Компенсаторы систем отопления многоэтажного дома

Компенсаторы систем отопления многоэтажного дома

Компенсатор стояков отопления (КСО)

Компенсатор стояков отопления КСО с защитным кожухом предназначен для компенсации температурных удлинений прямолинейных участков трубопровода, централизованного теплоснабжения и горячего водоснабжения многоэтажных зданий. Устанавливается в помещениях жилых домов, офисных и производственных зданиях, а также на трубопроводных системах водонагревательных установок, насосных станций, тепловых пунктов потребителей и других сооружениях тепловых сетей, систем жилищного и коммунального хозяйства. Устройства защищают трубопровод от статических и динамических нагрузок, возникающих при вибрациях и температурных деформациях. Режим работы устройства рассчитан на сжатие и растяжение. Рабочая среда: жидкие и газообразные среды неагрессивные по отношению к используемым в конструкции материалам.

Изделия оборудованы наружным защитным кожухом (сталь 20) и внутренней защитной гильзой-экраном из нержавеющей стали 12Х18Н10Т. Основным рабочим элементом устройства является сильфон (гофра), изготовленная из тонкостенного прочного металла, сжатие и растяжение которой позволяет защищать систему от разрыва. Сильфон компенсатора многослойный. Благодаря этому, осевая компенсирующая способность составляет 40 мм, а ресурс не менее 3000 циклов сжатия-растяжения при перемещении на полный рабочий ход. Тип присоединяется к трубопроводу: патрубки под приварку. Срок службы составляет до 20 лет, при концентрации хлоридов в транспортируемой среде не более 30 мг/кг.

Сильфонные компенсаторы с защитным кожухом допускается применять в районах строительства с расчётной наружной температурой не ниже – 30С, в зданиях с двухтрубной системой отопления высотой 7 и более этажей. Температура носителя не более 200С. Сейсмичность районов строительства – до девяти баллов включительно. Допускается установка как на горизонтальных, так и вертикальных участках трубопроводов. Устройства не требуют обслуживания в процессе эксплуатации и относятся к классу неремонтируемых изделий.

Выпускаемые компенсаторы стояков отопления изготавливаются с условными внутренними диаметрами от DN15 до DN50 mm. Условное давление (PN) до 16 кг/см2.

Наименование компенсатора Габаритные и присоединительные размеры компенсаторов для стояков отопления

Осевая компенсирующая способность(+растяжение / -сжатие) λ, мм

Эффективная площадь, F эфф, см2

Жесткость, CQ, кгс/мм

Масса, кг

DN, мм
(условный)

Внутренний диаметр патрубков, мм

Описание и принцип работы.

Сильфонный компенсатор с несъемным кожухом состоит из сильфона (тонкостенной гофрированной оболочки), присоединительной арматуры, внешнего защитного кожуха и внутренней гильзы (экрана). Сильфон компенсатора и внутренняя гильза изготовлены из стали 12Х18Н10Т. Приварные монтажные патрубки и наружный кожух изготовлены из стали 20. Изделие присоединяется к трубопроводу путём сварки.

Компенсаторы с защитным кожухом могут устанавливаться как на горизонтальных, так и вертикальных участках трубопроводов.
Они не требуют обслуживания в процессе эксплуатации и относятся к классу неремонтируемых изделий. Устанавливаться только на прямолинейных участках трубопроводов, ограниченных неподвижными опорами. Между неподвижными опорами допускается размещать только один компенсатор стояков отопления. Расчет нагрузок на кольцевые и промежуточные неподвижные опоры при различных способах установки компенсаторов выполняется на этапе проектирования тепловой сети и приводится в специальной литературе.

