибор обогрева помещения – надёжный и долговечный.

Как оптимизировать теплоотдачу стальной трубы?

В процессе проектирования перед специалистами встаёт вопрос, как уменьшить или увеличить теплоотдачу 1 м. стальной трубы. Для увеличения требуется изменить инфракрасное излучение в большую сторону. Делается это посредством краски. Красный цвет повышает теплоотдачу. Лучше, если краска матовая.

Другой подход – установить оребрение. Оно монтируется снаружи. Это позволит увеличить площадь теплоотдачи.

В каких же случаях требуется параметр уменьшить? Необходимость возникает при оптимизации участка трубопровода, расположенного вне жилой зоны. Тогда специалисты рекомендуют утеплить участок – изолировать его от внешней среды. Делается это посредством пенопласта, специальных оболочек, которые производятся из особого вспененного полиэтилена. Нередко используется и минеральная вата.

Производим расчёт

Формула, по которой считается теплоотдача следующая:

  • К – коэффициент теплопроводности стали;
  • Q – коэффициент теплоотдачи, Вт;
  • F – площадь участка трубы, для которого производится расчёт, м 2 dT – величина напора температуры (сумма первичной и конечной температур с учётом комнатной температуры), ° C.

Коэффициент теплопроводности K выбирается с учётом площади изделия. Зависит его величина и от количества ниток, проложенных в помещениях. В среднем величина коэффициента лежит в пределах 8-12,5.

dT называется также температурным напором. Чтобы параметр высчитать, нужно сложить температуру, которая была на выходе из котла, с температурой, которая зафиксирована на входе в котёл. Полученное значение умножается на 0,5 (или делится на 2). Из этого значения вычитается комнатная температура.

Если стальная труба изолирована, то полученное значение умножается на КПД теплоизоляционного материала. Он отражает процент тепла, который был отдан при прохождении теплоносителя.

Рассчитываем отдачу для 1 м. изделия

Посчитать теплоотдачу 1 м. трубы, выполненной из стали, просто. У нас есть формула, осталось подставить значения.

Q = 0,047*10*60 = 28 Вт.

  • К = 0.047, коэффициент теплоотдачи;
  • F = 10 м 2 , площадь трубы;
  • dT = 60° С, температурный напор.

Об этом стоит помнить

Хотите сделать систему отопления грамотно? Не стоит подбирать трубы на глазок. Расчёты теплоотдачи помогут оптимизировать траты на строительство. При этом можно получить хорошую отопительную систему, которая прослужит долгие годы.

Количество тепла от труб отопления

Сколько выделяется тепла трубами? Расчет теплоизоляции труб. Расчет регистров отопления.

У многих сантехников рано или поздно возникает один интересный вопрос:

На такой вопрос нет внятного ответа! В интернете и в учебниках по теплотехнике тоже нет нормального объяснения!

Я решил проделать свое расследование и раскрыть тайну расчетов теплопотерь трубопровода! Также объясню, как рассчитать теплоизояцию трубопровода.

Чтобы это понять рассмотрим регистровые отопительные приборы.

Регистровый отопительный прибор

На их основе были разработаны расчеты тепловыделения (теплоотодачи). То есть когда-то давно были произведены специальные опыты для получения тепла от трубы. Данный метод расчетов был придуман для того чтобы рассчитать теплопотери трубы при естественной циркуляции. Как известно раньше система отопления с естественной циркуляцией была простой трубой проложенной по периметру наружных стен дома.

Система отопления с естественной циркуляцией

В этой статье я для Вас открою методы расчетов потерь тепла трубами, для передачи тепла. Таким методом Вы сможете рассчитать даже плинтусную систему отопления. Это когда отопительным прибором является трубопровод, расположенный вдоль стены отапливаемого помещения.

Как проводились опыты по расчету теплопотерь трубы?

Использовались гладкотрубные отопительные приборы (Одиночная и одна над другой):

Подбирался определенный диаметр трубы. Через трубу производился расход теплоносителя. Полученные данные о тепловой энергии заносились в таблицу для каждого диаметра.

Для расчетов был придуман специальный параметр: ЭКМ

ЭКМ — это эквивалентный квадратный метр.

Существует понятие — площадь поверхности отопительного прибора , которая контактирует с воздухом. Данная поверхность измеряется в квадратных метрах. Но данный параметр является не удобным для расчетов мощности отопительного прибора. Так как существует нелинейный график теплопотерь при разной температуре. И поэтому на помощь приходит другое понятие: Эквивалентный квадратный метр . Данная величина хороша тем, что она найдена опытным путем.

