Конвектор температуры цельсий фаренгейт

Градус Цельсия °C в Фаренгейта °F

Онлайн калькулятор для перевода градусов Цельсия в градусы по Фаренгейту и обратно, может перевести градусы Цельсия в Кельвина и наоборот.

Конвертер способен выразить градусы по Цельсию в градусах по Фаренгейту, Кельвину.
Например: температура воздуха 32°C градуса по Цельсию равна 90°F градусов по Фаренгейту.

1 градус Цельсия = 34 градуса по Фаренгейту

Градус Цельсия (обозначение: °C) — широко распространённая единица измерения температуры, применяется в Международной системе единиц (СИ) наряду с кельвином. Используется всеми странами, кроме США, Багамских Островов, Белиза, Каймановых островов и Либерии.

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры.
Согласно современному определению, один градус Цельсия равен одному кельвину (K), а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15 единиц: tc = tk — 273,15

Ноль Цельсия — это 32 Фаренгейта, 1 градус Фаренгейта равен 5/9 градуса Цельсия.

Формулы для перевода градусов Цельсия в градусы Фаренгейта и наоборот:


Калькулятор поможет ответить на вопросы:
32 градуса по Фаренгейту сколько по Цельсию = 0 градусов Цельсия
Чему равны 8 градусов Цельсия в Фаренгейтах = 46 градусов Фаренгейта
100 градусов по Цельсию скольку будет по Фаренгейту = 212 градусов по Фаренгейту

Интересный факт:
Самая высокая температура, которую создал человек, составила 4 миллиарда градусов Цельсия, рекорд был поставлен в Естественной Лаборатории Брукхэвена в Нью-Йорке в ионном коллайдере RHIC. Эта температура в 250 раз выше температуры ядра Солнца.

Перевести Фаренгейты в градусы Цельсия

Онлайн калькулятор для перевода градусов Фаренгейта в градусы Цельсия и обратно, может перевести градусы Фаренгейта в Кельвина и наоборот.

Конвертер переводит шкалы градусов по Фаренгейту °F в градусы по Цельсию °C или Кельвину.
Калькулятор ответит на вопросы: какой температуре по Фаренгейту соответствует температура по Цельсию и Кельвину.

1 градус по Фаренгейту = — 17 градусов по Цельсию

Градус Фаренгейта (обозначение: °F) — единица измерения температуры. Назван в честь немецкого учёного Габриеля Фаренгейта, предложившего в 1724 году шкалу для измерения температуры.

На шкале Фаренгейта температура таяния льда равна +32 °F, а температура кипения воды +212 °F (при нормальном атмосферном давлении). При этом один градус Фаренгейта равен 1/180 разности этих температур. Диапазон 0…+100 °F по шкале Фаренгейта примерно соответствует диапазону -17,8…+37,8 °C по шкале Цельсия. По изначальному предложению ноль по шкале Фаренгейта определялся по самоподдерживающейся температуре смеси воды, льда и хлорида аммония (соответствует примерно -17,8 °C). Абсолютному нулю на шкале Фаренгейта соответствует значение -459,67 °F

Формулы для перевода градусов Фаренгейта в Цельсия и наоборот:


Шкала Фаренгейта существует уже 290 лет. В англоязычных странах она была приоритетной шкалой в промышленности, медицине и метеорологии до 60-х годов 20 века. В последствии страны Европы перешли на шкалу Цельсия. Но по-прежнему особенная привязанность к шкале Фаренгейта отмечается в США.

Конвертер величин

Конвертер температуры

Инфразвуковые волны

Подробнее о температуре

Общие сведения

Температура — физическая величина, определяющая количество теплоты в теле или материи. Температуру также можно определить как количество кинетической энергии в частицах, составляющих тело или материю. Энергия передается от тел с более высокой температурой к телам более с низкой температурой, пока не будет достигнуто термодинамическое равновесие, то есть, пока температура обоих тел не сравняется. Этот процесс называется теплопередачей. К примеру, если открыть зимой окно, теплый воздух в комнате будет передавать тепло холодному воздуху на улице до тех пор, пока температура воздуха на улице и в комнате не станет одинаковой. В разных материалах тепло передается по-разному, в зависимости от их теплопроводности. Материалы с высокой теплопроводностью нагреваются и охлаждаются быстрее, чем материалы с низкой. Для теплоизоляции, например, в строительстве, используются именно материалы с низкой теплопроводностью.

