Нагрузка отопления что это такое

Расчеты тепловых нагрузок здания: как произвести вычисления

Отопление помещения – наиважнейший вопрос жизнеобеспечения. Чтобы не попасть в сложную ситуацию, при которой мощности обогревательных приборов не будет хватать, до этапа монтажа отопительной системы нужно произвести расчёты.

Тепловые нагрузки

Тепловая нагрузка — количество тепла для восполнения теплопотерь здания (помещения), с учётом использования отопительных приборов в пиковых температурных режимах.

Мощность, совокупность мощностей обогревательных приборов, участвующих в обогреве здания, обеспечивающих комфортную температуру для проживания, ведения хозяйственной деятельности. Мощностей источников тепла должно хватать для поддержания температуры в самые холодные дни отопительного сезона.

Измеряется тепловая нагрузка в Вт, Кал/час, — 1Вт=859,845 Кал/ч. Расчёт — сложный процесс. Самостоятельно, без знаний, навыков выполнить сложно.

Расчёт нагрузки – ответственный этап введения здания в централизованную теплосеть.

От проектирования нагрузки здания зависит внутренний тепловой режим. Ошибки негативно влияют на потребителей теплоэнергии, подключенных к системе. Наверное, каждый в холодные, зимние вечера, укутавшись в теплый плед, жаловался на ТеплоСети с холодными батареями — результат несоответствия с фактическими тепловыми режимами.

Тепловая нагрузка складывается с учётом количества отопительных приборов (радиаторных батарей) для поддержания тепла, с параметрами:

  • теплопотеря здания, которая складывается из показателей теплопроводимости стройматериалов коробки, кровли дома;
  • при вентилировании (принудительной, естественной);
  • водоснабжения горячей водой объекта;
  • дополнительные тепловые расходы (сауна, баня, хозяйственно-бытовые нужды).

При одинаковых требованиях к зданию, в разных климатических поясах нагрузка будет отличаться. Влияют: расположение относительно уровня моря, присутствие естественных преград холодных ветров, другие геологические факторы.

Параметры для расчета тепловых нагрузок

Информация дается в ознакомительных целях, для расчётов нагрузки, не предназначенных проектной документации, нужной для подключения здания к центральной теплосети — в качестве статистической базы расходов теплоэнергии.

Тепловые характеристики

Произвести точный расчет сложно, — трудно учесть нюансы здания. Хорошо воспользоваться опытом знакомых, статистическими данными похожих объектов (расходы теплоэнергии в течение нескольких лет). Если нет, придется осваивать навык проектирования, расчета нагрузок самостоятельно.

  • Перед вычислениями нужно определить назначение здания. Выявить, составить температурную смету по оптимальным режимам каждого помещения, — данные можно найти в СНиП 2.04.05, ДВН В.2.5-39:2008. Содержатся рекомендации по теплоносителю, оптимальным режимам для помещений. Правильный режим поможет в учёте, распределении тепловой энергии.
  • Нужно изучить конструктивные особенности здания, используемые строительные материалы, толщину стен, теплоизоляцию, тип, характер кровли, чердачного помещения, количество, площадь дверных, оконных проемов. Каждый стройматериал обладает теплопроводностью, нужно знать, какой материал где используется, определить площадь, выявить общие теплопотери здания.
  • В отдельные расчеты нужно отнести сауны, бани, оранжереи.
  • Система вентиляции — значительная нагрузка на систему отопления.
  • Интенсивность использования помещений. Нужно ли постоянное поддержание температуры для проживания или только для обслуживания.

Уточняющих факторов для расчета нагрузки может быть больше.

Расчет мощности системы

Поправочных коэффициентов много. Как рассчитывали нагрузку предки, без проектов? Методом проб, ошибок, учитывали большой запас.

Расчёт в процентах

Главное в самостоятельных расчетах – определить ориентировочный показатель тепла для выбора источника. Нужно учитывать:

  • восполнение тепла при потерях через стены, крышу, окна, двери;
  • отопление для компенсации, при вентилировании воздуха в помещениях;
  • обогрев специфических объектов;
  • резерв для экстремальных ситуаций: аномально холодной зимы, сооружение дополнительных хозяйственно-бытовых объектов.

Рассчитанной нагрузки, с учетом факторов, достаточно для полноценного обогрева зданий. В остальных случаях существуют проектные бюро, где за разработанные тепловые системы специалисты несут персональную ответственность

Особенности расчета

Чтобы самостоятельно подготовить расчет нагрузки понадобится документация.