Изделие устойчиво к воздействиям рабочей среды: вода — до +150С; пар — до +200С. Компенсаторы с защитным кожухом допускается эксплуатировать с жидкими и газообразными средами не вызывающими коррозии материалов компенсатора при температуре от минус 30С до плюс 200С. При использовании компенсаторов в системах отопления высотных зданий, транспортируемой средой является вода с температурой до 150С. Применяемые в конструкции материалы устойчивы к воздействию относительной влажности воздуха до 95% при температуре окружающего воздуха 35С и более низких температурах без конденсации влаги. Допускается эксплуатация в районах строительства с расчётной наружной температурой для проектирования систем отопления не ниже – 30С. Сейсмичность районов строительства – до девяти баллов включительно.

Компенсаторы системы теплоснабжения не применяют для транспортировки рабочих сред, использующихся в химической, нефтехимической, нефтеперерабатывающей промышленности, а также на трубопроводных системах химически- и взрывоопасных производственных установок.

Изделие не содержит веществ, представляющих опасность для жизни, здоровья людей и окружающей среды. После окончания срока эксплуатации утилизацию компенсатора потребитель осуществляет по своему усмотрению.

Читайте также:  Отопление теплицы трубами под землей

Рекомендации по проектированию систем отопления.

Необходимость применять компенсаторы системы теплоснабжения многоэтажных домов, обусловлена тем, что в трубах отопления, с температурой проводимой среды порядка +80С, на каждом этаже могут происходить изменения длинны трубопровода приблизительно на 3мм. Совокупная величина удлинения трубопровода в семиэтажном зданий (приблизительно 21м) при этом составит более 20мм, что при отсутствии компенсирующих элементов, неминуемо приведет к деформации труб ы . Поэтому в высотных домах применяется компенсатор стояков отопления, который устанавливается через каждые 30 метров (10 этажей).

Пример деформации трубы системы теплоснабжения, в зависимости от величины воздействующих температур

Первоначальная
длина трубы (m)

Компенсатор стояков отопления должен устанавливаться только на прямолинейных участках трубопроводов, ограниченных неподвижными опорами, исключающими перемещение трубопровода в радиальном направлении. Между неподвижными опорами допускается размещать только один компенсатор. Участки трубопровода до и после компенсатора должны быть закреплены в неподвижных опорах таким образом, чтобы расстояние между концами труб в месте установки компенсатора соответствовало длине компенсатора в состоянии поставки L. Оптимальное расстояние от компенсатора до неподвижной или направляющей опоры 2..3 Ду. Допускается увеличивать расстояние от компенсатора до опоры до трёх метров, при обеспечении соосности трубопровода по всей протяженности, и исключении возможности радиальных перемещений. Расчет нагрузок на кольцевые и промежуточные неподвижные опоры при различных способах установки компенсаторов выполняется на этапе проектирования тепловой сети и приводится в специальной литературе. При выборе неподвижных опор необходимо учитывать следующие факторы: распорное усилие компенсатора; усилие жесткости компенсатора; трение в направляющих и скользящих опорах.

На участках трубопроводов с сильфонными компенсаторами не допускается применение подвесных опор.

Монтаж компенсаторов отопления и водоснабжения .

Монтаж изделий осуществляется в соответствии с проектом системы отопления, на участках обозначенных в проектной документации . При монтаже и эксплуатации компенсаторов должны соблюдаться нормы и требования безопасности, действующие на объекте их применения , а также т ребования СНиП по проектированию тепловых сетей, по производству и приёмке работ наружных и внутренних сетей и сооружений водоснабжения, канализации и теплоснабжения, по технике безопасности в строительстве, правил пожарной безопасности при проведении сварочных работ и требования други х нормативны х документ ов .

Все работы по монтажу проводятся при полном отсутствии давления в системе. Компенсаторы для систем отопления устанавливают строго соосно с трубопроводом, без перекосов, во избежание заедания и повреждения подвижных частей конструкции. Перед монтажом, все изделия должны быть проверены на соответствие их технических характеристик проекту тепловой сети, а также на отсутствие забоин и других повреждений кожуха и присоединительных патрубков.

Монтаж компенсаторов производится после установки на трубопровод неподвижных опор, при монтаже вертикальных участков трубопроводов необходимо принимать меры, исключающие возможность сжатия и деформации компенсаторов под действием силы тяжести трубопроводов. Кроме того, на трубопроводе должны быть предусмотрены направляющие опоры, исключающие перемещение трубопровода в радиальном направлении.

