Кто делает гидравлический расчет системы отопления

Содержание
  1. Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия
  2. Расчет гидравлики водяной системы отопления
  3. Расчет диаметра труб
  4. Вычисление местных сопротивлений
  5. Гидравлическая увязка
  6. Определение потерь
  7. Гидравлический расчет системы отопления – пример расчета
  8. Видео на тему
  9. Гидравлический расчет системы отопления частного дома: пример, расчет объема теплоносителя
  10. Цели и задачи гидравлического расчёта
  11. Определение расхода и скорости движения теплоносителя
  12. Потери напора и давления
  13. Предварительная балансировка системы
  14. Мощность генератора тепла
  15. Динамические параметры теплоносителя
  16. Обзор программ для гидравлических вычислений
  17. Oventrop CO
  18. Instal-Therm HCR
  19. HERZ C.O.
  20. Гидравлическая увязка
  21. Определение потерь
  22. Гидравлический расчет системы отопления – пример расчета
  23. Определение диаметра труб
  24. Сферы использования циркуляционных насосов
  25. Расчет циркуляционного насоса
  26. Расчет расширительного бака
  27. Заключение и полезное видео

Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия

Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.

Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.

Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.

Расчет гидравлики водяной системы отопления

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.

Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.

Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.

Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.

На данном этапе проектирования определяются:

  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участка Длина участка в метрах Количество приборов а участке, шт.
1-2 1,8 1
2-3 3,0 1
3-4 2,8 2
4-5 2,9 2

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.

Вычисление местных сопротивлений

Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:

  • шероховатость внутренней поверхности трубы;
  • наличие мест расширения или сужения внутреннего диаметра трубопровода;
  • повороты;
  • протяженность;
  • наличие тройников, шаровых кранов, приборов балансировки и их количество.

Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).

Исходные данные для расчета:

  • длина расчетного участка – l, м;
  • диаметр трубы – d, мм;
  • заданная скорость теплоносителя – u, мм;
  • характеристики регулирующей арматуры, предоставляемые производителем;
  • коэффициент трения (зависит от материала трубы), λ;
  • потери на трение – ∆Pl, Па;
  • плотность теплоносителя (расчетная) – ρ = 971,8 кг/м 3 ;
  • толщина стенки трубы – dн х δ, мм;
  • эквивалентная шероховатость трубы – kэ, мм.

Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.

Символ ξ в формуле означает коэффициент местного сопротивления.

Если в доме стоит печка, отопить она сможет лишь небольшое помещение. Установка батарей отопления в частном доме большой площади обязательна, так как в противном случае отдаленные от печи комнаты отапливаться не будут.

Основные характеристики газового котла Buderus представлены в этом обзоре.

О том, как запустить газовый котел, расскажем в этой статье.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение потерь

Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:

  • первичного контура – ∆Plk;
  • местных систем – ∆Plм;
  • генератора тепла – ∆Pтг;
  • теплообменника ∆Pто.

Гидравлический расчет системы отопления – пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 75 0 С, tо = 60 0 С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м 3 /ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 80 0 С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

Варианты двухтрубной отопительной системы

Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

Самодельная печь хорошо подойдет для обогрева дачного домика или подсобного помещения. Печка из газового баллона своими руками – смотрите инструкцию по изготовлению.

Читайте также:  Стеклоткань для изоляции отопления

Как собрать пресс для топливных брикетов своими руками, вы узнаете в этой статье.

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

Видео на тему

Гидравлический расчет системы отопления частного дома: пример, расчет объема теплоносителя

Цели и задачи гидравлического расчёта

С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.

Практические цели гидравлического расчёта таковы:

  1. Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.
  2. Определить, какое влияние оказывает изменение режима работы каждого из устройств на весь комплекс в целом.
  3. Установить, какая производительность и рабочие характеристики отдельных узлов и устройств будут достаточными для выполнения отопительной системой своих функций без значительного удорожания и обеспечения необоснованно высокого запаса надёжности.
  4. В конечном итоге — обеспечить строго дозированное распределение тепловой энергии по различным зонам отопления и гарантировать, что это распределение будет сохраняться с высоким постоянством.

Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.

