Конвектор частот что это

Длина, скорость и частота электромагнитной волны.

Онлайн калькулятор перевода длины волны в частоту для широкого диапазона частот, включая радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафи- олетовое излучение, рентгеновские и гамма лучи.

Электромагнитные колебания — это взаимосвязанные колебания электрического и магнитного полей, проявляющиеся в периодическом изменении напряжённости (E) и индукции (B) поля в электроцепи или пространстве. Эти поля перпендикулярны друг другу в направлении движения волны (Рис.1) и, в зависимости от частоты, представляют собой: радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские либо гамма-лучи.


Рис.1

Длина волны, обозначаемая буквой λ и измеряемая в метрах — это расстояние между двумя ближайшими друг к другу точками в пространстве, в которых колебания происходят в одинаковой фазе. Другими словами, это расстояние, на котором фаза электромагнитной волны вдоль направления распространения меняется на 2π.

Время, за которое волна успевает преодолеть это расстояние (λ), т. е. интервал времени, за который периодический колебательный процесс повторяется, называется периодом колебаний, обозначается буквой (тау) или Т и измеряется в метрах.

Частота электромагнитных колебаний связана с периодом простейшим соотношением:
f (Гц) = 1 / T (сек) .

Скорость распространения электромагнитных волн в вакууме (v) равна скорости света и составляет величину: v = С = 299792458 м/сек .
В среде эта скорость уменьшается: v = С / n , где n > 1 — это показатель преломления среды.
Абсолютный показатель преломления любого газа (в том числе воздуха) при обычных условиях мало чем отличается от единицы, поэтому с достаточной точностью его можно не учитывать в условиях распространения электромагнитных волн в воздушном пространстве.

Соотношение, связывающее длину волны со скоростью распространения в общем случае, выглядит следующим образом:
λ (м) = v (м/сек) *Т (сек) = v (м/сек) / f (Гц) .

И окончательно для воздушной среды:

λ (м) = 299792458 *Т (сек) = 299792458 / f (Гц) .

Прежде чем перейти к калькуляторам, давайте рассмотрим шкалу частот и длин волн непрерывного диапазона электромагнитных волн, которая традиционно разбита на ряд поддиапазонов. Соседние диапазоны могут немного перекрываться.

Диапазон Полоса частот Длина волны
Сверхдлинные радиоволны 3. 30 кГц 100000. 10000 м
Длинные радиоволны 30. 300 кГц 10000. 1000 м
Средние радиоволны 300. 3000 кГц 1000. 100 м
Короткие радиоволны 3. 30 МГц 100. 10 м
Метровый радиодиапазон 30. 300 МГц 10. 1 м
Дециметровый радиодиапазон 300. 3000 МГц 1. 0,1 м
Сантиметровый СВЧ диапазон 3. 30 ГГц 10. 1 см
Микроволновый СВЧ диапазон 30. 300 ГГц 1. 0,1 см
Инфракрасное излучение 0,3. 405 ТГц 1000. 0,74 мкм
Красный цвет 405. 480 ТГц 740. 625 нм
Оранжевый цвет 480. 510 ТГц 625. 590 нм
Жёлтый цвет 510. 530 ТГц 590. 565 нм
Зелёный цвет 530. 600 ТГц 565. 500 нм
Голубой цвет 600. 620 ТГц 500. 485 нм
Синий цвет 620. 680 ТГц 485. 440 нм
Фиолетовый цвет 680. 790 ТГц 440. 380 нм
Ультрафиолетовое излучение 480. 30000 ТГц 400. 10 нм
Рентгеновское излучение 30000. 3000000 ТГц 10. 0,1 нм
Гамма излучение 3000000. 30000000 ТГц 0,1. 0,01 нм

А теперь можно переходить к калькуляторам.