Во время установки необходимо контролировать отсутствие скручивающих и изгибающих относительно продольной оси изделия нагрузок. Направление потока должно совпадать с направлением стрелки на кожухе компенсатора в случае его горизонтального расположения. При вертикальной установке компенсатора стрелка должна показывать вниз независимо от того, является ли направление протекания среды в трубопроводе восходящим или нисходящим.

Работы по монтажу должны производиться в следующей последовательности:
1. компенсатор подвести к стыкам;
2. обеспечить с помощью центраторов соосность присоединительной арматуры компенсаторов и концов трубопровода;
3. заварить стыки.

Если в процессе гидравлических испытаний будет установлено, что длина компенсатора увеличилась более чем на 15% по сравнению с длинной при монтаже, это свидетельствует о смещении неподвижных опор. Необходимо произвести ревизию опорных конструкций, а компенсатор заменить на новый. При обнаружении негерметичности изделия в процессе испытаний составляется акт дефектации, а компенсатор демонстрируется и заменяется новым. В случае отказа в работе компенсатора в период гарантийного срока потребителю также необходимо составить технически обоснованный акт о неисправности и проделанных регламентных работах.

Хранение и транспортиров к а .

Компенсатор стояков отопления храниться в упаковке изготовителя при температуре окружающей среды от -20С до +40С и относительной влажности до 80%. Воздух в помещении не должен содержать примесей паров и газов, вызывающих коррозию. Осуществлять хранение распакованных и расконсервированных компенсаторов на открытых площадках запрещается. Условия хранения и транспортирования компенсаторов должны соответствовать группе 5 (ОЖ4), тип атмосферы 1У ГОСТ 15150-69, взаимодействие механических факторов по группе (Ж) ГОСТ 23170.

Транспортировка и хранение компенсаторов к месту монтажа, а также перемещения их во время монтажа должны исключать вероятность повреждения сильфона и загрязнения внутренней полости компенсатора. Транспортировка изделий допускается всеми видами транспорта (авиационным- в герметизированных отсеках) в крытых транспортных средствах в соответствии с правилами перевозки грузов, действующими на транспорте конкретного вида. Во время погрузочно-разгрузочных работ и транспортирования ящики не должны подвергаться резким ударам и воздействию атмосферных осадков.

Компенсаторы для полипропиленовых труб отопления

Проектирование систем отопления и водоснабжения предусматривает несколько вариантов достижения высокой безопасности устройств. Одним из наиболее эффективных методов достижения длительной безаварийной эксплуатации бытовых и промышленных установок отопления является комплексный метод применения устройств безопасности. Метод подразумевает многоступенчатую, дублирующую функцию компонентов системы и использование устройств, обеспечивающих предотвращение аварийных ситуаций. Одним из таких устройств выступают компенсаторы для трубопроводов отопления.

Назначение и способы монтажа компенсаторов для полипропиленовых и труб

Система отопления, что частного, что многоэтажного дома проектируется с учетом возможных рисков и непредвиденных ситуаций. И если неконтролируемый нагрев теплоносителя в контуре котла компенсируется срабатыванием аварийного клапана и выбросом жидкости в расширительный бачок, то с тепловым расширением труб дела обстоят немного по-другому.

Как и металлические трубы, трубы из полипропилена также подвержены расширению при избыточном нагреве. И пусть эти значения небольшие, но сбрасывать их со счетов никоим образом нельзя. Согласно стандарту коэффициент линейного расширения полипропиленовых труб при разнице температур в 70 градусов составляет 10,50 мм на 1 погонный метр трубы.

То есть при температуре воздуха в 20 градусов, а температуре теплоносителя 90 градусов обычная труба диаметром 20 мм и длиной 1 метр станет длиннее на 1 см. Нетрудно представить, то магистраль из таких труб длиной 3 метра увеличится на целых 3 см. А это уже становится большой проблемой для системы отопления здания.