Определение расхода и скорости движения теплоносителя

Наиболее известная методика расчёта гидравлических систем основывается на данных теплотехнического расчёта, которым определяется норма восполнения теплопотерь в каждом помещении и, соответственно, тепловая мощность радиаторов, в них установленных. На первый взгляд всё просто: мы имеем общее значение тепловой мощности и затем дозируем поступление теплоносителя к каждому нагревательному прибору. Для большего удобства предварительно строится аксонометрический эскиз гидравлической системы, который аннотируется требуемыми показателями мощности радиаторов или петель водяного тёплого пола.


Аксонометрическая схема системы отопления

Переход от теплотехнического расчёта к гидравлическому осуществляется путём введения понятия массового потока, то есть некой массы теплоносителя, подводимого к каждому участку отопительного контура. Массовый поток есть отношение требуемой тепловой мощности к произведению удельной теплоёмкости теплоносителя на разность температур в подающем и возвратном трубопроводе. Таким образом, на эскизе отопительной системы отмечают ключевые точки, для которых указывается номинальный массовый поток. Для удобства параллельно определяется и объёмный поток с учётом плотности используемого теплоносителя.

G = Q / (c (t2 – t1))

  • G — расход теплоносителя, кг/с
  • Q — необходимая тепловая мощность, Вт
  • c — удельная теплоёмкость теплоносителя, для воды принимаемая 4200 Дж/(кг·°С)
  • ΔT = (t2 — t1) — разность температур между подачей и обраткой, °С

Логика здесь проста: чтобы доставить необходимое количество тепла к радиатору, нужно сперва определить объём или массу теплоносителя с заданной теплоёмкостью, проходящего через трубопровод за единицу времени. Для этого требуется определить скорость движения теплоносителя в контуре, которая равна отношению объёмного потока к площади сечения внутреннего прохода трубы. Если расчёт скорости ведётся относительно массового потока, в знаменатель нужно добавить значение плотности теплоносителя:

V = G / (ρ · f)

  • V — скорость движения теплоносителя, м/с
  • G — расход теплоносителя, кг/с
  • ρ — плотность теплоносителя, для воды можно принять 1000 кг/м3
  • f — площадь сечения трубы, находится по формуле π­·r2, где r — внутренний диаметр трубы, делённый на два

Данные о расходе и скорости необходимы для определения условного прохода труб развязки, а также подачи и напора циркуляционных насосов. Устройства принудительной циркуляции должны создавать избыточное давление, позволяющее преодолеть гидродинамическое сопротивление труб и запорно-регулирующей арматуры. Наибольшую сложность представляет гидравлический расчёт систем с естественной (гравитационной) циркуляцией, для которых требуемое избыточное давление рассчитывается по скорости и степени объёмного расширения нагреваемого теплоносителя.

Потери напора и давления

Расчёт параметров по описанным выше соотношениям был бы достаточен для идеальных моделей. В реальной жизни и объёмный поток, и скорость теплоносителя всегда будут отличаться от расчётных в разных точках системы. Причина тому — гидродинамическое сопротивление движению теплоносителя. Оно обусловлено рядом факторов:

  1. Силами трения теплоносителя о стенки труб.
  2. Местными сопротивлениями протоку, образуемыми фитингами, кранами, фильтрами, термостатирующими клапанами и прочей арматурой.
  3. Наличием разветвлений присоединительного и ответвительного типов.
  4. Турбулентными завихрениями на поворотах, сужениях, расширениях и т. д.

Задача нахождения падения давления и скорости на разных участках системы по праву считается наиболее сложной, она лежит в области расчётов гидродинамических сред. Так, силы трения жидкости о внутренние поверхности трубы описываются логарифмической функцией, учитывающей шероховатость материала и кинематическую вязкость. С расчётами турбулентных завихрений всё ещё сложнее: малейшее изменение профиля и формы канала делает каждую отдельно взятую ситуацию уникальной. Для облегчения расчётов вводится два опорных коэффициента:

  1. Кvs — характеризующий пропускную способность труб, радиаторов, разделителей и прочих участков, приближенных к линейным.
  2. Кмс — определяющий местные сопротивления в различной арматуре.