Читайте также:  Установка коллекторной системы отопления

Расшифровка ЭКМ. Эквивалентный квадратный метр

Эквивалентный Квадратный Метр (ЭКМ) — это единица измерения предназначенная указать тепловые потери отопительного прибора относимого к площади поверхности отопительного прибора. Но площадь эта не является реальной площадью отопительного прибора. Это условная площадь поверхности отопительного прибора.

1 ЭКМ = Площадь нагревательного прибора, которая за 1 час времени отдает 435 ккалорий тепла при разности температур: Средняя температура теплоносителя — температура воздуха = 64,5 градусов Цельсия при расходе воды 17,4 кг/час. По схеме движения теплоносителя сверху вниз. Далее расход в расчеты влиять не будет!

Разность 64,5 градусов найдена таким образом: ((95 + 70)/2)-18=64,5

Откуда 95 градусов на подаче, 70 градусов на обратке. 18 градусов — температура в помещения. Средняя температура теплоносителя минус 18 градусов = 64,5

435 ккалорий = 506 Вт, 1 калория = 0,001163 Вт.

435000 калорий/час = 506 Вт/час

1 ЭКМ = 506 Вт при условии, что разность температур теплоносителя и воздуха равна 64,5 градусов Цельсия.

Нужно отопить помещение с теплопотерями 2000 Вт. Трубу использовать в один ряд горизонтально вдоль периметра помещения длиной 18 метров. Труба стальная. Температура воздуха в помещении 20 градусов. Рассчитать какой диаметр трубы применить к данному помещению?

Длина трубы = 5+4+5+4=18 м.

То есть средняя температура теплоносителя будет: 20+64,5=84,5 градусов

Подача: 89,5 градусов

Обратка: 79,5 градусов

Мы примем тот факт, что температура поверхности трубы равна температуре теплоносителя. Для практических примеров систем водяного отопления очень даже подходит. Термическое сопротивление стальной трубы очень мало и обычно может не включаться в расчет.

P.S. Мелочи будите считать, когда будите защищать докторскую диссертацию!

Находим ЭКМ для теплопотерь помещения 2000 Вт

2000 Вт делим на количество метров трубы 18 м. получается 111 Вт на метр трубы.

435 ккалорий = 506 Вт, поэтому 111Вт/м делим на 506Вт, получается 0,219 ЭКМ.

Ответ: ЭКМ = 0,219

Согласно задаче: один ряд. Сверяясь по таблице, нам подходит наружный диаметр трубы 50мм.

Если нам необходимо уменьшить температуру теплоносителя. То есть уменьшить разницу температур, то на помощь приходит такая таблица:

Зависимость теплоотдачи от температурного напора.

Давайте примем, что температура теплоносителя или поверхности трубы будет равна 60 градусов, тогда разница температур будет равна: 60-20=40 градусов.

При температурном напоре в 40 градусов, получается 270 кКалорий. ЭКМ = 0,26

Поэтому, 0,26*270=70,2 кКалорий

Ответ: Диаметр 50 не подходит для температурного напора в 40 градусов.

Чтобы найти диаметр необходимо выполнить следующее:

1. Находим кКалории при температурном напоре в 40 градусов = 270

2. 270*1,163 = 314 Вт

3. 2000 Вт делим на 18 метров = 111 Вт

4. 111 / 314 = 0,35 ЭКМ

5. Сверяемся по таблице, подходит 70мм

Ответ: Труба с диаметром 70мм.

Существует другой расчет.

Выбираем 50 трубу

Температурный напор 40 градусов умножаем на 2 кКал/градус = 80 ккалорий/час * 0,9 = 72 ккалор/час

Расчет теплопотерь трубопровода

Расчет тепловых потерь трубопроводов с помощью онлайн-калькулятора – рассчитайте теплопотери трубопроводов с изоляцией по длине по формулам.

Теплопотери трубопровода – это суммарные потери тепловой энергии, которые происходят при перемещении теплоносителя от источника до конечного потребителя. С помощью нашего калькулятора вы сможете выполнить расчет теплопотерь трубопровода по длине с учетом изоляции и температуры окружающей среды. Теоретическое обоснование алгоритма и формулы расчета представлены ниже. Если вы хотите узнать потери тепла в трубе без учета изоляции, укажите толщину равную нулю. Значение коэффициента теплопроводности для материалов указан в таблице. Коэффициент запаса по умолчанию равен 1.3 (без необходимости не меняйте данное значение). Рекомендуется брать температуру наиболее холодной пятидневки по СП 131.13330.2018 «Строительная климатология». Чтобы получить результат, нажмите кнопку «Рассчитать».

