Насос для системы отопления с термодатчиком

Содержание
  1. Автоматика для циркуляционного насоса отопления, обзор
  2. Схема и принцип работы циркуляционного насоса отопления
  3. Автоматизация циркуляционного насоса
  4. Источник бесперебойного питания
  5. Эффективные решения для систем жизнеобеспечения: электронные циркуляционные насосы и ГБМ
  6. Содержание
  7. Функционал электронных циркуляционных насосов с мокрым ротором
  8. Преимущества «умных» циркуляционных насосов серии Evosta
  9. Группы быстрого монтажа
  10. Термостат и автоматика управления циркуляционным насосом отопления
  11. Схема и принцип работы циркуляционного насоса отопления
  12. Схема подключения электронных термостатов.
  13. Автоматика для циркуляционного насоса
  14. Термостат
  15. Бесперебойный блок питания
  16. Реле включения и выключения
  17. Источник бесперебойного питания
  18. Виды автономных систем
  19. Тепловые насосы – классификация
  20. Насос геотермального типа – принципы устройства и работы
  21. Использование воды в качестве источника тепла
  22. Воздух – наиболее доступный источник тепла
  23. Структура с циркуляцией теплоносителя
  24. Схема подключения беспроводного термостата.
  25. Схема соединения по разрыву цепи.
  26. Схема соединения по потенциалу (напряжению).
  27. Система отопления
  28. Функциональное назначение термостатов

Автоматика для циркуляционного насоса отопления, обзор

Циркуляционный насос для отопления, снабженный автоматическим реле отключения, контроллером скорости и другими полезными опциями станет отличным помощником занятым владельцам, которым некогда несколько раз в день проверять работу системы. Датчики температуры и скорости самостоятельно проконтролируют заданные параметры, а при возникновении аварийной ситуации плавно остановят работу схемы. Автоматика для циркуляционного насоса отопления обеспечит постоянную и безопасную функцию контура.

Схема и принцип работы циркуляционного насоса отопления

Принудительная циркуляция теплоносителя ускоряет поток жидкости в схеме, тем самым снижая тепловые потери и экономя расход топлива. Благодаря постоянной скорости потока, нагрев батарей происходит равномерно. Если нет завоздушенных участков в контуре, то самая последняя батарея, так же горяча, как и первая. Агрегат подает горячую воду к верхним этажам с постоянным напором.

Составляющие циркуляционного насоса:

  • Прочный корпус, устойчивый к механическим воздействиям.
  • Крыльчатка для обеспечения перекачки теплоносителя в системе.
  • Электродвигатель для запуска контура в работу.
  • Камера, обеспечивающая подачу и напор через патрубки, подключенные к магистрали.
  • Коробка с клеммами для подсоединения автоматики управления циркуляционными насосами.
  • Теплоноситель через впускной патрубок поступает в рабочую камеру.
  • Запускается электродвигатель, включающий действие крыльчатки. Она захватывает струю, усиливая давление в схеме.
  • Усиленный поток устремляется к патрубку, соединенному с магистралью и передает теплоноситель в трубу.

Никаких трудностей с функционированием системы не возникает. Необходимо только правильно подобрать агрегат, и комплект датчиков, призванных контролировать бесперебойное и безопасное функционирование контура.

Автоматизация циркуляционного насоса

Автоматика для циркуляционного насоса включает в себя несколько приборов:

  • Источник бесперебойного питания с аккумуляторной батареей.
  • Контроллеры температурного режима.
  • Реле давления с выносным манометром.
  • Реле сухого хода.

Названые приборы дают возможность функционировать системе отопления после настройки на заданные параметры. После этого не требуется постоянное присутствие человека в доме. Хозяин может уехать на целый день работать или взять несколько выходных. Автоматическое управление циркуляционным насосом проследит за уровнем давления или температуры в системе, аварийно отключив если показатели превысят допустимые.

Источник бесперебойного питания

Для подбора ИБП вначале подсчитывают суммарную мощность всех приборов отопительной системы, чтобы выбрать подходящую мощность питания.