Читайте также:  Печь для отопления гаража дровами

Температуру измеряют с помощью термометра, и самая низкая температура, которая возможна — это –273,15 °C. Эта температура называется абсолютным нулем.

Единицы измерения температуры

Температуру измеряют в градусах, но существуют несколько температурных шкал: Цельсия (°C, самая распространенная шкала в мире), Фаренгейта (°F, используемая в США и некоторых других странах), и Кельвина (К, используемая в физике и других точных науках). Различие между шкалами Цельсия и Кельвина в том, что за ноль принята разная температура. По Цельсию — это температура замерзания воды, в то время как по Кельвину — это абсолютный ноль, то есть –273,15 °C. Шкала Фаренгейта отличается от шкалы Цельсия не только температурой, принятой за ноль, но еще и разницей между величиной одного градуса. Для перевода градусов Цельсия в градусы Фаренгейта используют формулу:

Температура замерзания воды равна 32 °F.

В системе СИ используются градусы шкалы Кельвина, называемые кельвинами (К).

Температура в физике и химии

Агрегатное состояния веществ (плазма, газ, жидкость, или твердое тело) определяется температурой. В любом теле молекулы колеблются, причем при увеличении температуры это движение ускоряется, так же, как и кинетическая энергия этих молекул. Чем больше скорость колебания молекул, тем легче им разойтись на большее расстояние друг от друга. Для каждого агрегатного состояния вещества существует определенный порог расстояния между молекулами. Это расстояние самое маленькое в твердых телах, и самое большое в газах и плазме. Материалы, которые не изменяют агрегатное состояние при высоких температурах, называются огнеупорными материалами. Например, многие керамические смеси огнеупорны, потому что не плавятся при температурах до 1000 °C. Их часто используют на производстве, например в печах с очень высокой температурой. Некоторые материалы плавятся при высокой температуре, в то время как другие материалы, как например, дерево, сгорают. Диапазон температур, при которых вещества могут находиться в состоянии жидкости, невелик. При переходе этого порога, жидкости превращаются в газы. При дальнейшем нагревании, атомы разлагаются на заряженные частицы, ионы и электроны — процесс, называемый ионизацией. Частично или полностью ионизированный газ называется плазмой. Большая часть материи во вселенной находится именно в состоянии плазмы.

Температура влияет на электропроводимость веществ и служит катализатором химических реакций. Изменение температуры замедляет или, наоборот, ускоряет их.

Тройная точка воды

Тройная точка воды — температура и давление, при которых вода может одновременно и равновесно существовать в виде трёх фаз — в твердом (лед), жидком и газообразном (пар) состояниях. Тройная точка воды — температура 0,01°С (273,16 К) и парциальное давление водяного пара 611,73 Па. При таких условиях для превращения всей воды в пар, лед или жидкое состояние достаточно только чуть-чуть изменить давление или температуру.

Тройная точка воды соответствует минимальному давлению, при котором жидкая вода может существовать. При давлении ниже тройной точки (например, в открытом космосе) твердый лед сублимируется в пар, минуя жидкое состояние. При параметрах выше тройной точки лед при нагревании вначале переходит в жидкое состояние и только потом, при более высоких температурах, вода кипит и испаряется.

Тройная точка воды иногда используется как опорная, например, для калибровки измерительной аппаратуры и термометров. Для этого используются ампулы тройной точки воды. Эти ампулы обеспечивают получение температуры точно 0,01°С или 273,16K.

Эффективная температура

Эффективной температурой тела называется температура такого абсолютно черного тела, каждый квадратный сантиметр которого излучает во всем спектре такой же поток, как и квадратный сантиметр данного тела.

