Технология монтажа водяного теплого пола
В статье рассмотрены практические вопросы монтажа теплых полов и наиболее распространенные гидравлические схемы, от самых простых до более сложных, позволяющие добиться максимального комфорта в помещении. Представленные варианты схем реализованы на базе оборудования торговой марки VALTEC.
Наиболее распространенным способом реализации систем напольного отопления являются монолитные полы, выполненные так называемым «мокрым» методом из цементно-песчаного раствора или бетона. Конструкция такого пола представлена на рис. 1.
Рис. 1. Конструкция теплого пола
Монтаж системы теплых полов начинается с подготовки поверхности. Поверхность должна быть выровнена, неровности по площади не должны превышать ±5 мм. При необходимости поверхность выравнивается дополнительной стяжкой. Нарушение этого требования может привести к «завоздушиванию» труб.
После выравнивания поверхности необходимо вдоль стен или перегородок уложить демпферную ленту толщиной не менее 5 мм для компенсации теплового расширения монолита теплого пола. Лента должна быть уложена вдоль всех стен и перегородок, обрамляющих помещение, стоек, дверных коробок, колонн, отводов и т.п. Лента должна выступать над запланированной высотой конструкции пола минимум на 20 мм. В дальнейшем она будет закрыта плинтусом.
После установки демпферной ленты на перекрытие укладывается полиэтиленовая пленка для защиты от протекания цементного молока из раствора и слой теплоизоляции для предотвращения утечки тепла в нижележащие помещения. В качестве теплоизоляции используются вспененные материалы (полистирол, полиэтилен и т.п.) или фольгированные теплоизоляционные материалы. Важно, чтобы фольгированные теплоизоляционные материалы имели защитную пленку на алюминии. В противном случае, щелочная среда бетонной стяжки разрушает фольгированный слой в течение 3–5 недель. Для придания прочности цементно-песчаной стяжки укладывается арматурная сетка.
Рис. 2. Укладка петель теплого пола «одиночным змеевиком»
Раскладка труб осуществляется с определенным шагом и в нужной конфигурации, заданной проектом. При этом рекомендуется подающий трубопровод укладывать ближе к наружным стенам. Существует несколько способов укладки петель теплого пола.
При укладке «одиночный змеевик» (рис. 2) распределение температуры поверхности пола неравномерное.
При укладке «улиткой» (рис. 3), трубы с противоположными направлениями потоков чередуются, причем наиболее горячий участок трубы соседствует с наиболее холодным. Это приводит к более равномерному распределению температуры по поверхности пола.
Укладка трубы производится по разметке, нанесенной на теплоизоляцию. Трубы крепятся якорными скобами через 0,3–0,5 м, либо удерживаются специальными выступами теплоизоляционных матов. Шаг укладки определяется расчетом и лежит в пределах от 10 до 30 см. Шаг труб не должен превышать 30 см, в противном случае возникнет неравномерный нагрев поверхности пола с появлением теплых и холодных полос. Для удобства расчета расхода трубы в зависимости от шага трубы и площади помещения можно воспользоваться таблицей 1.
Рис. 3. Укладка петель теплого пола «улиткой»
Области вблизи наружных стен здания называют «граничными зонами». Здесь рекомендуется уменьшать шаг укладки трубы, для того, чтобы компенсировать потери тепла через наружные ограждающие конструкции. Длину одного контура (петли) теплого пола не рекомендуется принимать более 100–120 м. Предпочтительно, чтобы потери давления в петле не превышали 20 кПа. После раскладки петель, непосредственно перед заливкой стяжки, производится опрессовка системы давлением, в 1,5 раза превышающем рабочее, но не менее 0.6 МПа (п. 5.25 СП 41-102-98).
При заливке цементно-песчаной стяжки труба должна находиться под давлением воды 0,3 МПа при комнатной температуре. Минимальная высота заливки над поверхностью трубы должна быть не менее 3 см (максимальная рекомендуемая высота, по европейским нормам – 7 см). Цементно-песчаная смесь должна быть не ниже марки 150 на цементе марки не ниже 400 с пластификатором. При заливке стяжки рекомендуется использовать виброрейку для удаления воздушных пузырьков. При длине монолитной плиты более 8 м или площади больше 40 м2 необходимо предусмотреть деформационные швы толщиной не менее 5 мм, для компенсации теплового расширения монолита. При прохождении труб через швы они должны иметь защитную оболочку длиной не менее 1 м.