Выход в таком случае один – установка в трубопровод компенсатор линейного расширения труб.

Принцип работы этого устройства прост – при нагревании и расширении компенсатор благодаря своей конструкции и особым материалам, из которых он изготовлен меняет свою форму. То есть сжимается и таким образом, обеспечивает компенсацию того объема трубопроводов что увеличиваются в объеме. При охлаждении, когда материал трубы наоборот, сжимается компенсатор, деформируется, расширяясь и таким образом, обеспечивает целостность трубопровода.

Компенсаторы для полипропиленовых труб: сильфонные, п-образные, компенсатор Козлова

В отличие от металлических труб ассортимент компенсаторов для полипропиленовых не такой уж и большой. В основном это связано с тем, что полипропилен используется для систем водоснабжения и отопления с низкотемпературными показателями. Но это ни в коем случае не уменьшает важность установки компенсаторов. Второй момент заключается в особенностях монтажных работ. Для металлической фурнитуры используется и сварка, и пайка, и резьбовое соединение, и фланцевое. А вот для полипропилена только пайка. И поэтому для этого типа труб применяются:

  • Сильфонные устройства;
  • П-образные вставки;
  • Вставки типа петля;
  • Компенсатор Козлова.

Компенсаторы для полипропиленовых труб и способы их установки в систему отопления

Каждый из представленных типов устройств нашел широкое применение в комплектации трубопроводов отопления и горячего водоснабжения из полипропиленовых труб. Уже сложилась определенная методика применения устройств для установки в системах, и опытные проектировщики подскажут, как и каким образом выбрать устройство для монтажа.

Сильфонные устройства

Этот тип компенсаторов предназначен для установки в особо ответственных системах. Это связано с конструкцией устройства – основа его состоит из гофры из нержавеющей стали. Наружная часть выполняется из качественного алюминия. Основное назначение высокотемпературные трубопроводы и трубопроводы высокого давления. Применяются для работы с водяным насыщенным паром, водой, нагретой до 90-95 градусов, а также давлением до 16 бар.

Для металлических сетей используются сильфоны с фланцевым типом соединения, для полипропиленовых основной тип соединения муфта с металлической вставкой под резьбу с одной стороны, а с другой стороны, стандартное гнездо для пайки.

П-образные вставки

Простой, но одновременно эффективный способ обеспечить защиту трубопровода при помощи вставки из обычных полипропиленовых труб и уголков. Суть метода заключается в сборе конструкции, напоминающую букву «П». Правая и левая сторона делаются из отрезков трубы 30-50 см. Перемычка внизу может равняться 15-20 см. Эта вставка делается в горизонтальный трубопровод. При нагревании и расширении горизонтальных труб они вжимают вертикальные отрезки, не нанося ущерба целостности всей конструкции.

Вставка типа петля

Для монтажа больших отрезков трубопроводов существует специальная вставка типа петля. Это готовый к использованию элемент, выполненный в виде петли. Вставляется в систему при помощи обычных соединительных муфт. Принцип действия напоминает действие пружины – при расширении соединяемых отрезков петля сжимается, при охлаждении разжимается. При этом не нарушается ни целостность, ни пропускная способность трубопровода.

Компенсатор Козлова

Это устройство представляет собой сильфон, который специально разработан для установки в трубопроводы диаметром 20 и 25 мм. Устройство с обеих сторон имеет вставки из полипропилена, поэтому трудностей с установкой этого устройства не будет. Внутри устройства находится алюминиевая гофра. Устройство способно обеспечить деформацию основной трубы до 25-63 мм. Гарантированное количество циклов сжатия-разжимания 50000.

Все представленные компенсаторы трубопроводов отопления относятся к устройствам осевого типа, то есть они лучше всего срабатываются при включении их в ровный вертикальный или горизонтальный участок.

Для других типов установки, например, со сдвигом, или Z-образные участки или для угловых поворотов используются модифицированные П-образные и петельные компенсаторы.

