Что такое мембранный компенсатор гидроударов, как он работает
Давление, как один из параметров системы отопления и водоснабжения, играет ключевую роль. Именно за счет разности давлений образуется течение жидкости. В современных системах отопления используют гидравлические насосы. От показателя давления зависит скорость течения, напор и объем. В системах открытого типа, которые повсеместно использовались в прошлом, давление жидкости равнялось атмосферному, поэтому повышение температуры носителя сопровождалось перетеканием жидкости в расширительный бак.
Недостатком такой системы служило постепенное испарение жидкости, невозможность повышения температуры кипения, незащищенность от гидравлических ударов.
Жидкость практически не сжимается. При сжатии слоев возникают большие по значению силы упругости, которые могут с высокой скоростью передаваться в среде. Резкое изменение давления в одной части квартирной магистрали могло привести к разрушению элементов трубопровода в другой части.
Спровоцировать гидроудар может открытие крана или любой заслонки. Ярким примером служит разрушение вновь проложенной магистрали при первом ее запуске, когда при закрытых вентилях смесителей открывается подача воды.
Закрытая система отопления
Если трубопровод сделать герметичным, то при нагревании жидкости резко начнет повышаться давление, из-за чего могут трубы или соединения начать разрушаться. Однако давление, превышающее атмосферное, дает немало преимуществ.
- Как известно, повышается температура кипения, следовательно, можно более эффективно использовать носитель.
- При повышенном давлении увеличивается эффективность работы гидронасоса.
- Герметичная система не нуждается в периодической подпитке.
Регулятор давления в системе закрытого типа совмещает в себе функции мембранного компенсатора и расширителя. Он представляет собой емкость, разделенную на две части эластичной перегородкой.
В одной части находится воздух под давлением, а другая его часть соединена с магистралью. При тепловом расширении жидкость давит на мембрану, вследствие чего она прогибается в зону, наполненную воздухом. При уменьшении объема воздуха его давление возрастает и начинает компенсировать избыточное давление жидкости.
Когда квартирная система отопления находится в рабочем состоянии, то мембранный компенсатор пребывает в динамическом равновесии. Каждому увеличению давления со стороны жидкости сопутствует возрастание давления воздуха. Но оказывается, такая система не только способна гасить тепловые расширения, но работает как гаситель гидроударов.
Устройство мембранного компенсатора
На рынке строительных материалов и деталей к системам отопления расширительный бак известен, как мембранный компенсатор гидроударов. Он может устанавливаться не только в систему отопления, но и в систему водоснабжения. Основное назначение емкости – разгрузка системы в случае повышения давления.
Мембрана, выполненная из эластичного материала, является регулятором давления. По форме резервуар не подлежит стандартизации. Выбор внешней формы зависит исключительно из условий окружающего пространства и эстетичности. Чаще всего встречаются компенсаторы в виде цилиндрического баллона.
Та половина резервуара, где находится воздух, имеет вывод с золотником. Через него можно добавлять или уменьшать количество воздуха в резервуаре. При покупке мембранного компенсатора воздух находится под давлением, равным десятым долям атмосферного давления. При вводе в эксплуатацию это давление увеличивается согласно показателям системы. Компенсатор имеет только один подсоединительный патрубок, ведь сквозного течения жидкости не предусмотрено.
Разновидности
Есть несколько видов действующих классификаций устройств. Наиболее практичной считается группировка по типам применяемых мембран. На сегодняшний день практически все устройства выпускаются с диафрагменной мембраной. Баллон неразборный, выполненный из прочной стали. Обычно состоит из двух полусфер, сваренных между собой. Мембрана монтируется таким образом, чтобы полость резервуара делилась на две части. Подсоединительный патрубок остается в одной части, а золотник – в другой.
Баллонная мембрана подлежит замене. Но современные материалы способны выдерживать повышенные нагрузки довольно длительное время без потери целостности и упругости, поэтому необходимость в замене мембраны практически отпала. Резервуар для баллонной мембраны разборный. Вода находится в резиновой камере и не соприкасается с внутренними стенками резервуара. Шаровая мембрана сегодня практически не используется, она считается раритетом.
Правила монтажа
Если ранее к расширительному бачку предъявлялись определенные требования по монтажу, то в закрытой системе компенсатор может устанавливаться в любом месте. Однако это только теоретическое предположение. Требования расположения в высшей точке уже не актуальны, так как по закону Паскаля давление везде одинаковое.
Компенсатор монтируется там, где имеются сантехнические узлы, вводы или развязки.
- С одной стороны, это обусловлено тем, что узлы являются частой причиной гидроударов, поэтому устройство, гасящее избыточное давление, целесообразнее устанавливать в непосредственной близости от кранов и вентилей.