Эти коэффициенты указываются производителями труб, клапанов, кранов, фильтров для каждого отдельно взятого изделия. Пользоваться коэффициентами достаточно легко: для определения потери напора Кмс умножают на отношение квадрата скорости движения теплоносителя к двойному значению ускорения свободного падения:

Δhмс = Кмс (V2/2g) или Δpмс = Кмс (ρV2/2)

  • Δhмс — потери напора на местных сопротивлениях, м
  • Δpмс — потери напора на местных сопротивлениях, Па
  • Кмс — коэффициент местного сопротивления
  • g — ускорение свободного падения, 9,8 м/с2
  • ρ — плотность теплоносителя, для воды 1000 кг/м3

Потеря напора на линейных участках представляет собой отношение пропускной способности канала к известному коэффициенту пропускной способности, причём результат деления нужно возвести во вторую степень:

Р = (G/Kvs)2

  • Р — потеря напора, бар
  • G — фактический расход теплоносителя, м3/час
  • Kvs — пропускная способность, м3/час

Предварительная балансировка системы

Важнейшей финальной целью гидравлического расчёта системы отопления является вычисление таких значений пропускной способности, при которых в каждую часть каждого контура отопления поступает строго дозированное количество теплоносителя с определённой температурой, чем обеспечивается нормированное выделение тепла на нагревательных приборах. Эта задача лишь на первый взгляд кажется сложной. В действительности балансировка выполняется за счёт регулировочных клапанов, ограничивающих проток. Для каждой модели клапана указывается как коэффициент Kvs для полностью открытого состояния, так и график изменения коэффициента Kv для разной степени открытия регулировочного штока. Изменяя пропускную способность клапанов, которые, как правило, устанавливаются в точках подключения нагревательных приборов, можно добиться искомого распределения теплоносителя, а значит, и количества переносимой им теплоты.

Есть, однако, небольшой нюанс: при изменении пропускной способности в одной точке системы меняется не только фактический расход на рассматриваемом участке. Из-за снижения или увеличения протока в некой степени меняется баланс во всех остальных контурах. Если взять для примера два радиатора с разной тепловой мощностью, соединённых параллельно при встречном движении теплоносителя, то при увеличении пропускной способности прибора, стоящего в цепи первым, второй получит меньше теплоносителя из-за увеличения разницы в гидродинамическом сопротивлении. Напротив, при снижении протока за счёт регулировочного клапана все остальные радиаторы, стоящие по цепочке дальше, получат больший объём теплоносителя автоматически и будут нуждаться в дополнительной калибровке. Для каждого типа разводки действуют свои принципы балансировки.

Мощность генератора тепла

Одним из основных узлов отопительной системы является котел: электрический, газовый, комбинированный – на данном этапе не имеет значения. Поскольку нам важна главная его характеристика – мощность, то есть количество энергии за единицу времени, которая будет уходить на отопление.

Мощность самого котла определяется по ниже приведённой формуле:

Wкотла = (Sпомещ*Wудел) / 10,

  • Sпомещ – сумма площадей всех комнат, которые требую отопления;
  • Wудел – удельная мощность с учётом климатических условий местоположения (вот для чего нужно было знать климат региона).
Читайте также:  Механические фильтры для систем отопления

Что характерно, для разных климатических зон имеем следующие данные:

  • северные области – 1,5 – 2 кВт/м2;
  • центральная зона – 1 – 1,5 кВт/м2;
  • южные регионы – 0,6 – 1 кВт/м2.

Эти цифры достаточно условны, но тем не менее дают явный численный ответ относительно влияния окружающей среды на систему отопления квартиры.


На данной карте представлены климатические зоны с разными температурными режимами. От расположения жилья относительно зоны и зависит сколько нужно тратить на обогрев метра квадратного кВатт энергии (+)

Сумма площади квартиры которую необходимо отапливать – равна общей площади квартиры и равна, то есть – 65,54-1,80-6,03=57,71 м2 (минус балкон). Удельная мощность котла для центрального региона с холодной зимой – 1,4 кВт/м2. Таким образом, в нашем примере расчётная мощность котла отопления эквивалентна 8,08 кВт.

Динамические параметры теплоносителя

Переходим к следующему этапу расчетов – анализ потребления теплоносителя. В большинстве случаев система отопления квартиры отличается от иных систем – это связанно с количеством отопительных панелей и протяженностью трубопровода. Давление используется в качестве дополнительной “движущей силы” потока вертикально по системе.

В частных одно- и многоэтажных домах, старых панельных многоквартирных домах применяются системы отопления с высоким давлением, что позволяет транспортировать теплоотдающее вещество на все участки разветвлённой, многокольцевой системы отопления и поднимать воду на всю высоту (до 14-ого этажа) здания.

Напротив, обычная 2- или 3- комнатная квартира с автономным отоплением не имеет такого разнообразия колец и ветвей системы, она включает не более трех контуров.