Таблица 1. Расход трубы теплого пола
в зависимости от площади помещения
Пуск системы теплого пола осуществляется только после полного высыхания стяжки (примерно четыре дня на 1 см толщины стяжки). Температура воды при пуске системы должна быть комнатной. После пуска системы следует ежедневно увеличивать температуру подаваемой воды на 5 °С до расчетной рабочей температуры.
- Среднюю температуру поверхности пола, согласно п. 6.4.8 СП 60.13330.2012, рекомендуется принимать не выше:
- 26 °С для помещений с постоянным пребыванием людей;
- 31 °С для помещений с временным пребыванием людей и обходных дорожек плавательных бассейнов.
Температура пола по оси нагревательного элемента должна быть не более 35 °С.
Согласно СП 41-102-98 перепад температуры на отдельных участках пола не должен превышать 10 °С (оптимально 5 °С).
Далее будут приведены основные схемы для монтажа теплого пола. Схема № 1 решена с использованием терморегулирующего монтажного комплекта VT.ICBOX, и позволяет автоматически поддерживать требуемую температуру в помещении.
Схема № 1 на базе терморегулирующего монтажного комплекта VT.ICBOX
Таблица 2. Спецификация материалов «теплого пола» для схемы № 1 (площадь пола 15 м 2 )
Такая схема используется при теплоносителе в подающем трубопроводе с температурой до 60 °С. При более высоких температурах теплоносителя необходимо применять специальные технические решения (частичное использование «теплой стены»; применение поризованных стяжек, теплоизоляция труб). К преимуществам данной схемы относится ее простота и экономичность. Её рекомендуется использовать при укладке теплого пола в небольших помещениях, учитывая, что один монтажный узел VT.ICBOX может обслужить только одну петлю теплого пола протяженностью не более 100 м. Коллектор и насосно-смесительный узел для такой схемы не требуются.
Регулирование температуры теплоносителя в контуре теплого пола осуществляется встроенным терморегулятором, входящим в состав узла VT.ICBOX. При повышении температуры теплоносителя выше установленного значения, терморегулятор уменьшает расход, тем самым снижая температуру пола. Для устройства теплого пола выпускаются монтажные комплекты VT.ICBOX1.0 и VT.ICBOX 2.0. Автоматическое поддержание температуры в помещении в узле VT.ICBOX 1.0 осуществляется при помощи сервопривода или термостатической головки с выносным термочувствительным элементом, а в узле VT.ICBOX 2.0 – только при помощи термоголовки.
- Недостатком систем с узлами VT.ICBOX, при подключении их к высокотемпературной системе отопления, является неравномерность распределения температуры теплоносителя по длине трубы, что приводит к существенным перепадам температуры пола над соседними трубами. Поэтому, при использовании теплого пола на базе комплектов VT.ICBOX, рекомендуется:
- в качестве финишного покрытие пола использовать материалы, стойкие к высоким температурам, например керамическую плитку;
- использовать толщину стяжки не менее 50 мм над трубой, что исключит скачкообразное колебание температур на поверхности пола. Чем больше толщина стяжки, тем меньше перепад температур пола между соседними трубами;
- укладывать трубы «улиткой». В этом случае «горячие» трубы равномерно чередуются с «холодными», что позволит избежать наличия перегретых участков пола.
Схема № 2 на базе трехходового смесительного клапана VT.MR01, с насосом в контуре теплого пола
Таблица. 3. Спецификация материалов «теплого пола» для схемы № 2 (на 100 м 2 пола)
В схеме № 2 приготовление теплоносителя с пониженными температурными параметрами осуществляется при помощи трехходового смесительного клапана VT.MR01 (поз. 2), управляемого посредством термоголовки с выносным датчиком (поз. 3) или сервоприводом, работающим под управлением контроллера. Циркуляцию теплоносителя в контуре теплого пола обеспечивает циркуляционный насос (поз. 4). При снижении температуры теплоносителя в контуре теплого пола ниже установленного значения, клапан пропускает в контур теплого пола требуемую порцию высокотемпературного теплоносителя.
Балансировка петель между собой осуществляется регулировочными вентилями, входящими в состав обратного коллектора (поз. 8). Схема является достаточно простой и работоспособной. Регулирование теплоотдачи теплого пола осуществляется настройкой термоголовки или сервоприводом. Автоматическое поддержание температуры в каждом отдельном помещении отсутствует.