КАЛЬКУЛЯТОР РАСЧЁТА ДЛИНЫ ВОЛНЫ ПО ЧАСТОТЕ

КАЛЬКУЛЯТОР РАСЧЁТА ЧАСТОТЫ ПО ДЛИНЕ ВОЛНЫ

В радиочастотной практике имеет распространение величина Kp, называемая коэффициентом укорочения. Однако здесь существует некоторая путаница. Одни источники интерпретируют эту величину, как отношение длины волны в среде к длине волны в вакууме, т. е. численно равной Kp = 1/n, где n — это, как мы помним, показатель преломления среды. Другие, наоборот — как отношение длины волны в вакууме к длине волны в среде, т. е. Kp = n.
Поэтому надо иметь в виду — если Kp > 1, то значение показателя преломления среды, которое следует подставлять в калькулятор n = Kp, а если Kp < 1, то n = 1/Kp.

конвертор частоты

конвертор частоты

[IEV number 151-13-71]

EN

frequency changer
signal converter for effecting a frequency translation of a signal
NOTE – A frequency changer comprises an oscillator and a frequency mixer, generally followed by a band-pass filter.
Source: 702-09-37 MOD, 713-07-22 MOD
[IEV number 151-13-71]

FR

changeur de fréquence, m
convertisseur de signal destiné à effectuer une transposition en fréquence d’un signal
NOTE – Un changeur de fréquence comprend un oscillateur et un mélangeur de fréquences, suivi généralement d’un filtre passe-bande.
Source: 702-09-37 MOD, 713-07-22 MOD
[IEV number 151-13-71]

Справочник технического переводчика. – Интент . 2009-2013 .

Смотреть что такое «конвертор частоты» в других словарях:

конвертор — блок транспонирования частоты — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы блок транспонирования частоты… … Справочник технического переводчика

Спутниковый конвертор — Электроника LNB (все части) … Википедия

Абонентский конвертор — 1. Элемент, включаемый между абонентской розеткой и приемником для изменения несущих частот, используемых в системе, в такие частоты, на которые рассчитан приемник Употребляется в документе: Приложение 1 ГОСТ 28324 89 Сети распределительные… … Телекоммуникационный словарь

Частотный конвертор — 1. Устройство для изменения частоты несущей одного или нескольких сигналов до передачи по кабелю Употребляется в документе: Приложение 1 ГОСТ 28324 89 Сети распределительные приемных систем телевидения и радиовещания. Классификация приемных… … Телекоммуникационный словарь

ГОСТ Р 50788-95: Установки непосредственного приема программ спутникового телевизионного вещания. Классификация. Основные параметры. Технические требования. Методы измерений — Терминология ГОСТ Р 50788 95: Установки непосредственного приема программ спутникового телевизионного вещания. Классификация. Основные параметры. Технические требования. Методы измерений оригинал документа: 3.1.4 Антенна устройство для приема… … Словарь-справочник терминов нормативно-технической документации

УЛЬТРАХОЛОДНЫЕ НЕЙТРОНЫ — очень медленные нейтроны со скоростями ?5 м/с. Термин У. н. объясняется тем, что примерно с такой же скоростью двигались бы молекулы газа при темп ре ниже 10 2 К. У. н. обладают малой кинетич. энергией (=10 7 эВ), недостаточной для преодоления… … Физическая энциклопедия

Спутниковая антенна — Параболические спутниковые антенны на жилом … Википедия

История Мариуполя в советский период — Основная статья: Мариуполь#История Содержание 1 Мариуполь Революционный. 1917 1920 год 1.1 Установление советской власти … Википедия

ГОСТ Р 52023-2003: Сети распределительные систем кабельного телевидения. Основные параметры. Технические требования. Методы измерений и испытаний — Терминология ГОСТ Р 52023 2003: Сети распределительные систем кабельного телевидения. Основные параметры. Технические требования. Методы измерений и испытаний оригинал документа: 3.1.38 «пилотное регулирование»: Способ автоматической стабилизации … Словарь-справочник терминов нормативно-технической документации

Обозначения — 3.2 Обозначения 3.2.1 Углеводородные соединения обозначают числом атомов углерода в соединении. Префикс используют для указания формы углеводородной цепи, а подстрочное число обозначает количество атомов углерода (например, нормальный декан… … Словарь-справочник терминов нормативно-технической документации

Устройство и схемотехника спутникового приемного комплекта. Часть 4 — Конвертер

Глава 1 из книги C. Л. Корякина-Черняка «Справочник по ремонту и настройке спутникового оборудования»

Продолжение

Начало читайте здесь:

Заказать книгу можно в интернет-магазине издательства

1.6. Конвертер

Определение и назначение

Спутниковый конвертер – приемное устройство, объединяющее в себе два элемента:

  • предусилитель сигнала LNA (Low-Noise Amplifier), принимаемого со спутника;
  • понижающий конвертер (Downconverter), он же гетеродин (стабилизированный источник высокой частоты, вырабатывающий синусоидальный сигнал).