А значит и транспортировка теплоносителя происходит с помощью естественного процесса протекания воды. Но также можно использовать циркуляционные насосы, нагрев обеспечивается газовым/электрическим котлом.


Рекомендуем применять циркуляционный насос для отопления помещений более 100 м2. Монтировать насос можно как до так и после котла, но обычно его ставят на “обратку” – меньше температура носителя, меньше завоздушенность, больше срок эксплуатации насоса

Специалисты в сфере проектирования и монтажа систем отопления определяют два основных подхода в плане расчёта объёма теплоносителя:

  1. По фактической емкости системы. Суммируются все без исключения объёмы полостей, где будет протекать поток горячей воды: сумма отдельных участков труб, секций радиаторов и т.д. Но это достаточно трудоёмкий вариант.
  2. По мощности котла. Здесь мнения специалистов разошлись очень сильно, одни говорят 10, другие 15 литров на единицу мощности котла.

С прагматичной точки зрения нужно учитывать, тот факт что наверное система отопления будет не только подавать горячую воду для комнаты, но и нагревать воду для ванной/душа, умывальника, раковины и сушилки, а может и для гидромассажа или джакузи. Этот вариант попроще.

Поэтому в данном случае рекомендуем установить 13,5 литров на единицу мощности. Умножив этот число на мощность котла (8,08 кВт) получаем расчётный объём водяной массы – 109,08 л.

Вычисляемая скорость теплоносителя в системе является именно тем параметром, который позволяет подбирать определённый диаметр трубы для системы отопления.

Она высчитывается по следующей формуле:

  • W – мощность котла;
  • t – температура подаваемой воды;
  • to – температура воды в обратном контуре;
  • k – кпд котла (0,95 для газового котла).

Подставив в формулу расчетные данные, имеем: (0.86 * 8080* 0.95)/80-60 = 6601,36/20=330кг/ч. Таким образом за один час в системе перемещается 330 л теплоносителя (воды), а ёмкость системы около 110 л.

Обзор программ для гидравлических вычислений

По существу любой гидравлический расчет систем водяного отопления считается непростой инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые облегчают выполнение такой процедуры.

Можно попытаться выполнить гидравлический расчет системы обогрева в оболочке Excel, воспользовавшись уже готовыми формулами. Однако при этом возможно появление следующих проблем:

  • Большая погрешность. Во многих случаях как пример гидравлического расчета системы для отопления берутся с одной или двумя трубами схемы. Найти такие же вычисления для коллекторной проблематично;
  • Для правильного учета сопротивления в плане гидравлики трубопровода нужны справочные данные, которые отсутствуют в форме. Их необходимо искать и вводить дополнительно.

Беря во внимание такие факторы, специалисты рекомендуют применять программы для расчета. Большое количество из них платные, однако некоторые имеют демоверсию с небольшими возможностями.

Oventrop CO

Наиболее простая и ясная программа для гидравлического расчета теплосети. Интуитивный интерфейс и гибкая настройка смогут помочь быстро разобраться с невидимыми моментами ввода данных. Маленькие проблемы могут появиться при первой настройке комплекса. Потребуется ввести все параметры системы, начиная от самого материала труб и завершая размещением ТЕНОВ.

Отличается гибкостью настроек, возможностью делать самый простой гидравлический расчет теплоснабжения как для новой теплосети, так же и для модернизации старой. Выделяется от заменителей хорошим графическим интерфейсом.

Instal-Therm HCR

Программный комплекс рассчитывается для профессионального сопротивления в плане гидравлики теплосети. Бесплатная версия имеет очень много противопоказаний. Сфера использования – проектирование теплоснабжения в больших общественных и производственных зданиях.

В практических условиях для теплоснабжения автономного типа частных квартир и домов гидравлический расчет делается не всегда. Однако это способно привести к ухудшению работы системы обогрева и быстрой поломке его компонентов – отопительных приборов, труб и котла. Что этого избежать нужно вовремя высчитать параметры системы и сопоставить их с фактическими для последующей оптимизации работы теплоснабжения.

HERZ C.O.

Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.


Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение потерь

Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:

  • первичного контура – ∆Plk;
  • местных систем – ∆Plм;
  • генератора тепла – ∆Pтг;
  • теплообменника ∆Pто.

Сумма всех этих величин и дает полное гидравлическое сопротивление системы ∆Pсо.