- С другой стороны, здесь весомую роль играет эстетичность. На фоне прямолинейных труб, аккуратно уложенных по периметру комнаты, баллон смотреться ну никак не будет.
Важным условием монтажа является отсутствие длинного или изогнутого отвода к баллону. Так как в отводе вода не циркулирует, то это может привести к застою и, как следствие, к размножению микробов. Отводы должны быть короткими и прямыми.
Из этих соображений и стоит выбирать место локализации компенсатора.
Обзор моделей мембранных компенсаторов
Сравнение технических характеристик разных моделей устройств помогает тем, кто впервые столкнулся с необходимостью их применения сделать правильный выбор. То же самое можно сказать и про мембранные компенсаторы. Модель Valtec Car 19 идеально подходит для бытового применения в квартирах.
Основное его назначение – компенсация переменных значений давления в водопроводах и системах отопления. Модели valtec зачастую используют исключительно в качестве расширительного бачка. Корпус компенсатора достаточно прочный, к тому же, он выполнен из нержавейки. При гидроударе резервуар способен принять 162 г воды. Но это не такой уж низкий показатель, так как давление в магистрали в это время составляет от 10 до 12 бар.
При монтаже номинальное давление в резервуаре равняется 3 бар, что в большинстве случаев подходит для многих систем без перенастройки. Некоторые модели снабжены манометрами для более удобной настройки компенсатора.
Модель FAR FA 2895 12 от компании FAR завоевала свою нишу на рынке компенсирующих устройств благодаря своей надежности при относительно недорогой стоимости. Показатели температуры и давления позволяют компенсатору работать как в промышленных системах, так и в системах домашнего применения.
Устройство резервуара ничем практически не отличается от аналогов. В качестве материала применяется латунный сплав, а мембрана выполнена из прочного пластика. Чтобы этот пластик не деформировался под действием воздуха, когда резервуар пустой, но удерживается пружинами. Несомненным качеством моделей far является их небольшой размер, они просты для монтажа даже в условиях стесненных габаритов пространства.
Производители Reflex и caleffi специализируются на производстве арматуры для водопроводов. Они предлагают целую линию компенсаторов, которые отличаются тем, что используются в более крупных системах. Объем бака Reflex может достигать сотен литров. Нередко такие устройства становятся гидроаккумуляторами, способными накапливать огромное количество воды. Такие аккумуляторы обеспечивают целостность насосов при отключении подачи водоснабжения.
Доступность устройств и гибкая ценовая политика производителей позволяет обеспечивать защиту систем водоснабжения не только на крупных предприятиях, но и в обычных домашних условиях. Перечисленные устройства имеют достаточно высокий ресурс при условии, что все технические параметры подобраны правильным образом.
Квартирный гаситель гидравлических ударов
Общие сведения о гидравлическом ударе
Гидравлический удар – это скачкообразное изменение давление жидкости, протекающей в напорном трубопроводе, возникающее при резком изменении скорости потока. В более развернутом смысле, гидравлический удар представляет собой быстротечное чередование «скачков» и «провалов» давления, сопровождающееся деформацией жидкости и стенок трубы, а также акустическим эффектом, похожим на удар молотком по стальной трубе. При слабых гидравлических ударах звук проявляется в виде «металлических» щелчков, однако даже при таких, казалось бы, незначительных ударах давление в трубопроводе может возрастать весьма значительно.
Стадии гидравлического удара можно проиллюстрироват ь на следующем примере (рис.1): пусть на конце квартирного трубопровода, присоединенного к домовому стояку, установлен однорычажный кран или смеситель (именно такие смесители позволяют относительно быстро перекрывать поток).
Рис.1. Стадии гидравлического удара
При перекрытии крана происходят следующие процессы:
- Пока кран открыт, жидкость движется по квартирному трубопроводу со скоростью «ν ». При этом в стояке и квартирном трубопроводе давление одинаковое (p).
- При перекрытии крана и резком торможении потока кинетическая энергия потока переходит в работу деформации стенок трубы и жидкости. Стенки трубы растягиваются, а жидкость сжимается, что ведет к увеличению давления на величинуΔp (ударное давление). Зона, в которой произошло увеличение давления называется зоной сжатия ударной волной, а ее крайнее сечение называется фронтом ударной волны. Фронт ударной волны распространяется в сторону стояка со скоростью «с». Здесь хотелось бы отметить, что допущение о несжимаемости воды, принимаемое при гидравлических расчетах, в данном случае не применяется, т.к. реальная вода – сжимаемая жидкость, имеющая коэффициент объемного сжатия 4,9х10 -10 1/Па. То есть при давлении 20 400 бар (2040 МПа) объем воды уменьшается в два раза.
- Когда фронт ударной волны дойдет до стояка, вся жидкость в квартирном трубопроводе окажется сжатой, а стенки квартирного трубопровода – растянутыми.