Конвертер – это электронное устройство, которое служит для преобразования частоты электромагнитной волны Ku- или С-диапазона в промежуточную частоту от 950 до 2150 МГц, называемую L-диапазоном, с целью передачи с наименьшими потерями по коаксиальному кабелю до потребителя.

Название устройства конвертер происходит от англ. low-noise block converter, дословно – малошумный конвертер-моноблок. Устанавливается конвертер в составе принимающей головки в фокусном центре спутниковой антенны (на выносном кронштейне). Конвертер и антенна определяют основные характеристики и профессиональной, и индивидуальной приемной системы. Составные части конвертера (фото Satmap) представлены на рис. 1.32.

Рис. 1.32. Конвертер-моноблок в разобранном состоянии

Устройство и принцип действия конвертера

Конвертер – сложное радиоэлектронное устройство, входящее в своем состав принимающей головки вместе с облучателем и поляризатором.

Примечание.
Если принимающая головка предназначена для приема сигналов круговой поляризации, то для деполяризации принятого сигнала в его конструкцию также добавляют деполяризатор.

Современные конвертеры, предназначенные для приема сигналов Ku-диапазона, изготавливаются в виде монолитного герметичного блока. На рис. 1.33 показан конвертер Ku-диапазона без пластиковых защитных кожухов и герметичной крышки на облучателе.

Рис. 1.33. Конвертер Ku-диапазона без кожухов и крышки Рис. 1.34. Плата конвертера Ku-диапазона

На рис. 1.34. показан разобранный конвертер (принимающая головка). Корпус пришлось разрезать болгаркой: настолько качественно был герметизирован корпус! На фотографии хорошо видны электронные компоненты, установленные на плате:

  • стабилизатор напряжения серии 780Х (в правом верхнем углу платы);
  • микросхема, сочетающая в себе усилитель сигналов, гетеродины и схему управления режимами работы конвертера;
  • два транзистора, в качестве усилителей сигналов (в верхней части платы);
  • полосковые линии связи в центре платы (в виде отрезков не соединенных между собой проводников);
  • другие необходимые для работы устройства компоненты.
Правило.
Чем меньше длина волны, тем больше ее затухание в кабеле. Для спутникового телевидения необходимо использовать специальный кабель с малым коэффициентом затухания.

Но этого не достаточно. Передавать нужно по кабелю как можно более низкую частоту. А спутниковые телевизионные трансляции передаются на очень высоких частотах, т. е. на сантиметровых волнах. На сегодняшний день в спутниковом телевидении используются два диапазона:

  • Ku-диапазон занимает область от 10.7 до 12.75 ГГц;
  • С-диапазон ограничен полосой 3.5–4.2 ГГц.
Примечание.
На СВЧ частотах (единицы-десятки гигагерц) электромагнитная волна, способная преодолеть 36000 км от спутника до приемной антенны, моментально затухает в кабеле снижения.

Функции конвертера

ПЕРВАЯ ФУНКЦИЯ конвертера – преобразование СВЧ в более низкую частоту, называемую промежуточной (900–2150 МГц). Сигнал на этой частоте и передается по кабелю к ресиверу и подается на его антенный вход.

Для снижения принятого частотного спектра в конвертер встраиваются один или два гетеродина – стабилизированных источника высокой частоты. Снижение входной частоты происходит за счет вычитания из нее частоты гетеродина.

ВТОРАЯ ФУНКЦИЯ конвертера – усиление принятого сигнала. Ведь сигнал со спутника принимается с очень малой мощностью, совершенно неприемлемой в трактах приемного оборудования. Поэтому второй, не менее важной, функцией конвертера является усиление.