Эффективные решения для систем жизнеобеспечения: электронные циркуляционные насосы и ГБМ

Партнерский материал

В стране, где отопительный сезон на большей части территорий длится около семи месяцев, а на остальных еще дольше, сложно переоценить важность сбалансированной системы отопления. Независимо от региона проживания, уровень комфорта, что в квартире, что в частном доме, базируется на эффективности систем жизнеобеспечения. С той разницей, что в собственном доме нет управляющей компании и все расходы по созданию и эксплуатации коммуникаций, ложатся исключительно на владельцев. И если еще пару десятилетий назад вопросы энергосбережения мало кого волновали, сегодня они во главе угла и с каждым повышением тарифов на энергоносители становятся все злободневнее.

В частном секторе наиболее востребованы инженерные системы с принудительной циркуляцией теплоносителя, важнейшим элементом которых является циркуляционный насос. Успешно обогревать дом будет и система с примитивным агрегатом предыдущего поколения. Но добиться максимальной эффективности с минимальными затратами энергоносителя можно только при использовании более совершенных и экономичных «умных» циркуляционных насосов. А за счет чего повышается экономичность инженерных систем с электронными циркуляционными насосами и как оптимизировать монтаж – объяснит специалист компании DAB.

Содержание

Функционал электронных циркуляционных насосов с мокрым ротором

В среднем, площадь современного загородного коттеджа варьируется в пределах 100-150 м², которые отапливаются либо радиаторной системой, либо теплым полом, либо их комбинацией. При любой компоновке магистраль, по которой циркулирует теплоноситель, получается не только длинной, но и «сложной». Для прокачки теплоносителя (хладагента, когда речь о кондиционировании) по отопительному контуру в систему встраивается циркуляционный насос. Изначально это были простейшие агрегаты, постоянно работающие в одном режиме, позднее появились чуть усовершенствованные приборы, со ступенчатой регулировкой напора теплоносителя в нескольких диапазонах.

Но и первое, и второе поколение насосов характеризовалось недостаточной эффективностью вкупе с высоким энергопотреблением. Последнее связано как с особенностями работы мотора в постоянном режиме, так и с отсутствием возможности более тонкой настройки. Сравнительно недавно производители реши обе этих проблемы, и вывели на рынок модернизированное оборудование – «умные» электронные циркуляционные насосы с интеллектуальной системой управления. Однако и спустя несколько лет после их появления на рынке, у потребителей остается масса вопросов.

Каким образом циркуляционный насос с управляющей автоматикой вообще экономит, кроме того что привод более экономичный? Измеряет поток жидкости и подстраивает мощность под это дело? Ведь по температуре насосу регулироваться незачем, за это отвечает котел, а в рекламе как раз упор делают на тепловые колебания суточные и сезонные.

Сейчас имеем простой дешевый насос с тремя ступенями мощности, жрет электричества он реально многовато. Хочу еще теплый пол сделать, и тут вообще в раздумьях, ставить второй насос очень не хочется, это неэффективно, подумываю даже собрать контуры на отдельных клапанах (по типу унибоксов). Но вот если есть насос, который около 45 кВт сожрет за год, то проблема, как с эффективностью, так и с шумом, решена сама собой.

Циркуляционные насосы Evosta 2 и Evosta 3 с частотным преобразователем помимо экономии электроэнергии позволяют выбрать режим работы насоса, в зависимости от системы, в которую он установлен.

При работе запорно-регулирующей арматуры в системе отопления, насос должен менять напор и расход (в радиаторной системе отопления) и расход в системе теплого пола. При использовании стандартного трехскоростного насоса, после срабатывания термоголовок или другой регулирующей арматуры, насос не адаптируясь, работает в предустановленном режиме. Это повышает шумность системы, энергопотребление, и отрицательно влияет на комфорт использования системы. Циркуляционные насосы Evosta 2 (установленные в ГБМ) или Evosta 3 при правильном выборе режима (теплый пол – радиаторы) адаптируются под систему, снижают или повышают производительность. Минимальное энергопотребление такого насоса 3,9 Ватт. Как показывает статистика, использование таких насосов позволяет за 1 год использования сэкономить более 50 % расходов на электроэнергию.

Преимущества «умных» циркуляционных насосов серии Evosta

Линейка электронных циркуляционных насосов с мокрым ротором Evosta разработана специально для частных систем отопления и охлаждения. Это оборудование с интеллектуальным управлением, характеризующееся не только усовершенствованными рабочими параметрами на фоне минимального энергопотребления, но и простотой монтажа. И первичная установка, и замена устаревшего трехскоростного агрегата на «умный» Evosta 2 или Evosta 3 отнимет минимум времени и не потребует сложного инструмента или специфичных навыков. Удобству монтажа способствуют компактные габариты, плата управления на передней части и универсальный штекер под питающий кабель. Насосы рассчитаны на интеграцию в любую систему отопления (охлаждения), так как могут работать в трех режимах.