Теперь рассмотрим, как изменится стоимость материалов, если требуется автоматически поддерживать температуру воздуха в каждом помещении (схема № 3).
Схема № 3 на базе трехходового смесительного клапана VT.MR01, с насосом в контуре теплого пола, с автоматическим регулированием температуры воздуха в помещениях
Таблица 4. Спецификация материалов «теплого пола» для схемы № 3 (на 100 м 2 пола)
В состав коллекторного блока VTс.586.EMNX (поз. 7) входят подающий и обратный коллекторы, автоматические воздухоотводчики и дренажные клапаны. Подающий коллектор укомплектован ручными регулировочными клапанами с расходомерами, которые облегчают процесс балансировки петель между собой. Настройка расходомеров осуществляется по проектным данным. Обратный коллектор укомплектован термостатическими клапанами, на которые установлены сервоприводы (поз. 8). Сервопривод каждой петли управляется своим комнатным термостатом (поз. 9). Термостат устанавливается в каждом отдельном помещении с теплым полом.
Для возможности автоматического регулирования температуры в помещениях могут использоваться коллекторные блоки VTс.589.EMNX, VTс.596.EMNX, а также блоки без расходомеров – VTс.588.EMNX, VTс.594.EMNX.
Схема № 4 на базе насосно-смесительного узла VT.DUAL, с автоматическим регулированием температуры воздуха в помещениях
Таблица 5. Спецификация материалов «теплого пола» для схемы № 4 (на 100 м 2 пола)
Принцип работы смесительного узла VT.DUAL (схема № 4) следующий: циркуляционный насос (поз. 3) обеспечивает циркуляцию теплоносителя через петли теплого пола. При остывании теплоносителя ниже настроечной температуры, открывается термостатический клапан в составе узла и обеспечивается подпитка вторичного контура теплоносителем из первичного контура с подмесом теплоносителя из подающего коллектора вторичного контура.
В случае превышения заданной температуры вторичного контура, срабатывает предохранительный термостат, останавливая насос. При этом циркуляция теплоносителя во вторичном контуре прекращается, а в первичном она происходит через перепускной байпас. Тем самым узел обеспечивает постоянство расхода в первичном контуре. В случае, когда петли теплого перекрываются, циркуляция теплоносителя вторичного контура происходит через перепускной байпас.
Схема № 5 на базе насосно-смесительного узла VT.COMBI.S, с погодозависимым контроллером и автоматическим регулированием температуры в помещениях
Таблица 6. Спецификация материалов «теплого пола» для схемы № 4 (на 100 м 2 пола)
Узлы VT.COMBI.S (схема № 5) адаптированы для работы с контроллером VT.К200.М, позволяющим производить автоматическое погодозависимое управление температурой теплоносителя вторичного контура по заданному пользователем графику.
- Контроллер VT.K200.M осуществляет следующие функции:
- измерение и индикация температуры наружного воздуха;
- измерение и индикация температуры теплоносителя;
- поддержание комфортной температуры в помещениях с любой конструкцией теплого пола и при любых климатических условиях;
- обмен данными, программирование прибора по сети через интерфейс RS-485 (интеграция в системы «умный дом»);
- аварийное отключение циркуляционного насоса при достижении теплоносителем предельно допустимой температуры (60 °С).
Схемы № 3, 4, 5 могут также комплектоваться термостатами с датчиком температуры пола VT.AC709. В этом случае регулирование будет осуществляться по температуре воздуха в помещении, а датчик температуры пола будет играть предохранительную роль. Он отключит подачу в петли теплоносителя при превышении заданной предельной температуры пола. Это важно при покрытии пола из паркета или ламината. Термостат VT.AC709 можно перенастроить на режим, когда рабочим станет датчик температуры пола, то есть регулирование подачи теплоносителя в петли будет осуществляться именно по нему, а датчик температуры воздуха в помещении станет предохранительным. При достижении температуры воздуха в помещении заданного критического значения сервопривод перекроет подачу теплоносителя в петли, независимо от показаний датчика температуры пола.
Все рассмотренные схемы могут комбинироваться друг с другом и дополняться различным оборудованием.