Смежные нормативные документы:

  • СП 50.13330.2010 «Тепловая защита зданий»
  • СП 124.13330.2012 «Тепловые сети»
  • СП 61.13330.2012 «Тепловая изоляция оборудования и трубопроводов»
  • СП 131.13330.2018 «Строительная климатология»
  • ГОСТ Р 56779-2015 «Системы распределения бытового горячего водоснабжения»

Как рассчитать теплопотери самостоятельно?

Формула расчета теплопотерь трубопровода: Q = (2π × λ × L × (Tвн — Tнар) / ln(D / d) × k

3,14);

  • λ – коэффициент теплопроводности изоляции, Вт/м°С (см. таблицу ниже);
  • L – длина трубы, м;
  • Tвн – температура жидкости в трубопроводе, °С;
  • Tнар – температура окружающей среды, °С;
  • D – наружный диаметр трубопровода с теплоизоляцией, м;
  • d – внутренний диаметр трубопровода, м;
  • k – коэффициент запаса мощности (1,3).
  • Расчет теплоотдачи трубы

    Сколько тепла отдает воздуху помещения стояк или лежак системы отопления? На сколько градусов остывает вода в изолированной воздушной теплотрассе? Как правильно и экономично выполнить теплоизоляцию трубопровода? Используя представленную далее.

    . программу в Excel, можно оперативно получить точные ответы на эти и другие вопросы!

    Объект исследований — труба с теплоносителем — водой, окруженная воздушным пространством.

    Очередные пользовательские функции (ПФ) Полковова Вячеслава Леонидовича выполняют автоматический расчет теплоотдачи трубы с теплоизоляцией поверхности и без таковой в любом пространственном положении.

    Напомню, что пользовательской функцией (ПФ-функцией, UDF-функцией) в Excel называется программа (макрос), записанная на языке VBA в программном модуле файла, и имеющая вид:

    • y – значение функции (искомый расчетный параметр);
    • x1,x2,x3, …,xn – значения аргументов функции (исходные данные).

    Чуть подробнее о работе с пользовательскими функциями можно посмотреть в предыдущей статье на блоге и почитать в Интернете.

    Расчет в Excel теплоотдачи трубы.

    Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

    Читайте также:  Питания системы центрального отопления

    В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

    Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

    Теория, алгоритмы, литература.

    Трубы, в системах теплоснабжения, могут выполнять две функции — транспортировать теплоноситель к месту его использования и служить сами отопительным прибором (регистром).

    При реализации любой из вышеперечисленных функций необходимо производить количественную оценку эффективности её выполнения.

    Основные показатели для систем транспорта тепловой энергии определены нормативными документами СО 153-34.20.523-2003 в 4 частях.

    В любом случае возникает необходимость оперативного и точного расчёта:

    • параметров теплообмена между трубой и окружающей её средой;
    • затрат энергии на транспортирование теплоносителя (воды) через трубу.

    Теплоотдача «голой» трубы

    Параметры, знание которых позволяет рассчитывать тепловые процессы в системе «вода — труба — воздух», собраны и показаны в блоке исходных данных таблицы из предыдущей части статьи.

    На рисунке ниже приведена эквивалентная схема теплоотдачи голой трубы.

    При расчётах теплоотдачи трубы удобно использовать метод аналогии между теплотехникой и электротехникой, принимая:

    • перепад температур dt=tводаtвозд, как разность электрических потенциалов;
    • тепловой поток q, как электрический ток;
    • термическое сопротивление Rt, как электрическое сопротивление.

    По аналогии с законом Ома получаем следующее уравнение:

    q=dt/Rt=(tвода tвозд)/(Rвн+Rтр+Rнар), Вт.

    Термическое сопротивление между двумя средами – водой и воздухом – препятствует всем формам теплообмена между ними:

    Каждая из перечисленных форм теплообмена имеет свою специфику и описывается соответствующими аналитическими выражениями.

    1. Конвективный теплообмен между движущейся водой и твёрдой цилиндрической стенкой

    Rвн=1/(αвн·Fвн) – термическое внутреннее сопротивление, °С/Вт, где:

    • αвн – средний по длине трубы коэффициент теплоотдачи от движущейся воды внутренней поверхности трубы, Вт/(м²·°С);
    • Fвн — площадь смачиваемой внутренней стенки трубы, м².

    αвн=Nuвода·λвода/Dтр – коэффициент теплоотдачи на внутренней поверхности трубы, Вт/(м²·°С), где:

    • Nu – критерий Нуссельта;
    • λвода – коэффициент теплопроводности воды, Вт/(м·°С);
    • Dтр – гидравлический диаметр трубы, м.