  • Режим постоянной скорости – потребление энергии в два раза ниже, чем у обычных циркуляционных насосов.
  • Режим постоянного перепада – для теплого пола.
  • Режим пропорционального перепада – для систем, оснащенных термоголовками.
Читайте также:  Сколько нужно контуров отопления

Технические характеристики Evosta 2 и Evosta 3

  • Температурный рабочий диапазон: от -10 до +110 ˚С (Evosta 3 комплектуется теплоизоляционным кожухом).
  • Производительность: 0,4-3,6 м³/час; 0,4-4,2 м³/час.
  • Напор: до 6,9 м; до 8 м.
  • Класс защиты от воды: IPX5.
  • Степень энергоэффективности: ≤0,18; ≤0,19.
  • Защита от перегрузок: встроенная.
  • Удаление воздуха: ревизионная пробка (не только отвод газов, но и доступ к валу); автоматическая дегазация через воздухоотводящую пробку. Для насосов серии Evosta3 предусмотрена функция сброса воздуха из гидравлической части «дальше по магистрали», до ближайшего воздухоотводчика.

Управление насосами максимально упрощено – одна кнопка для всех настроек, но у Evosta 2 три индикатора для отображения текущего состояния, а у Evosta 3 более информативный дисплей с цифровыми показателями по всем рабочим параметрам (режим, потребление, напор, производительность).

Долговечность даже самого совершенного оборудования, применяемого в инженерных системах, зависит не только от его исходных параметров, но и от качества перекачиваемой жидкости. Чтобы насосы Evosta прослужили как можно дольше, производитель рекомендует использовать дополнительное устройство – магнитный фильтр.

По результатам исследований, причиной около 70 % поломок и протечек циркуляционных насосов, а также возникновения шума при работе системы, становится попадание в теплоноситель соединений железа (магнетит, окись). При использовании магнитных фильтров D.Mag содержание примесей снижается на 90 %. Использование магнитных фильтров уменьшает расходы на техобслуживание и позволяет насосам работать в режиме минимального энегропотребления.

Еще одна новинка, значительно облегчающая жизнь, как профессионалам, так и домашним мастерам – ГБМ (группы быстрого монтажа).

Группы быстрого монтажа

Группы быстрого монтажа или насосные группы, можно использовать и в простых системах отопления, в сложных же, многоконтурных системах, ГБМ незаменимы. Они продаются в собранном, полностью готовом к монтажу виде и включают не только циркуляционный насос, но и элементы обвязки, необходимые для осуществления установки. Как и в отношении всего нового, пользователей, в том числе и участников нашего портала, волнует целесообразность применения насосных групп.

Сейчас задался вопросом, а так уж ли нужно/важно использовать группы быстрого монтажа в обвязке котла? Не переплата ли это? Какие достоинства у группы быстрого монтажа? Если делать обвязку без группы быстрого монтажа, какие могут быть проблемы?

Группы быстрого монтажа помимо быстрой, компактной и правильной обвязки циркуляционного насоса несут в себе еще несколько важных функций, как для системы отопления, – так и для пользователя. Обо всем по порядку.

— Во-первых, как я уже говорил – это правильная обвязка циркуляционного насоса, подразумевающая правильность его установки, простоту обслуживания и, при необходимости – замены.

Во-вторых – это полный контроль над каждым контуром отопления. На подающей и обратных магистралях в шаровые краны установлены контактные термометры. Они выдают температуру подачи и обратки, показывая, какой теплосъем обеспечивает данный контур. Это позволяет понять, – достаточно ли утеплено помещение, правильно ли рассчитана система (контур), и правильно ли подобраны отопительные приборы (по мощности).

В-третьих – это возможность управлять контуром отопления. Если установлен насосно-смесительный модуль, для низкотемпературных контуров отопления нет необходимости устанавливать дополнительные смесительные группы. Это экономит бюджет заказчика, и позволяет управлять температурой контура вручную, сервоприводом со встроенным термостатом, или сервоприводом, которым управляет котловая автоматика (то есть – это универсальное решение для любой системы).