Формула

  • СП 131.13330.2012 Строительная климатология;
  • Методика определения количества тепловой энергии, теплоносителя в водяных системах коммунального теплоснабжения от 06 мая 2000г., №105;
  • ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны»;
  • ГОСТ 30494-2011 «Здания жилые, общественные. Параметры микроклимата в помещениях».

В нормативах содержатся параметры для расчёта нагрузки здания, кроме:

  • Расположения здания;
  • Объёма здания, вычисленного по внешнему периметру. Параметр можно брать из технической документации на дом (тех.паспорт), определить самостоятельно,замерив.
  • Назначение вводимого в эксплуатацию дома (жилое, административное, лечебное, санаторное).
  • Высота для расчета коэффициента инфильтрации — показатель противодействия ветровым, тепловым нагрузкам.
Читайте также:  Водяные теплые полы расширительный бак

Методы вычисления

Методологий определения может быть несколько. Можно узнать тепловую нагрузку следующими способами:

  • Метод определения тепловых потерь объекта.

Определяют стройматериалы, из которых выполнены стены, кровля, учитывается количество, площадь дверных, оконных проёмов, этажность. Берутся коэффициенты, вычисляется общее значение теплопотерь.

  • Метод расчетов, учитывающий необходимую мощность отопительно-вентиляционных приборов, необходимых для поддержания температурного режима.
  • Метод с использованием укрупнённых величин теплопотерь.

Потребители тепла

Укрупненный расчет

Для метода не требуются коэффициенты, при расчётах нагрузки достаточно знать высоту, объём, назначение, расположение здания. Остальное можно найти в технической документации.

Определение тепловых нагрузок на отопление

Тепловая нагрузка – это количество тепловой энергии, которое необходимо для поддержания требуемой температуры в помещении. В нашей статье рассмотрим, как распределяется тепловая нагрузка, а также ее расчет.

Как распределяется тепловая нагрузка

Рассмотрим водяное отопление: сумма тепловой мощности всех приборов отопления в доме должна равняться максимальной тепловой мощности котла. Чтобы узнать, как распределяется тепловая нагрузка, нужно учитывать некоторые факторы:

  1. Расположение в доме. Те помещения, которые расположены в середине дома, теряет меньше тепла, чем помещения, расположенные в торце или углу здания.
  2. Высота потолка и площадь помещения.
  3. Необходимая температура в помещении. Если помещение расположено в середине дома, то температура должна быть 20°, а помещения, расположенные в торце или углу дома должны иметь температуру 22°. На кухне достаточно 18°, так как расположены электрические или газовые плиты. В ванной комнате должна быть самая высокая температура, она должна быть 25°.
  4. Расстояние от источника тепла.
  5. Если в отопительной системе используется в качестве источника тепла, конвектор, электрообогреватели т.д., то нужный температурный режим устанавливается на термостате. А если используется воздушное отопление, то при помощи пропускной способности воздушного рукава поступает тепловой поток в помещение. Чтобы его регулировать можно подстроить положение решеток вентиляции с контролем температуры.

Какие факторы влияют на тепловую нагрузку?

На тепловую нагрузку влияют следующие факторы:

  • Толщина и материал стен. Стена из газосиликатных блоков и кирпичная стена имеют разные пропускные способности.
  • Материал кровли и структура крыши. В утепленном чердаке будет намного меньше теплопотерь, чем в плоской крыше из железобетонных плит.
  • Площадь остекления. Естественно, чем больше будет окон, тем больше тепловые потери.
  • Вентиляция. В зависимости от производительности вентиляционной системы происходит потеря тепловой энергии, а также потери происходят от отсутствия или наличия системы рекуперации тепла.
  • В различных регионах разный уровень инсоляции. Его можно определить степенью поглощения солнечного тепла наружными поверхностями.
  • Температура на улице и в помещении, а именно их разница. Разницу можно определить тепловым потоком, который проходит через ограждающие конструкции.