    Число Нуссельта (Nuвода) для движущейся воды в цилиндрической трубе, равно:

    Nuвода=С·Reвода m ·Prвода n ·K число Нуссельта для движущейся воды в цилиндрической трубе, где:

    • Reвода – число Рейнольдса для движущейся воды;
    • Prвода – число Прандтля для воды;
    • С,m,n и K – индексы, значения которых зависят от характера потока воды (ламинарный или турбулентный).

    2. Термическое сопротивление твёрдой стенки цилиндрической трубы

    Rтр=Ln(Dнар/Dтр)/(λтр·2·π·Lтр) — термическое сопротивление стенки трубы, °С/Вт, где:

    • Dнар – наружный диаметр трубы, м;
    • Dтр – внутренний диаметр трубы, м;
    • λтр – к-т теплопроводности материала трубы, Вт/( м·°С);
    • Lтр – длина трубы, м.

    3. Конвективный и лучистый теплообмены между твёрдой цилиндрической стенкой трубы и окружающим воздухом

    Rнар=1/[(αклFнар] – термическое наружное сопротивление, °С/Вт, где:

    • αк – средний по длине трубы коэффициент конвективной теплоотдачи, Вт/(м²·°С);
    • αл – средний по длине трубы коэффициент лучистой теплоотдачи, Вт/(м²·°С);
    • Fнар — площадь омываемой воздухом наружной стенки трубы, м².

    αк=Nuвозд·λвозд/Dнар — коэффициент теплоотдачи за счёт конвекции, Вт/(м²·°С), где:

    • Nuвозд – критерий Нуссельта для воздуха;
    • λвозд – коэффициент теплопроводности воздуха, Вт/( м·°С);
    • Dнар – наружный диаметр трубы, м.

    Nuвозд=С·(Grвозд·Prвозд) n ·K число Нуссельта для воздуха, омывающего цилиндрическую горизонтальную трубу, где:

    • Grвозд – критерий Грасгофа для воздуха;
    • Prвозд – критерий Прандтля для воздуха;
    • С,m и n – индексы, значения которых зависит от характера потока воздуха, омывающего трубу.

    Если Grвозд·Prвозд≤10 9 — ламинарный поток воздуха: С=0,47; n=0,26; К=1.

    Если Grвозд·Prвозд>10 9 — турбулентный поток воздуха: С=0,2; n=0,33; К=1.

    Grвозд=g·β·ρвозд²·dtнар·Dнар³/μвозд² — число Грасгофа для воздуха, омывающего горизонтальную трубу, где:

    • g ускорение свободного падения, м/с²;
    • β температурный коэффициент объёмного расширения для воздуха, 1/К;
    • ρвозд – объёмная плотность воздуха, кг/м³;
    • dtнар – разность температур между наружной стенкой трубы и воздухом, °С;
    • μвозд — динамическая вязкость воздуха, Н·с/м² (Па·с).

    qл=eизл·С0·[(T0+tвозд+dtнар) 4 -(T0+tвозд) 4 ] — удельный тепловой поток за счёт излучения, Вт/м², где:

    • eизл – излучательная способность (степень черноты) поверхности трубы;
    • С0– постоянная Стефана-Больцмана, С0=5,67·10 -8 Вт/(м²·К 4 ).

    αл=qл/dtнар — коэффициент теплоотдачи за счёт излучения, Вт/(м²·К).

    4. Перепад температур между наружной стенкой трубы и воздухом

    Читайте также:  Конвектор noirot как пользоваться

    Значение разности температур между наружной стенкой трубы и воздухом (dtнар) находится с помощью метода итераций при использовании следующих равенств:

    Rнар=φ(dtнар) -> dtнар=Rнар·q -> Rнар=φ(dtнар) n раз, или до момента Δ(dtнар) ≈ 0.

    5. Итоговые обобщения алгоритма

    При движении воды по трубе изменяются физические параметры воды и, следовательно, меняются режимы теплообмена. Для «длинных» труб погрешности расчёта могут быть очень большими, даже при использовании усреднённых значений физических параметров (Р, t) воды.

    Одним из вариантов повышения точности расчётов является разбиение трубы на участки небольших размеров, физические параметры воды на которых изменяются в «приемлемых границах». При этом параметры воды на выходе предыдущего участка являются входными параметрами воды последующего участка.

    Рассмотренный выше алгоритм расчета разработан для горизонтально расположенных труб.

    Аналогичный алгоритм расчёта и аналитические зависимости используются и при расчёте теплоотдачи вертикальной трубы. Незначительные отличия в формулах и новые значения индексов представлены далее.