Как выбрать и установить компенсатор для полипропиленовых труб

Для систем отопления в квартире или доме обычно используются полипропиленовые трубы диаметром 20 или 25 мм. Использовать трубы большего диаметра считается нерационально, особенно если устанавливается котел с циркуляционным насосом. Поэтому чаще всего для установки выбираются самые простые и надежные схемы и устройства.

Несмотря на надежность сильфонного компенсатора, для небольших по диаметру труб его установка весьма сложна. Куда проще использовать для этого П-образный переход или петлю. А вот компенсатор Козлова стал сегодня настоящей находкой. Его просто устанавливать, да и по своим характеристикам он отлично подходит именно для скрытой установки, ведь его внешний диаметр ненамного больше диаметра труб отопления.

П-образные компенсаторы чаще всего устанавливаются на горизонтальных отрезках. Петельный компенсатор отлично показал себя для вертикальной установки. Именно петельный тип чаще всего используется при монтаже водопровода.

Компенсатор Козлова устанавливается независимо от положения, он одинаково удобен и для горизонтальной, и для вертикальной установки.

Что важно знать при подборе компенсаторов на полипропиленовые трубы?

Приступая к расчету параметров системы и подбору оборудования важно помнить о следующих правилах:

  • Диаметр труб системы отопления должен соответствовать диаметру посадочных муфт компенсатора;
  • Они устанавливаются в местах, указанных в проекте системы отопления, поэтому перед тем как подбирать комплектующие необходимо провести оценку возможности его установки в указанном месте;
  • Компенсаторы для трубопроводов отопления должны обеспечивать запас от расчетного показателя коэффициента расширения еще на 10-15%.

Расчет компенсаторов выполняется по формуле:

L – длина прямого участка трубопровода;
Т – температура нагрева жидкости теплоносителя относительно начальной температуры в помещении;
K – коэффициент теплового удлинения.

Полученный результат и будет означать показатель линейного расширения прямого участка трубопровода.

Установка компенсаторов для полипропиленовых труб

Компенсаторы для трубопроводов отопления устанавливаются во время сборки или ремонта системы. Во время работ теплоноситель из системы должен быть слит.

Алгоритм работ по установке П-образной конструкции компенсатора выглядит следующим образом:

  • Подготавливаются необходимые материалы и инструменты;
  • Проводится замер места установки и определяется, в каком положении будет установлена конструкция;
  • Маркером на трубопроводе делается пометка места врезки компенсатора;
  • По ширине отрезка врезки отрезается отрезок трубы;
  • К отрезку с двух сторон прикрепляются уголки 90 градусов, положение отводов одностороннее;
  • Далее, к отводам прикрепляется отрезки труб;
  • К концам отрезков прикрепляется уголки для подключения к трубопроводу;
  • Завершающий этап соединение компенсатора с трубопроводом.

Получившуюся конструкцию необходимо закрепить монтажными клипсами к стене. Для крепления выбираются точки в середине П-образного отводка и в 10-15 см от точек врезки в магистраль по обе стороны от врезки.

Теперь, когда понятна технология расчета и установки компенсаторов линейного расширения, нет большой проблемы самостоятельно сделать все необходимые работы и самостоятельно провести сборку устройства.

Читайте также:  Как обрезать мат теплого пола электрического
Оцените статью
Максимально допустимое расстояние между неподвижными опорами определяется по формуле: Lmax= 0,9 I
a(t-tpo)
где:
0.9 коэффициент запуска, учитывающий неточности расчёта и погрешности монтажа;
l – компенсирующая способность компенсатора;
a – средний коэффициент линейного расширения трубной стали при нагреве от 0 о С до t о С, мм/м о С;
t — расчётная температура сетевой воды в подающем трубопроводе, о С;
tро – расчетная температура наружного воздуха для проектирования систем отопления, принимаемая равной средней температуре воздуха наиболее холодной пятидневке по главе СНиП «Строительная климатология и геофизика», о С.