Гидравлический расчет системы отопления – пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 750С, tо = 600С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м3/ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 800С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

Варианты двухтрубной отопительной системы

Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.


Самодельная печь хорошо подойдет для обогрева дачного домика или подсобного помещения. Печка из газового баллона своими руками – смотрите инструкцию по изготовлению.

Читайте также:  Последовательное соединение пленочного теплого пола

Как собрать пресс для топливных брикетов своими руками, вы узнаете в этой статье.

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

Определение диаметра труб

Для окончательного определения диаметра и толщины отопительных труб осталось обсудить вопрос относительно потерь теплоты.


Максимальное количество тепла уходит из помещения через стены – до 40%, через окна – 15%, пол – 10%, всё остальное через потолок/крышу. Для квартиры характерны потери в основном через окна и балконные модули

Существует несколько видов потерь теплоты в отапливаемых помещениях:

  1. Потери давления потока в трубе. Этот параметр прямо пропорционален произведению удельной потери на трение внутри трубы (предоставляет производитель) на общую длину трубы. Но учитывая текущую задачу такие потери можно не учитывать.
  2. Потери напора на местных трубных сопротивлениях – издержки теплоты на фитингах и внутри оборудования. Но учитывая условия задачи, небольшое количество фитинг-изгибов и число радиаторов, такими потерями можно пренебречь.
  3. Теплопотери исходя из расположения квартиры. Существует ещё один тип тепловых издержек, но они больше связаны с расположением помещения относительного остального здания. Для обычной квартиры, которая находиться в средине дома и соседствует слева/справа/сверху/снизу с другими квартирами, тепловые потери через боковые стены, потолок и пол практически равны “0”.

В расчёт можно только взять потери через фасадную часть квартиры – балкон и центральное окно общей комнаты. Но это вопрос закрывается за счёт дополнения 2-3 секций к каждому из радиаторов.


Значение диаметра труб подбирают по расходу теплоносителя и скорости его циркуляции в отопительной магистрали

Анализируя выше изложенную информацию, стоит отметить что для рассчитанной скорости горячей воды в системе отопления известна табличная скорость перемещения частиц воды относительно стенки трубы в горизонтальном положении 0,3-0,7 м/с.

В помощь мастеру представляем так называемый чек-лист проведения вычислений для типичного гидравлического расчёта системы отопления:

  • сбор данных и расчёт мощности котла;
  • объём и скорость теплоносителя;
  • потери теплоты и диаметр труб.

Иногда при просчёте можно получить достаточно большой диаметр трубы, что бы перекрыть расчётный объём теплоносителя. Эту проблему можно решить увеличением литража котла или добавлением дополнительного расширительного бака.

Сферы использования циркуляционных насосов

Главная задача циркуляционного насоса состоит в том, чтобы улучшить циркуляцию теплоносителя по элементам отопительной системы. Проблема поступления в радиаторы отопления уже остывшей воды хорошо знакома жильцам верхних этажей многоквартирных домов. Связаны подобные ситуации с тем, что теплоноситель в таких системах перемещается очень медленно и успевает остыть, пока достигнет участков отопительного контура, находящихся на значительном отдалении.

При эксплуатации в загородных домах автономных систем отопления, циркуляция воды в которых осуществляется естественным путем, тоже можно столкнуться с проблемой, когда радиаторы, установленные в самых дальних точках контура, еле нагреваются. Это также является следствием недостаточного давления теплоносителя и его медленного движения по трубопроводу. Избежать подобных ситуаций как в многоквартирных, так и в частных домах позволяет установка циркуляционного насосного оборудования. Принудительно создавая в трубопроводе требуемое давление, такие насосы обеспечивают высокую скорость движения нагретой воды даже к самым отдаленным элементам системы отопления.

Насос повышает эффективность действующего отопления и позволяет совершенствовать систему, добавляя дополнительные радиаторы или элементы автоматики

Свою эффективность системы отопления с естественной циркуляцией жидкости, переносящей тепловую энергию, проявляют в тех случаях, когда их используют для обогрева домов небольшой площади. Однако, если оснастить такие системы циркуляционным насосом, можно не только повысить эффективность их использования, но и сэкономить на отоплении, снизив количество потребляемого котлом энергоносителя.