    Nuвозд=С·(Grвозд·Prвозд) n — критерий Нуссельта для воздуха, омывающего цилиндрическую вертикальную трубу, где:

    Grвозд=g·β·ρвозд²·dtнар·Lтр³/μвозд² — критерий Грасгофа для воздуха, омывающего вертикальную трубу.

    Если Grвозд·Prвозд≤10 9 — ламинарный поток воздуха: С=0,59; n=0,25.

    Если Grвозд·Prвозд>10 9 — турбулентный поток воздуха: С=0,021; n=0,4.

    6. Пользовательские функции

    Для автоматизации рутинных расчетов были разработаны перечисленные ниже пользовательские функции (ПФ), предназначенные для вычисления параметров теплообмена между «голой» трубой и внешней воздушной средой:

    1. ПФ для расчёта теплоотдачи горизонтальной «голой» трубы с водой в воздушном пространстве:

    РтрГГ=qТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.

    1. ПФ для вычисления тепловой мощности вертикальной «голой» трубы, заполненной движущейся водой и окруженной воздушной средой:

    РтрВГ=qТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.

    1. ПФ для расчёта разности между температурами воды на входе и выходе горизонтальной «голой» трубы при теплообмене с воздушной средой:

    dtтрГГ=dtТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.

    1. ПФ для вычисления изменения температуры воды на участке от входа до выхода из вертикальной «голой» трубы, находящейся в воздушном пространстве:

    dtтрВГ=dtТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.

    Теплоотдача изолированной трубы

    На следующем рисунке приведена эквивалентная схема к расчету теплоотдачи изолированной трубы.

    Расчётный алгоритм для теплоизолированной трубы отличается от алгоритма для «голой» трубы учётом дополнительного термического сопротивления теплоизоляции.

    Rиз=Ln(Dиз/Dнар)/(λиз·2·π·Lтр) – термическое сопротивление изоляции, °С/Вт, где:

    • Dиз – наружный диаметр теплоизоляции, м;
    • Dнар – наружный диаметр голой трубы, м;
    • λиз коэффициент теплопроводности материала теплоизоляции, Вт/( м·°С);
    • Lтр – длина трубы, м.

    q=dt/Rt=(tвода tвозд)/(Rвн+Rтр+Rиз+Rнар) — тепловой поток от воды через стенку трубы, слой изоляции к окружающему водуху, Вт.

    Остальные формулы — те же, что и в расчетах «голой» трубы.

    Для упрощения расчётов теплоотдачи изолированных труб были разработаны похожие на предыдущие четыре пользовательские функции:

    1. ПФ для расчёта теплоотдачи изолированной горизонтальной трубы:

    РтрГИ=qТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.

    1. ПФ для вычисления тепловой мощности изолированной вертикальной трубы:

    РтрВИ=qТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.

    1. ПФ для определения падения температуры воды в теплоизолированной горизонтальной трубе:

    dtтрГИ=dtТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.

    1. ПФ для расчёта разности между температурами воды на входе и выходе теплоизолированной вертикальной трубы:

    dtтрВИ=dtТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.

    Влияние степени черноты наружной поверхности на мощность теплового потока «голых» и изолированных труб

    В рассмотренном ниже примере расчёты теплоотдачи выполнены с использованием пользовательских функций для «голой» и теплоизолированной труб со степенью черноты наружных поверхностей в диапазоне e=0,1…1,0.

    Графики наглядно демонстрируют, что коэффициент излучения наружной поверхности теплоизоляции не значительно влияет на относительную мощность теплового потока. В то же время степень черноты внешней стенки «голой» трубы оказывает весьма существенное влияние на теплоотдачу! Это означает, что для «голых» труб необходимо более точно в расчётах задавать значение коэффициента излучения их наружных поверхностей. Для теплоизолированных труб точность задания степени черноты поверхности изоляции менее критична.

    Коэффициенты излучения поверхностей различных материалов существенно отличаются и часто значительно зависят от температуры.

    Литература:

    1. Х.Уонг Основные формулы и данные по теплообмену для инженеров. Справочник. Москва. Атомиздат. 1979.
    2. Ф.Крейт, У.Блэк Основы теплопередачи. Москва, Мир, 1983.
    3. М.А. Михеев, И.М. Михеева Основы теплопередачи. Издание второе. Москва, Энергия, 1977.
    4. В.Р. Кулинченко Справочник по теплообменным расчётам. Киев. Тэхника, 1990.

    Ссылка на скачивание файла: raschet-teplootdachi-truby (xls 271,0KB).

    Оцените статью