Электронная часть принимающей головки – конвертера представлена на рис. 1.35. Подробно работа конвертера по принципиальным и функциональным схемам будет рассмотрена в этой главе далее.

Рис. 1.35. Внешний вид платы конвертера
Примечание.
Основная масса конвертеров работает только с одним диапазоном (C- или Ku-).

Ширина Ku-диапазона (более 2 ГГц) не позволяет одновременно конвертировать его в промежуточную частоту, поэтому его разбивают на три поддиапазона:

  • FSS (10.7–11.8 ГГц);
  • DBS (11.8–12.5 ГГц);
  • Telecom (12.5–12.75 ГГц).
Пример.
Конвертеры Digicom DKF-101, предназначенные для приема «НТВ-Плюс», работают только в диапазоне DBS. Т. е. конвертеры второго или третьего диапазона в большинстве случаев производятся для приема конкретных пакетов.

Переключение диапазонов

Для приема всего Ки-диапазон в конвертерах устанавливаются два гетеродина:

  • один для преобразования нижнего диапазона 10.7–11.8 ГГц;
  • второй для преобразования двух верхних диапазонов 11.8–12.75 ГГц.

Переключение гетеродинов осуществляется с помощью тонового сигнала 22 кГц, передаваемым ресивером по тому же кабелю, по которому к нему поступает сигнал промежуточной частоты от конвертера.

Примечание.
Верхняя и нижняя частоты гетеродинов в большинстве случаев имеют в универсальных конвертерах значения, соответственно 9.75 ГГц и 10.6 ГГц. А в экранном меню достаточно выбрать опцию «универсальный конвертер», чтобы при смене канала ресивер автоматически посылал конвертеру нужные управляющие сигналы.

Ранее диапазоны переключались пороговым сигналом 13/18 В (с порогом переключения 15 ±0.2 В). В современных универсальных конвертерах диапазоны переключаются с помощью тонового сигнала 22 кГц, как отмечалось выше.

Примечание.
Сигнал 13/18 В используется в современных универсальных конвертерах лишь для переключения поляризации.

Универсальные конвертеры от других полнодиапазонных конвертеров Ku-диапазона отличаются универсальностью сигналов, управляющих переключением диапазонов и поляризации, а также тем, что эти сигналы передаются по одному кабелю с промежуточной частотой.

Если есть необходимость принимать трансляции в обоих диапазонах (С- и Ku-) можно пойти тремя путями:

  • во-первых, установить на антенне два конвертера, каждый со своим облучателем и поляризатором. Но при этом облучатель хотя бы одного конвертера окажется не совсем в фокусе антенны, что несколько снизит коэффициент направленного действия антенны;
  • во-вторых, приобрести конструкцию, называемую С/Ku-ротором, включающую в себя облучатели для С- и Ku-диапазонов, разделяющие принимаемый поток на две части. С/Ku-роторы выпускаются совмещенными с электромеханическими поляризаторами. Но при этом имеют место ощутимые потери мощности сигналов Ku-диапазона и частый выход из строя движущихся частей электромеханического поляризатора, особенно при низких температурах;
  • в-третьих, установить совмещенный конвертер для приема С- и Ku-диапазонов, который пока уступает раздельным конвертерам по техническим характеристикам.

Этапы развития схемотехники конвертеров

Примечание.
В настоящее время фирмы-производители держат в секрете схемотехнику производимых ими конвертеров. В задачу книги не входит эти секреты раскрыть. Стоит задача, чтобы читатель понял, как работает конвертер. А в случае выхода конвертера из строя его целесообразно заменить новым!

Устройство простейшего конвертера. Представленная для первого примера конструкция появилась в одном из болгарских журналов на «заре» развития массового приема спутникового телевидения в середине 80-х годов, явно не может иметь очень хороших характеристик (рис. 1.36). Использование ее может быть целесообразно только наглядного примера устройства простейшего конвертера или для экспериментов на СВЧ в диапазоне 10 ГГц.

Рис. 1.36. Устройство простейшего конвертера

Облучатель, представляющий собой объемный резонатор, выточен из металла. Его размеры зависят от принимаемой частоты. Вставлены диоды – АА703А (диаметр 3.8 мм). Настройка конвертера осуществляется установкой максимального тока с помощью построечного резистора.