Насосно-смесительные узлы для водяного теплого пола
Требуемый расход теплоносителя в любой системе водяного отопления подсчитывается по следующей формуле:
где Q — тепловая мощность системы, Вт; с — удельная теплоёмкость теплоносителя, Дж/кг °С; ∆Т — разность температур между прямым и обратным теплоносителем, °С.
В системах радиаторного отопления перепад температур ∆Т обычно составляет порядка 20 °С, а в системах напольного отопления ∆Т = 5–10 °С.
Это значит, что для переноса одного и того же количества теплоты тёплые полы требуют расхода теплоносителя в 2–4 раза больше.
Максимальная температура теплоносителя в системах тёплого пола, как правило, не превышает 55 °С, рабочее значение этого параметра обычно лежит в пределах 35–45 °С.
В радиаторном же отоплении теплоноситель обычно подаётся с температурой 80–90 °С.
В связи с этими двумя факторами неизменным атрибутом системы напольного отопления является узел смешения.
- Насосно-смесительный узел системы тёплого пола должен выполнять следующие основные функции:
- поддерживать во вторичном контуре температуру теплоносителя ниже температуры первичного контура;
- обеспечивать расчётный расход теплоносителя через вторичный контур;
- обеспечивать гидравлическую увязку между первичным и вторичным контурами.
- К вспомогательным функциям насосно-смесительного узла можно отнести следующие:
- индикация температуры (на входе и выходе);
- отсекание циркуляционного насоса шаровыми кранами для его замены или обслуживания;
- защита насоса от работы на «закрытую задвижку» с помощью перепускного клапана;
- аварийное отключение насоса при превышении максимально допустимой температуры теплоносителя;
- отведение воздуха из теплоносителя;
- дренирование узла.
Принцип работы простейшего насосно-смесительного узла можно объяснить по тепломеханической схеме на рис. 1.
Рис. 1. Тепломеханическая схема простейшего насосно-смесительного узла
Нагретый теплоноситель поступает на вход насосно-смесительного узла от котла или стояка радиаторной системы отопления с температурой T1. На входе в узел установлен настраиваемый термостатический клапан 2, на приводе которого выставляется требуемая температура теплоносителя, поступающего в тёплый пол Т11. Термочувствительный элемент 3 привода клапана располагается после насоса 1. При повышении температуры Т11 выше настроечного значения, клапан 2 закрывается, а при понижении – открывается, пропуская горячий теплоноситель на вход насоса. Пройдя по петлям тёплого пола, теплоноситель остывает до температуры Т21. Часть остывшего теплоносителя возвращается к котлу, а часть – через балансировочный клапан 4 поступает на вход насоса, смешиваясь с горячим теплоносителем.
Таким образом, в первичном (котловом) контуре температура теплоносителя снижается с Т1 до Т21 (∆Ткк = Т1 – Т21). Температуру Т21 задаёт пользователь. Перепад температур в петлях тёплого пола ∆Ттп = Т11 – Т21 также задаётся на стадии расчётов. Зная эти данные, и требуемую тепловую мощность тёплого пола, можно определить соотношение расходов в узле:
- Исходные данные:
- температура на входе в насосно-смесительный узел Т1 = 90 °С;
- температура после насоса Т11 = 35 °С;
- перепад температур в петлях тёплого пола ∆Ттп = 5 °С;
- тепловая мощность тёплого пола Q = 12 кВт.
- Решение:
- Температура на выходе из петель тёплого пола: Т21 = Т11 – ∆Ттп = 35 – 5 = 30 °С.
- Перепад температур в первичном (котловом) контуре: ∆Ткк = Т1 – Т21 = 90 – 30 = 60 °С.
- Расход во вторичном контуре G11 = Q/c⋅ ∆Tтп = 12000/4187⋅5 = 0,573 кг/с.
- Расход в первичном (котловом) контуре G1 = Q/c⋅ ∆Tтп = 12000/4187⋅60 = 0,048 кг/с.
- Расход через байпас G3 = G11 – G1 = 0,573 – 0,048 = 0,535 кг/с.
Таким образом, расход в контуре тёплого пола в данном примере должен быть в 12 раз выше, чем в котловом контуре.
Как правило, циркуляционный насос при проектировании выбирается с некоторым запасом, поэтому он может перекачивать через байпас большее количество теплоносителя, чем требуется по проекту. К тому же, и температура теплоносителя в первичном контуре может по факту оказаться меньше расчётной. Именно для корректировки этих расхождений с расчётными данными служит балансировочный клапан 4, которым можно ограничить расход через байпас.