В-четвертых: ГБМ от DAB DN20 имея производительность до 55 кВт (на коллекторе) и до 26 кВт на каждом насосном модуле, имеют компактные размеры и экономят до 30 % места в отличие от стандартных ГБМ DN25. За счет перехода на меньший диаметр (вместо стандартного 1 дюйма на 3/4 дюйма). При всем этом, пропускная способность данных ГБМ позволяет легко обвязать до 5-ти контуров отопления в доме, площадью до 350 м квадратных.

Что касается переплаты – она если и есть, то незначительная, так как для правильной обвязки циркуляционного насоса необходимо купить всю запорную арматуру, входящую в группу быстрого монтажа. Ну и конечно, насосные модули в ГБМ скрыты специальными пенополиуретановыми кожухами, предотвращающими выделение тепла в котельную, защищающие насос от внешних повреждений и случайное воздействие на запорную арматуру и автоматику.

Учитывая, что система создается не на один год и даже не на одно десятилетие, первоначальные вложения гарантированно окупятся. А «умный» насос в составе группы быстрого монтажа – залог эффективности и экономичности системы отопления (охлаждения) в частном доме.

Термостат и автоматика управления циркуляционным насосом отопления

Выбор варианта системы отопления для частного или загородного дома – это довольно серьезный и ответственный момент. Если вы выбрали отопительную систему с естественной циркуляцией, то нужно знать, что потребуется установить котел, зависимый от электроэнергии. Однако для их работы совсем не обязательна бесперебойная подача электричества, которую сможет обеспечить бесперебойник для насоса отопления. В наших условиях внезапное отключение электричества может происходить не так уж и редко, и энергозависимость отопительной системы может быть довольно существенным и важным аргументом. Именно поэтому важным становится такой вопрос, как автоматика для циркуляционного насоса отопления и специальные приспособления для обеспечения его энергией.


Автоматика для циркуляционного насоса отопления

Схема и принцип работы циркуляционного насоса отопления

Тепловой насос – прибор, в котором есть основные узлы и вспомогательные элементы:

  • рабочее колесо (крыльчатка) обеспечивает транспортировку, перекачку жидкого носителя по трубам;
  • электрический двигатель запускает работу оборудования;
  • перекачивающая камера с патрубками подачи и напора, которые подключаются к магистральным трубопроводам;
  • корпус, защищающий прибор от механического воздействия;
  • клеммная коробка для подключений электрических органов и регулирующих приборов.

Принцип работы прост:

  1. В перекачивающую камеру поступает теплоноситель. Для этого есть впускной патрубок.
  2. Поток захватывается крыльчаткой, которая приводится в действие при запуске электродвигателя.
  3. За счет повышения давления теплоноситель отправляется в патрубок выпуска теплоносителя, присоединенный к магистрали.
Читайте также:  Ремонт электрики котлов отопления

Таким образом, схема для насоса для отопления становится предельно понятной, никаких сложностей с функционалом нет. Важно лишь выбрать вид оборудования, предназначенный для типа системы, установленной дома.

Схема подключения электронных термостатов.

У электронного термостата внутри вместо биметаллической пластины находится электронная схема. Для этой электронной схемы необходимо подвести напряжение питания. Оно может быть равно 220 или 24 вольта и подводится по проводу.

Здесь управляющим сигналом является потенциал (напряжение), которое подводится на клеммную коробку котла или специального хаба. Чтоб было понятней смотрите ниже на картинку:

Из картинки видно, что к электронному термостату идет не 2, а 3 провода:

  • L — напряжение питания.
  • N — провод нейтрали.
  • I — выходной сигнал.

Неподключенный порт используется для включения «ночного» режима работы, при котором температура в помещении снижается на 4 градуса без регулировки термостатов.

Электронные термостаты используются для организации сложных систем управления климатом в доме, такие системы в народе называют «Умный дом«. С их помощью можно управлять насосами и сервоприводами клапанов в системах отопления. Как это выглядит можно увидеть на рисунке выше.


Автоматика для циркуляционного насоса

Общее определение включает несколько видов элементов – терморегулятор, реле, блок бесперебойного питания. Все эти узлы необходимы для регулировки температуры теплоносителя, подаваемого в магистраль, а также обеспечения бесперебойной работы насоса.