Конструкция – двухкамерный преобразователь частоты, выполненный в круглом волноводе (внутренний диаметр 18 мм), ловушка – это обычный облучатель для круглого волновода, его размеры будут зависеть от параметров основного зеркала. Изготовлен облучатель из алюминия.

Параметры примерно таковы: диапазон 10.7–11.3 ГГц, шум не менее 7. Стабильность частоты, наверное, тоже будет невысокая, т. к. конструкция гетеродина рассчитана на подстройку частоты с помощью изменения питающего напряжения АА703. Теперь рассмотрю несколько типовых структурных схем конвертеров.

Схема простейшего однодиапозонного конвертера. В начале развития спутникового телевидения все конвертеры строились по классической схеме. Структурная схема такого конвертера представлена на рис. 1.37, а.

а)
б)
Рис. 1.37. Простейший однодиапозонный конвертер:
а – структурная схема; б – принципиальная схема
Примечание.
Транзисторные конвертеры отличались низкой стоимостью, простотой настройки и хорошими техническими характеристиками, особенно когда появились транзисторы на арсениде галлия (GaAs).

Сигнал сначала поступает на малошумящий усилитель, состоящий из нескольких транзисторных каскадов. Он может усиливать принятый сигнал на 30 дБ. Полосно-пропускающий фильтр (ППФ), или фильтр верхних частот (ФВЧ) служит для ослабления шумов зеркального канала и снижения паразитного излучения частоты гетеродина.

Гетеродин генерирует сигнал с частотой 10 ГГц, который подается на смеситель.

Примечание.
В смесителе происходит основное преобразование: из сигнала спутникового телевидения вычитается 10 ГГц (частота гетеродина).

Результирующий сигнал поступает на усилитель промежуточной частоты (УПЧ) в полосе частот 0.9–1.7 ГГц. В такой полосе сигнал спутникового телевидения можно подавать по кабелю к ресиверу.

Однако в каскадах ФВЧ и смесителе было дополнительное затухание сигнала порядка 10–12 дБ. Поэтому перед подачей спутникового сигнала в кабель УПЧ повышает его уровень примерно на 30 дБ.
Рассмотрим работу его принципиальной схемы (рис. 1.37, б). Преобразователь построен по схеме прямого усиления без предварительного усиления сигнала в полосе частот 10.95–11.36 ГГц. Такая схема тракта весьма проста, а усиление спутникового сигнала приходится на УПЧ в полосе частот 0.95–1.36 ГГц.

Примечание.
Сигнал ПЧ создается в смесительном диоде VD1 типа АА112А, а ответственную роль гетеродина выполняет диод VD3 типа АА703А (или типа АА703Б). Это СВЧ генераторный диод Ганна, который изготовлен из соединений галлия. Этот диод является наиболее важной деталью в конвертере.

Следует отметить, что принцип действия диодов Ганна обусловлен процессами, возникающими в однородном полупроводнике с электронной проводимостью (без р-n-перехода). Диод Ганна имеет отрицательное динамическое сопротивление, которое возникает благодаря объемному эффекту (эффекту Ганна) в таком однородном полупроводнике, поэтому при подключении к резонатору он может генерировать колебания СВЧ.

Примечание.
При подключении к диоду высокодобротных резонаторов частота колебаний слабо зависит от напряжения питания диода, его нагрева и в основном определяется настройкой резонатора.

Конвертер работает следующим образом. Сигнал ПЧ через разделительный конденсатор С2 подается на малошумящий транзистор VT1, нагрузкой которого является индуктивность L2. Второй каскад на транзисторе VT2 является таким же усилителем сигнала ПЧ, как и первый на транзисторе VT1.

Окончательное усиление сигнала ПЧ осуществляется в третьем каскаде на транзисторе VT3 до уровня те менее 25 дБ. Как и в первом каскаде, в усилителях ПЧ на транзисторах VT2 и VT3 в цепи коллектора используются индуктивности L3 и L4. На резисторе R9, установленном в эмиттерной цепи этого транзистора, создается отрицательная обратная связь по постоянному току, которая через резисторы R2, R4, R6 подается соответственно на базы транзисторов VT1–VT3. Резистор R10 ограничивает величину тока через диод VD2 типа КС162А, предназначенный для двустороннего ограничения напряжения.