Насосно-смесительные узлы VT.COMBI и VT.COMBI.S
В насосно-смесительных узлах VT.COMBI и VT.COMBI.S (рис. 2, 3) приготовление теплоносителя с пониженной температурой происходит при помощи двухходового термостатического клапана, управляемого либо термоголовкой с капиллярным термочувствительным элементом, установленном в линии подающего коллектора (модель VT.COMBI), либо аналоговым сервоприводом, который работает под управлением контроллера VT.К200.М (модель VT.COMBI.S). Контроллер с датчиками температуры теплоносителя и наружного воздуха не входит в комплект поставки насосно-смесительного узла и приобретается отдельно.
В линии подмеса узла установлен балансировочный клапан, который задаёт соотношение между количествами теплоносителя, поступающего из обратной линии вторичного контура и прямой линии первичного контура, а также уравнивает давление теплоносителя на выходе из контура тёплых полов с давлением после термостатического регулировочного клапана.
От настроечного значения Kvb этого клапана и установленного скоростного режима насоса зависит тепловая мощность смесительного узла.
Узел адаптирован для присоединения к нему коллекторных блоков с межосевым расстоянием 200 мм и горизонтальным смещением между осями коллекторов 32 мм. При этом коллекторные блоки могут присоединяться как на входе, так и на выходе насосно-смесительного узла. Это позволяет использовать этот узел в комбинированных системах отопления (рис. 4), где отопление тёплым полом совмещается с радиаторным отоплением.
Рис. 4. Узел VT.COMBI.S в комбинированной системе отопления
Насосно-смесительный узел VT.DUAL
Насосно-смесительный узел VT.DUAL (рис. 5 и 6) состоит из двух модулей (насосного и термостатического), между которыми монтируется коллекторный блок контура тёплого пола. Для смешения используется трехходовой термостатический клапан, управляемый термоголовкой с капиллярным термочувствительным элементом, установленным на обратный коллектор вторичного контура.
Рис. 5. Насосно-смесительный узел VT.DUAL
Предохранительный термостат подающего коллектора останавливает насос в случае превышения настроечного значения температуры, прекращая циркуляцию в петлях тёплого пола.
Рис. 6. Узел VT.DUAL с коллекторным блоком (подключение справа)
Конструкция узла предусматривает перепускной контур с балансировочным клапаном, сохраняющим неизменным расход теплоносителя в первичном контуре при перекрытии петель тёплого пола.
Элементы узла устанавливаются не вертикально, а под углом 9°, что вызвано горизонтальным смещением осей коллекторного блока. Это позволяет подключать узел к подводящим трубопроводам как справа, так и слева.
Насосно-смесительный узел VT.VALMIX
Насосно-смесительный узел VT.VALMIX (рис. 7) отличается от узла VT.COMBI меньшей монтажной длиной и отсутствием перепускного клапана. Узел рассчитан на установку циркуляционного насоса монтажной длиной 130 мм. Ручной воздухоотводчик узла расположен на регулировочной втулке балансировочного клапана вторичного контура.
Узел поставляется с термоголовкой VT.3011, имеющей диапазон настройки температур от 20 до 62 °С. Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.
Рис. 7. Насосно-смесительный узел VT.VALMIX
Насосно-смесительный узел VT.TECHNOMIX
Так же как узел VT.VALMIX, узел VT.TECHNOMIX (рис. 8) рассчитан на установку циркуляционного насоса длиной 130 мм, но имеет несколько большую монтажную длину.
Кроме того, входные и выходные патрубки узла находятся в одной плоскости, поэтому узел монтируется к коллекторному блоку под углом 9°, и может устанавливаться как справа от обслуживаемого коллекторного блока, так и слева от него.
Узел поставляется с термоголовкой VT.5011, имеющей диапазон настройки температур от 20 до 60 °С.
Вместо термоголовки может быть установлен аналоговый термоэлектрический сервопривод VT.TE3061, работающий под управлением контроллера VT.K200.М. Узел поставляется без циркуляционного насоса.
Сравнение насосно-смесительных узлов VALTEC
Таблица 1. Сравнительная таблица насосно-смесительных узлов VALTEC