Читайте также:  Порядок ремонта системы отопления

Абсолютно черное тело – тело, которое поглощает падающее на него излучение во всем диапазоне спектра.

Такую температуру можно вычислить из закона Стефана-Больцмана, который гласит, что мощность излучения абсолютно черного тела пропорциональна четвертой степени температуры. Так, например, для Земли это значение достигает примерно 250 К, что составляет –23 °C, но с другой стороны известно, что у поверхности Земли температура в среднем выше, в районе +15 °C. Данное несоответствие со значением эффективной температуры объясняется тем, что Земля имеет атмосферу, а значит есть воздействие парникового эффекта, который помогает Земле сохранять тепло. Таким образом значение в 250 К, это температура верхних слоев атмосферы нашей планеты. То есть, эффективная температура Земли — это температура, которая видна из космоса.

Зная эффективную температуру звезды, можно узнать к какому спектральному классу она относится, иначе говоря, определить в каком диапазоне длин волн или частот звезда излучает. У Солнца эффективная температура около 6000 К, и максимум энергии излучения приходится на 470 нм, что соответствует зеленой части спектра, а не желтой, как кажется человеческому глазу.

Температура во Вселенной

В астрономии используется очень широкий диапазон значений температур — от невероятно низких до очень высоких.

Например, реликтовое излучение – остаточное электромагнитное излучение, возникшее в следствие Большого взрыва, имеет эффективную температуру всего лишь 2,7 К — значение очень близкое к абсолютному нулю.

Напротив, температуры звезд могут достигать высоких значений более 40000 К. Такие звезды, как правило, имеют большие радиусы, измеряющиеся в десятках радиусов Солнца. Примером такой звезды является Альнитак А – голубой сверхгигант в созвездии Ориона с диаметром в 20 раз больше солнечного.

Еще более высокие температуры можно встретить в ядрах звезд, так как для того, чтобы там протекали термоядерные реакции, требуются колоссальные значения температур. Например, чтобы произошла реакция превращения более легких элементов в более тяжелые, нужно, чтобы ядра имели высокую кинетическую энергию. Следовательно, и высокую температуру. У нашего Солнца в ядре значение температуры достигает 15 000 000 К.

Температура в биологии

Температура влияет на жизненные процессы всех живых существ. Сложные организмы обычно регулируют температуру тела, и стараются поддерживать одинаковую температуру. Температура используется животными как защитный механизм. Например, чтобы избавиться от бактерий и вирусов, у людей поднимается температура выше, чем эти инородные тела могут перенести. А грызуны и некоторые другие млекопитающие, такие как медведи, понижают температуру, тем самым замедляя обмен веществ, дыхание, и сердцебиение, впадая в спячку. Замедленный обмен веществ позволяет животным выжить с меньшими затратами энергии, чем в обычном состоянии. Этот защитный механизм предназначен для того, чтобы пережить время, когда недостаточно или вообще нет еды. Примеры таких замедлений жизнедеятельности — зимняя и летняя спячки. Температура тела у некоторых животных, впадающих в спячку, опускается очень низко, иногда ниже 0°C. Например, у некоторых видов сусликов, проживающих в арктических регионах, температура тела в районе брюшной полости понижается до –2,9°C. Растения также могут находиться в состоянии покоя во время зимних холодов.

Анабиоз

Анабиоз — состояние организма, в котором замедлены жизненные процессы почти до состояния смерти. Организм сам может перейти в такое состояние, но анабиоз также можно инициировать при понижении температуры окружающей среды, и другими способами. Некоторые организмы находятся в естественном состоянии анабиоза во время определенных периодов их жизни. Состояние анабиоза граничит со смертью, но исследования показали, что животных в этом состоянии можно вернуть к жизни без повреждения нервных клеток и тканей. Ученые надеются, что в ближайшем будущем это будет возможно и для людей. Надежда заключается в том, что анабиоз позволит оказывать первую медицинскую помощь и спасать людей с травмами и заболеваниями, опасными для жизни, такими, как инфаркт миoкардa. При травмах обычно происходит большая потеря крови, что вызывает кислородную недостаточность в мозге, так как именно кровь доставляет кислород к органам, которые в нем нуждаются. Недостаток кислорода в жизненно важных органах, особенно в мозге, вызывает отмирание нервных клеток и тканей, что через некоторое время приводит к смерти. Если больной перейдет в состояние анабиоза, то в связи с замедлением всех жизнедеятельных процессов потребность в кислороде также понизится. Это предотвратит повреждение клеток и тканей, и даст врачам дополнительное время и возможность восстановить кровообращение и помочь пациенту. Анабиоз также даст медицинскому персоналу время, чтобы перевезти больного от места аварии в больницу.