Постоянный ток транзисторов VT1–VT3 можно изменять путем подбора сопротивления резисторов R3, R5, R7. Величина тока коллектора определяет шумовые характеристики транзистора. Поэтому необходимо подбирать величину тока для каждого транзистора, что особенно важно для первого каскада усиления на транзисторе VT1. В принципиальной схеме (рис. 1.37, б) приведены номиналы сопротивлений этих резисторов, которые являются оптимальными для транзисторов типа КТ3115 или КТ3132.

Через индуктивность L1 и резистор R1 протекает постоянный ток сдвига рабочей точки смесительного диода VD2. Контрольная точка КТ1 предназначена для подключения миллиамперметра для измерения величины этого тока.

Через индуктивность L5 протекает ток источника питания (напряжение питания – в пределах +9–15 В), поскольку СВЧ преобразователь питается по тому же коаксиальному кабелю, по которому поступает выходной сигнал ПЧ к входу ресивера.

Параллельно проходным конденсаторам С4, С8, С13 желательно включить конденсаторы емкостью 4.7 пФ. Это улучшит блокировку эмиттеров транзисторов VT1–VT3.

В усилителе ПЧ применены следующие радиодетали. Индуктивности L1 и L5 – катушки из медного провода длиной 65 мм, диаметром 0.1–0.2 мм, намотанного на оправке диаметром 4 мм. Индуктивности L2–L4 – медные посеребренные провода диаметром 1 мм и длиной 10 мм, которые находятся на высоте 2 мм от дна корпуса усилителя.

Конденсаторы С2, С5, СП, С14 типа КД-1; конденсаторы С4, С8, С13 типа КТПМ; конденсаторы С16 типа К53-1 или аналогичный; конденсаторы С1, СЗ, С7, С9, С12, С15 типа КМ-5, у которых при монтаже оставлены минимальные выводы.

Резисторы R2, R4, R6 типа С-23-06 или аналогичные; резистор R10 типа MAT-0,25, остальные резисторы – типа МЛТ-0,125.

Соединитель XI любого типа для соединения с коаксиальным кабелем с волновым сопротивлением 50 Ом, например, СР-50.

Схема простого многодиапазонного Ku-конвертера. Ku-конвертеры были созданы трех типов:

  • однодиапазонные с полосой частот 10.7–11.8 ГГц;
  • двухдиапазонные с полосой частот 10.7–12.5 ГГц;
  • трехдиапазонные (Full Band) с полосой частот 10.7–12.75 ГГц.

Важнейшим параметром каждого конвертера является частота гетеродина, которую кратко обозначают LOF (Local Oscillator Frequency).

В однодиапозонных конвертерах частота гетеродина равнялась 10 ГГц. В современных полнодиапазонных конвертерах приняты другие значения частот гетеродинов. Для полнодиапазонных конвертеров дополнительно сообщают два параметра:

  • LOF-1 (частота гетеродина 9.75 ГГц);
  • LOF-2 (частота гетеродина 10.6 ГГц или 10.75 ГГц).
Примечание.

Эти указания дают возможность определить, какой сигнал предельной частоты будет принят спутниковым ресивером.

Конвертер состоит из следующих основных узлов (рис. 1.38). Малошумящий усилитель МШУ усиливает спутниковый сигнал в полосе частот 10.9–12.7 ГГц, который подается на делитель.

После разделения на два канала сигналы подаются через полосно-пропускающий фильтр (ППФ) на смесители. На каждый из смесителей подается сигнал от гетеродина:

  • Low – гетеродин с меньшей частотой;
  • High – гетеродин с большей частотой.
Рис. 1.38. Структурная схема простого многодиапозонного конвертера

Переключение диапазонов происходит путем переключения только гетеродинов и первых каскадов УПЧ (6) каждого диапазона напряжением 13/18 В, поступающим по центральному проводнику коаксиального кабеля.