По своему конструктивному исполнению циркуляционный насос представляет собой мотор, вал которого передает вращение ротору. На роторе устанавливается колесо с лопатками – крыльчатка. Вращаясь внутри рабочей камеры насоса, крыльчатка выталкивает поступающую в нее нагретую жидкость в нагнетательную магистраль, формируя поток теплоносителя с требуемым давлением. Современные модели циркуляционных насосов могут работать в нескольких режимах, создавая в системах отопления различное давление перемещающегося по ним теплоносителя. Такая опция позволяет быстро прогреть дом при наступлении холодов, запустив насос на максимальную мощность, а затем, когда во всем здании сформируется комфортная температура воздуха, переключить устройство на экономичный режим работы.

Устройство циркуляционного насоса для отопления

Все циркуляционные насосы, используемые для оснащения систем отопления, делятся на две большие категории: устройства с «мокрым» и «сухим» ротором. В насосах первого типа все элементы ротора постоянно находятся в среде теплоносителя, а в устройствах с «сухим» ротором только часть таких элементов контактирует с перекачиваемой средой. Большей мощностью и более высоким КПД отличаются насосы с «сухим» ротором, но они сильно шумят в процессе работы, чего не скажешь об устройствах с «мокрым» ротором, которые издают минимальное количество шума.

Расчет циркуляционного насоса

Подбор и расчет насоса заключается в том, чтобы выяснить потери давления теплоносителя, протекающего по всей сети трубопроводов. Результатом станет цифра, показывающая, какое давление следует развивать циркуляционному насосу, чтобы «продавить» воду по системе. Это давление вычисляют по формуле:

P = Rl + Z, где:

  • Р – потери давления в сети трубопроводов, Па;
  • R – удельное сопротивление трению, Па/м;
  • l – длина трубы на одном участке, м;
  • Z – потеря давления в местных сопротивлениях, Па.

Примечание. Двух – и однотрубная система отопления рассчитываются одинаково, по длине трубы во всех ветвях, а в первом случае — прямой и обратной магистрали.

Данный расчет достаточно громоздкий и сложный, в то время как значение Rl для каждого участка можно легко найти по тем же таблицам Шевелева. В примере синим кружочком отмечены значения 1000i на каждом участке, его надо только пересчитать по длине трубы. Возьмем первый участок из примера, его протяженность 5 м. Тогда сопротивление трению будет:

Rl = 26.6 / 1000 х 5 = 0.13 Бар.

Так же производим просчет всех участков попутной системы отопления, а потом результаты суммируем. Остается узнать значение Z, перепад давления в местных сопротивлениях. Для котла и радиаторов эти цифры указаны в паспорте на изделие. На все прочие сопротивления мы советуем взять 20% от общих потерь на трение Rl и все эти показатели просуммировать. Полученное значение умножаем на коэффициент запаса 1.3, это и будет необходимый напор насоса.

Следует знать, что производительность насоса – это не емкость системы отопления, а общий расход воды по всем ветвям и стоякам. Пример его расчета представлен в предыдущем разделе, только для подбора перекачивающего агрегата нужно тоже предусмотреть запас не менее 20%.

Расчет расширительного бака

Чтобы произвести расчет расширительного бака для закрытой системы отопления, необходимо выяснить, насколько увеличивается объем жидкости при ее нагреве от комнатной температуры +20 ºС до рабочей, находящейся в пределах 50—80 ºС. Эта задача тоже не из простых, но ее можно решить другим способом.

Вполне корректным считается принимать объем бака в размере десятой части от всего количества воды в системе, включая радиаторы и водяную рубашку котла. Поэтому снова открываем паспорта оборудования и находим в них вместительность 1 секции батареи и котлового бака.

Далее, расчет объема теплоносителя в системе отопления выполняется по простой схеме: вычисляется площадь поперечного сечения трубы каждого диаметра и умножается на ее длину. Полученные значения суммируются, к ним прибавляются паспортные данные, а потом от результата берется десятая часть. То есть, если во всей системе 150 л воды, то вместительность расширительного бака должна составлять 15 л.

Заключение и полезное видео

Особенности, преимущества и недостатки естественной и принудительной систем циркуляции теплоносителя для систем отопления:

Подводя итого вычислений гидравлического расчёта, в результате получили конкретные физические характеристики будущей системы отопления.

Естественно, что это упрощенная схема расчёта, которая даёт приблизительные данные относительно гидравлического расчёта для системы отопления типичной двухкомнатной квартиры.

Оцените статью