Читайте также:  Циркуляционный насос для системы отопления жилого дома

Живые организмы в состоянии анабиоза выдерживают очень низкие температуры, и были случаи, когда люди выживали в экстремальных условиях благодаря тому, что впадали в состояние анабиоза. В состоянии гипотермии люди иногда выживали без еды и питья дольше, чем это возможно в нормальном состоянии. В отделениях вспомогательных репродуктивных технологий эмбрионы, предназначенные для использования при лечении бесплодия, хранятся именно в состоянии анабиоза, в котором они могут находиться до десяти лет. В будущем технологии анабиоза будут полезны также и для космонавтов — анабиоз сделает возможным путешествия к отдаленным планетам.

В настоящее врем анабиоз исследуется на животных. В большинстве экспериментов их кровь заменяют раствором солей очень низкой температуры, или подвергают их воздействию газов, в результате чего эти животные переходят в состояние анабиоза. Успех этих экспериментов статистически значим, и с 2008 года начались исследования с участием людей.

Крионика

Ученые надеются, что если сохранить тело или голову человека или животного в условиях очень низкой температуры, то в будущем появятся технологии, позволяющие вернуть этот организм к жизни и даже излечить его от последствий старения. Такое сохранение называется криосохранением, а наука, занимающаяся вопросами сохранения — крионикой. На данный момент технологии по криосохранению позволяют осуществлять замораживание отдельных тканей, органов, и всего тела. Обычно температура замораживания достигает примерно 77 K или –196 °C. Это температура кипения жидкого азота, вещества наиболее часто используемого при замораживании сложных организмов. Эта температура настолько низкая, что предотвращает биохимические реакции, которые вызывают отмирание клеток. Во время замораживания возможны многие осложнения, такие как разрушение клеток льдом. Современные технологии позволяют сохранить ткани в течении тысячи лет, после чего, как предполагают исследователи, имеется вероятность разрушения молекул ДНК. Ученые надеются, что в будущем появятся технологии, которые смогут исправить эти повреждения в ДНК и тканях.

Сейчас существует ряд компаний, предоставляющих услуги по криосохранению умерших людей и домашних животных. Это очень дорогой процесс, и у этих компаний мало клиентов, особенно потому, что в прошлом были проблемы с разморозкой тел. Некоторые клиенты подписывают контракт на полное криосохранение тела, но возможно и сохранение только головы или мозга. Последнее — дешевле, хотя пока неизвестно, как в будущем компании по криосохранению будет покрывать расходы на новое тело.

Температура в кулинарии

Температура часто применяется в кулинарии для того, чтобы сделать пищевые продукты более доступными для пищеварения или изменить их структуру. Например, именно благодаря нагреванию мышечные ткани в мясе изменяют свою структуру и становятся мягкими. Из всех живых существ только люди научились использовать температуру в приготовлении пищи. Ученые антропологи утверждают, что человек готовил еду на огне еще 250 000 лет назад. Замораживание также используется в приготовлении пищи, например для того, чтобы убить паразитов в рыбе, предназначенной для употребления в сыром виде в суши или сашими. В домашних условиях этого добиться невозможно, так как температура должна уменьшиться до –37 °C. Для этого используют промышленные морозильные камеры, в которых достигаются такие температуры.

Автор статьи: Kateryna Yuri, Tatiana Kondratieva

Оцените статью