С того или иного усилителя промежуточной частоты (УПЧ) сигнал поступает на делитель и далее на второй УПЧ. Такие конвертеры выпускают фирмы ECHOSTAR, CHAPARAL, CALIFORNIA AMPLIFER, GARDINER и другие.

Схема многодиапазонного Ku-конвертера с управляемой поляризацией. Затем был создан полнодиапазонный конвертер (встречается название «интегральный»). Он содержал два однополосных в одном корпусе с совмещенным облучателем.

Конвертер, совмещенный с облучателем, сокращенно обозначается LNBF, т. е. LNB Full Band.

Сейчас получили распространение полнодиапазонные конвертеры с управляемой поляризацией. Ведь сигналы спутников, находящихся на орбите, различаются по поляризации, что требует ее плавной подстройки.

Пример.
Вертикальная поляризация на спутниках TELECOM на 30° отличается от поляризации на спутнике EUTELSAT.

В волноводах таких конвертеров зонды V и Н поляризаций расположены соосно, под углом 90°. В такой конструкции (предложена фирмой CAMBRIDGE) один зонд затеняется другим, в связи с этим коэффициент шума V и Н поляризаций не одинаков. Структурная схема такого конвертера представлена на рис. 1.39.

Рис. 1.39. Структурная схема многодиапазонного Ku-конвертера с управляемой поляризацией

Входные транзисторы по V и Н поляризациям работают на общую согласующую цепь (все МШУ). В отличие от предшествующих полнодиапазонных конвертеров этот конвертер имеет общий полосно-пропускающий фильтр (ППФ) на оба диапазона 10.7–12.7 ГГц. На смеситель в нем переключаются только гетеродины (Low и High), что существенно упрощает схемные решения и уменьшает габариты конвертера.

В конвертере CAMBRIDGE используется также УПЧ на высокочастотных микросхемах (по усилению заменяет два СВЧ транзистора), что позволило сократить количество усилительных элементов.

В конвертерах фирм MNI и LASAT найдено оригинальное решение: смеситель и гетеродин собраны на одном транзисторе. В результате в конвертере стало одним каскадом меньше.

В конвертере OXFORD применена СВЧ микросхема, объединяющая оба гетеродина, смеситель и усилитель ПЧ. Такое решение стало очередным шагом к миниатюризации бытовых конвертеров.

Конвертер имеет два выхода для одновременной регистрации сигналов V и Н поляризаций. В Full Band конвертерах сохранено переключение V и Н поляризаций напряжением 13/18 В (в первом и втором диапазонах способ один и тот же).

Это означает, что интегральные полнодиапазонные конвертеры могут быть использованы совместно с ресиверами старого типа с полосой частот 10.7–11.8 ГГц. В конвертере также осуществляется переключение гетеродинов для работы в диапазонах FSS или DBS.

В современных «универсальных» конвертерах верхний диапазон (DBS и TELECOM) включается с помощью тонового сигнала 22 кГц, который имеет форму меандра амплитудой 0.6 В.

При появлении в коаксиальном кабеле (здесь же передается промежуточная частота от конвертера к ресиверу) сигнала 22 кГц, который добавляется к постоянному напряжению питания конвертера 13/18 В, приводится в действие второй гетеродин (LOF-2). В этом случае конвертер будет принимать сигналы частот диапазона 11.7–12.75 ГГц. Без сигнала с частотой 22 кГц в действие приводится только первый гетеродин (LOF-1), и конвертер работает как однополосный. Напряжение 13/18 В в таких универсальных конвертерах используется для переключения поляризации.

Универсальные конвертеры выпускают фирмы OXFORD, OXBRIDGE, CAMBRIDGE, VECOM, GRUNDIG и др.

Особенности конструкции конвертеров

Конвертеры должны быть герметичными. В противном случае за счет суточного колебания температуры внутри конвертера образуется конденсат, который приводит к ухудшению его параметров и, в конечном итоге, к выходу из строя.

Высокий уровень герметичности достигается у конвертеров, помещенных в запаянный, неразборный корпус. Такие модели выпускает, например, фирма MTI. Минусом такой конструкции является невозможность ремонта конвертера, однако конвертеры указанной фирмы отличают хорошие комплектующие и качественная сборка, так что выходят из строя они достаточно редко.