Расчет тепловой нагрузки

Чтобы определить тепловую нагрузку есть несколько методов расчета. Каждый из них имеет свои сложности и нюансы, поэтому лучше воспользоваться ниже перечисленными способами для более точного результата. Рассмотрим три простых способа расчета тепловой нагрузки:

  • Метод 1. Есть простой метол расчета, который основан на СНиП. 1 кВт тепловой мощности требуется для обогрева 10 кв.м. помещения. Полученный результат нужно умножить на региональный коэффициент. Рассмотрим некоторые коэффициенты в зависимости от региона: для умеренного климата коэффициент равен от 1,2 до 1,3; для южного региона коэффициент составляет 0,7-0,9; для крайнего северного региона принимает коэффициент от 1,5 до 2;
  • Метод 2. Хоть первый метод довольно-таки простой, но он имеет много погрешностей, поэтому опираться только на его результаты не следует. В первую очередь нужно обратить внимание на высотку потолков, которая в каждом помещении разная. Количество дверей и окон в здании также играет немаловажную роль. В квартире будут тепловые потери намного меньше, чем в частном доме. Именно все эти факторы влияют на тепловую нагрузку.
  • Выделим некоторую корректировку метода: на 1 кубический метр объема помещения применяется тепловая нагрузка 40 ватт; окно в помещении добавляет к показателю 100 ватт, а дверь 200 ватт; если квартира расположена в углу или торце дома, то она имеет коэффициент от 1,2 до 1,3, а в частном доме применяется коэффициент 1,5;
  • Метод 3. Но второй метод, как и первый не является точным. Именно поэтому стоит воспользоваться еще и третьим методом расчета. В данном методе учтены сопротивление стен и потолка, а также разность температур между воздухом в помещении и на улице. Для того чтобы в помещении был постоянный температурный режим необходимо количество тепловой энергии, которое будет совпадать с потерями через ограждающие конструкции и систему вентиляции. Но в этом методе все расчеты упрощены. Через вентиляционную систему теряется примерно от 30 до 40% тепла, через крышу уходит от 10 до 25%, через стены теряется от 20 до 30% тепла, а через пол, который расположен на грунте уходит от 3 до 6 %.
Читайте также:  Как устроен теплообменник отопления

Рассмотрим некоторые значения термического сопротивления:

  1. Кирпичные стены, которые выложены в 3 кирпича имеют сопротивление 0,592м2*с/Вт, в 2,5 кирпича — 0,502, в 2 кирпича – 0,405, в 1 кирпич – 0,187.
  2. Стены из газосиликатных блоков имеют сопротивление 0,476 для стены в 20 см, для стены в 30 см – 0,709.
  3. Для стены из бревна термическое сопротивление составляет 0,550 для диаметра 25 см, для 20 см – 0,440.
  4. Если толщина бревенчатого сруба равна 20 см, то сопротивление будет 0,440, а если 10 см – 0,353.
  5. Для деревянного пола сопротивление составляет 1,85, для двойной деревянной двери – 0,21.
  6. Для штукатурки толщиной 3 см сопротивление равняется 0,035.
  7. Для перекрытия термическое сопротивление равно 1,43.
  8. Для каркасной стены толщиной 20 см с утеплением в виде минеральной ваты термическое сопротивление равно 0,703.

Стоит обратить внимание на следующие факторы: твердотопливные котлы не должны работать на мощности, которая меньше номинальной. Рассчитывать тепловую нагрузку на отопление обязательно.

Если выполнить все требования и правила перед устройством отопительной системы, то она будет работать без перебоев, а еще можно сэкономить на лишних затратах.

Способы расчета тепловой нагрузки на отопление

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

  • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
  • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
  • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить оптимальные температурные режимы работы системы обогрева для каждого помещения.

Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

Читайте также:  Какие теплые полы лучше водяные или электрические для дома

Это самый простой способ расчета, но он имеет один серьезный недостаток — погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

Qот = q0*a*Vн*(tвн — tнро),

где q0 — удельная тепловая характеристика строения;

a — поправочный коэффициент;

Vн — наружный объем строения;

tвн, tнро — значения температуры внутри дома и на улице.

В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

  • Тепловая характеристика здания — 0,49 Вт/м³*С.
  • Уточняющий коэффициент — 1.
  • Оптимальный температурный показатель внутри здания — 22 градуса.

Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу — Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким — Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

  • Оптимальные температурные параметры в помещениях.
  • Общую площадь строения.
  • Температуру воздуха на улице.

Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

  • Площадь и толщина стен — 290 м² и 0,4 м.
  • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
  • Стены изготовлены из полнотелого кирпича — λ=0,56.
  • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

Оцените статью