Схемы открытой системы отопления с циркуляционным насосом и баком

Стоит знать, что термостат для циркуляционного насоса может пригодиться и для квартиры – прибор подключается к радиатору и применяется для регулировки циркуляции теплоносителя через батарею. В некоторых квартирах такой вариант управления считается единственно возможным.

Термостат

Соединяет в себе функции вентиля и термоэлемента, контролирует температуру теплоносителя.

Как работает насос циркуляционный с датчиком температуры:

  1. Сначала определяется информация с температурного датчика, на котором выстроен весь принцип работы.
  2. Показатели сравниваются с выставленными настройками. Их нужно вводить в побочном меню устройства. Здесь различается сама температура включения насоса и гистерезис – так называется интервал запаздывания температуры при запуске и отключении оборудования.
  3. Как только пошел процесс нагревания, гистерезис добавляется к показателям температуры запуска насоса в работу, а при остывании теплоносителя гистерезис отнимается.

Получается, что если хозяин задает показатель температуры в +50 С, гистерезис в +5 С, то вода должна сначала прогреться до отметки в +55 С, чтобы блок управления циркуляционным насосом отопления запустил прибор в работу. А для выключения оборудования теплоноситель должен остыть до +45 С.

Прибор, дополненный гистерезисом, считается удобным в работе. Получается, что оборудование не будет постоянно включаться и выключаться для поддержания точности прогрева до одного градуса. Выбирая термостат, лучше отдать предпочтение минимальному показателю гистерезиса в прошивке +/- 1 градус, а максимальному +/- 10 градусов.

Важно! Если термостат для циркуляционного насоса отопления настраивается с учетом данных о внешней температуре в комнате, то и регулировка котла должна предусматривать изменения в температуре теплоносителя. Прибор монтировать рядом с котлом.

Бесперебойный блок питания

Управление циркуляционным насосом без подачи электропитания невозможно, поэтому обеспечение поступления постоянного тока – основная задача хозяина. Самый простой способ – установить блок бесперебойного питания (ИБП) или озаботиться генератором.

Автоматика для управления работой насоса

Многие хозяева стараются обойтись без дополнительного оборудования, формируя теплосистему с возможностью самотечной циркуляции теплоносителя. Это хороший выход, но при малейшем нарушении технологии выкладки трубопровода, система встанет. К тому же при оборудовании тепломагистрали в 2-х и более этажном доме самотечная схема может дать сбой, поэтому без насоса тут не обойтись.

При установке блока питания можно не беспокоиться за работу системы – оборудование оснащается автоматическим управлением, аккумулятором для теплового насоса. Комплекс поддержки обеспечит работу как самого насоса, так и других энергозависимых компонентов системы.

Важно лишь подобрать ИБП с нужным объемом аккумулятора, для чего следует читать информацию в техпаспорте. Как правило, производители указывают объем накопителя и возможную продолжительность работы приборов. Для выяснения точной информации следует брать в расчет мощность насоса для теплосистемы.

Реле включения и выключения

Устанавливается реле включения насоса отопления для поддержания работы прибора в автоматическом режиме. Принцип простой – при снижении уровня давления в тепломагистрали реле запустит прибор в работу, а при повышении показателя давления – отключит. Получается, что как только потребитель перестает разбирать воду, то уровень давления в системе поднимается до верхнего предела и таймер для насоса отопления отключает агрегат. Как только разбор воды запускается, давление в магистрали снижается до нижнего предельного уровня, насос снова включается в работу.

Как правило, производители оборудования, на котором не установлена автоматика, дают рекомендации по выбору комплектующих, но есть вариант купить тепловой насос с наличием всех дополнительных приборов. Для облегчения регулировки поступления теплоносителя в батареи, специалисты рекомендуют установить терморегуляторы на все радиаторы. Кроме поддержания комфортной температуры в доме, своевременная регулировка поможет снизить расходы на энергоносители.

Важно! Выбирая терморегуляторы следует оценивать шкалу настройки. Чем меньше градации делений (по 1-5 градусам), тем точнее будет выставлена температура жидкости, циркулирующей по магистрали.

Источник бесперебойного питания

Обеспечение бесперебойного питания для автоматики циркуляционного насоса — это залог оптимальной температуры помещения и стабильной работы всех устройств. Но прежде чем выбрать схему нагревания помещения необходимо изучить положительные и отрицательные стороны существующих предложений на рынке. При выборе концепции нагревания с естественным оборотом теплоносителя, надо учитывать, что её основной минус заключается в следующем:

  • Подогрев в помещении может отключиться, или комплекс приборов будет работать не на полную мощность, если не установлены специальные механизмы.
  • Расход топлива может быть весьма значительным при неправильно настроенной схеме функционирования системы, что влечет за собой финансовые потери.