Некоторые конвертеры изготавливаются в двойном кожухе – внутренний, металлический, кожух закрыт внешним кожухом, сделанным из пластмассы. Это приводит к тому, что большая часть конденсата выпадает между двумя оболочками и вытекает в предусмотренное для этого сливное отверстие.

Помимо недостаточной герметичности, встречаются и другие варианты конструктивных дефектов, например, высокая повреждаемость при действии солнечных лучей или температурных перепадах. От таких подвохов при покупке застраховаться достаточно трудно.

Включение конвертеров

Зависимость выбираемого коэффициента усиления от длины кабеля. В системах коллективного приема предъявляются повышенные требования к такой существенной характеристике конвертера, как его коэффициент усиления (Кус). Эта величина измеряется в децибелах и в современных конвертерах колеблется от 50 дБ до 70 дБ.

Совет.
В случае использования длинного кабеля, соединяющего выход конвертера и СВЧ-вход ресивера, следует выбирать конвертер с высоким коэффициентом усиления.
Пример.
При длине кабеля до 30 м для систем индивидуального приема достаточно усиления 46 дБ. Это обеспечивается любым современным конвертером. При длине кабеля более 40 м конвертер, работающий на один ресивер, должен иметь Кус 56 дБ, а если используется 100 м кабеля, то 63–65 дБ.

Эти цифры приблизительные, а конкретные значения зависят от ряда причин и, в первую очередь, от уровня затухания в кабеле.

Информация о коэффициенте усиления может приводиться в разной форме. Так как он неодинаков на разных участках частотного диапазона, то наиболее полную информацию можно получить из графика зависимости коэффициента усиления от частоты. Иногда зависимость Кус от частоты приводится в виде таблицы.

У качественных конвертеров неравномерность Кус во всем частотном диапазоне составляет не больше 3 дБ. У более простых конвертеров Кус характеризуется одной цифрой. Обычно указывается минимальное или типовое (усредненное) значение этого коэффициента.

Разводка сигнала на несколько ресиверов. При разводке сигнала на несколько ресиверов удобно использовать Ku-диапазонный конвертер с двумя или четырьмя выходами. Как правило, он имеет встроенный поляризатор, управляемый напряжением 13/18 В. По характеру выходных сигналов такие конвертеры делятся на два типа:

  • первый тип (для разводки сигнала на 2–4 ресивера) имеет два (Twin) или четыре (Quad) равноценных выхода с независимым переключением диапазонов и поляризации;
  • второй тип (для разводки сигнала на большее число ресиверов). Если у такого конвертера два выхода, то на них выводятся соответственно сигналы вертикальной и горизонтальной поляризации, а если 4, то сигнал делится еще и по диапазонам. Такие конвертеры называют «Quattro».
Примечание.
Примечание.
  • Напомним, что универсальный конвертер имеет четыре режима работы:
  • вертикальная поляризация, работает гетеродин нижнего поддиапазона;
  • вертикальная поляризация, работает гетеродин верхнего поддиапазона;
  • горизонтальная поляризация, работает гетеродин нижнего поддиапазона;
  • горизонтальная поляризация, работает гетеродин верхнего поддиапазона.

Головка первого типа можно рассматривать как два или четыре независимых конвертера в одном корпусе и одним облучателем (рис. 1.40). При использовании таких конвертеров никаких дополнительных настроек ресивера не требуется.

а) б)
Рис. 1.40. Принимающие головки:
а – с двумя независимыми выходами – Twin;
б – с четырьмя независимыми выходами – Quad

Двухвыходные головки второго типа удобно использовать, если планируется приемом лишь верхнего или нижнего поддиапазона. В таком случае на СВЧ-вход ресивера подается горизонтальная или вертикальная поляризация.

Сигналы с четырехвыходных головок второго типа (рис. 1.41) используются в кабельных сетях или при организации небольших систем коллективного приема. В последнем случае сигналы с выходов конвертера подаются на входы свитчеров, для дальнейшей разводки по квартирам.

Рис. 1.41. Головка с четырьмя независимыми выходами – Quattro

Продолжение читайте здесь

Читайте также:  05 2031 датчик протока циркуляции системы отопления
Оцените статью