- Объем жидкости в домовой системе гораздо больше, чем в квартирной разводке, поэтому, когда фронт ударной волны доходит до стояка, избыточное давление жидкости большей частью сглаживается за счет расширения сечения и включения в работу общего объема жидкости в домовой системе. Давление в квартирном трубопроводе начинает выравниваться со стояковым давлением. Но при этом квартирный трубопровод за счет упругости материала стенок восстанавливает свое первоначальное сечение, сжимая жидкость и выдавливая ее в стояк. Зона снятия деформации со стенок трубопровода распространяется к крану со скоростью «с».
- В момент, когда давление в квартирном трубопроводе будет равно первоначальному, также как и скорость жидкости, направление потока будет обратное («нулевая точка»).
- Теперь жидкость в трубопроводе со скоростью «ν » стремится «оторваться» от крана. Возникает «зона разряжения ударной волны». В этой зоне скорость потока нулевая, а давление жидкости становится ниже первоначального, что приводит к сжатию стенок трубы (уменьшению диаметра). Фронт зоны разряжения передвигается к стояку со скоростью «с». При значительной первоначальной скорости потока разряжение в трубе может привести к снижению давления ниже атмосферного, а также к нарушению неразрывности потока (кавитации). В этом случае в трубопроводе около крана появляется кавитационный пузырь, схлопывание которого приводит к тому, что давление жидкости в зоне отраженной ударной волны становится больше, чем этот же показатель в прямой ударной волне.
- При достижении фронта сжатия ударной волны стояка скорость потока в квартирном трубопроводе нулевая, а давление жидкости – ниже первоначального и ниже, чем давление в стояке. Стенки трубопровода сжаты.
- Перепад давлений между жидкостью в стояке и квартирном трубопроводе вызывает поступление жидкости в квартирный трубопровод и выравниванию давлений до первоначального значения. В связи с этим стенки трубы также начинают приобретать первоначальные очертания. Так образовывается отраженная ударная волна, и циклы снова повторяются до полного угасания. При этом промежуток времени, в течение которого проходят все стадии и циклы гидравлического удара, не превышает, как правило, 0,001–0,06 с. Количество циклов может быть различным и зависит от характеристик системы.
На рис. 2 стадии гидравлического удара показаны в графическом виде.
Рис. 2. Графики изменения давления при гидравлическом ударе.
График на рис. 2а показывает развитие гидравлического удара, когда давление жидкости в зоне разряжения ударной волны не падает ниже атмосферного (линия 0).
График на рис. 2б отображает ударную волну, зона разряжения которой находится ниже атмосферного давления, но гидравлическая сплошность среды не нарушается. В этом случае давление жидкости в зоне разряжения ниже атмосферного, но эффект кавитации не наблюдается.
График на рис .2в отображает случай, когда нарушается гидравлическая неразрывность потока, то есть образуется кавитационная зона, последующее схлопывание которой приводит к возрастанию давления в отраженной ударной волне.
Разновидности гидравлических ударов и основные расчетные положения
В зависимости от скорости, с которой происходит закрытие запорного органа на трубопроводе, гидравлический удар может быть «прямым» и непрямым». «Прямым» называется удар, при котором перекрытие потока происходит за время меньшее, чем период удара, то есть выполняется условие:
где Т3 – время закрытия запорного органа, с; L – длина трубопровода от запорного устройства до точки, в которой поддерживается постоянное давление (в квартире – до стояка), м; с – скорость ударной волны, м/с.
В противном случае гидравлический удар называется непрямым. При непрямом ударе скачок давления значительно меньше по величине, так как часть энергии потока демпфируется частичной утечкой через запорный орган.
В зависимости от степени перекрытия потока гидравлический удар может быть полным и неполным. Полным является удар, при котором запорный орган полностью перекрывает поток. Если же этого не происходит, то есть часть потока продолжает протекать через запорный орган, то гидравлический удар будет неполным. В этом случае расчетной скоростью для определения величины гидравлического удара станет разница скоростей потока до и после перекрытия. Величину повышения давления при прямом полном гидравлическом ударе можно определить по формуле Н.Е. Жуковского (в западной технической литературе формула приписывается Alievi и Michaud):
где ρ – плотность транспортируемой жидкости, кг/м 3 ; ν – скорость транспортируемой жидкости до момента внезапного торможения, м/с; с – скорость распространения ударной волны, м/с.
В свою очередь скорость распространения ударной волны с определяется по формуле:
, м/c,
где c0 — скорость распространения звука в жидкости (для воды – 1425 м/с, для других жидкостей можно принимать по табл. 1); D – диаметр трубопровода, м; δ – толщина стенки трубы, м; Еж – объемный модуль упругости жидкости (можно принимать по табл. 2), Па; Ест – модуль упругости материала стенок трубы, Па (можно принимать по табл. 3).