Выходом из данной ситуации является приобретение источника бесперебойного питания. Тогда даже при неожиданном отключении энергоснабжения система циркуляционного насоса продолжит работать, так как она оснащена автоматическими приборами. На аккумуляторе установлена автоматическая система, обеспечивающая непрерывную работу всех компонентов, входящих в неё, если неожиданно произойдёт отключение электропитания.

Принцип работы ИБП котла

Виды автономных систем

Внутри своего класса по характеру циркуляции теплоносителя различают: конвекционная (естественная) и принудительная циркуляции.

Естественная циркуляция теплоносителя происходит за счет перемещения теплых масс вещества к более холодным. Это довольно старый метод. У него существует одно единственное достоинство – автономность.

Данный вид не зависит от сторонних источников энергии. Но применение ее довольно ограничено, распределение тепла по жилым комнатам происходит крайне неравномерно. К тому же трубопроводы имеют внушительные размеры, что негативно сказывается на эстетике помещения.


Системы отопления

Эта система довольно дешевая, но ее монтаж требует определенных навыков и знаний законов термодинамики. Их повсеместно устанавливались в прошлом столетии в сельской местности. На смену ей пришла концепция принудительной циркуляции теплоносителя внутри контура.

Читайте также:  Энергосберегающие электрические котлы отопления 220в

Принудительная циркуляция стала доступна относительно недавно. Появились надежные и качественные насосы. Благодаря современным системам автоматики, отапливать частный дом стало намного безопасней и эффективней.

Тепловые насосы – классификация

Работа теплового насоса для отопления дома возможна в широком температурном диапазоне – от -30 до +35 градусов по Цельсию. Наиболее распространены приборы абсорбционные (переносят тепло посредством его источника) и компрессионные (циркуляция рабочей жидкости происходит за счет электроэнергии). Наиболее экономичны абсорбционные устройства, однако они более дорогостоящие и обладают сложной конструкцией.

Классификация насосов по типу источников тепла:

  1. Геотермальные. Забирают тепло воды или земли.
  2. Воздушные. Забирают тепло атмосферного воздуха.
  3. Вторичного тепла. Забирают так называемое производственное тепло – образующееся на производстве, при отоплении, прочих промышленных процессах.

Теплоносителем может выступать:

  • Вода из искусственного или естественного водоема, грунтовые воды.
  • Грунт.
  • Воздушные массы.
  • Комбинации вышеперечисленных носителей.

Насос геотермального типа – принципы устройства и работы

Насос геотермальный для отопления дома использует тепло грунта, которое он отбирает вертикальными зондами или горизонтальным коллектором. Зонды размещаются на глубине до 70 метров, зонд находится на небольшом удалении от поверхности. Такой тип устройства наиболее эффективен, поскольку у источника тепла довольно высокая постоянная в течение всего года температура. Поэтому необходимо затратить меньше энергии на транспортировку тепла.


Тепловой насос геотермального типа

Такое оборудование требует больших затрат на установку. Высокой стоимостью отличаются работы по бурению скважин. Кроме того, площадь, отведенная под коллектор, должна быть в несколько раз больше площади отапливаемого дома либо коттеджа. Важно помнить: земля, где находится коллектор, не может использоваться для посадки овощей или плодовых деревьев – корни растений будут переохлаждены.

Использование воды в качестве источника тепла

Водоем – источник большого количества тепла. Для насоса можно использовать незамерзающие водоемы от 3 метров глубиной либо грунтовые воды при их высоком уровне. Реализовать систему можно следующим образом: трубу теплообменника, отягощенную грузом из расчета 5 кг на 1 метр погонный, укладывают на дно водоема. Протяженность трубы зависит от метража дома. Для помещения в 100 м.кв. оптимальная протяженность трубы – 300 метров.

В случае использования грунтовых вод необходимо пробурить две скважины, расположенные одна за другой по направлению грунтовых вод. В первую скважину помещают насос, подающий воду на теплообменник. Во вторую скважину поступает уже охлажденная вода. Это так называемая открытая схема сбора тепла. Ее основной недостаток в том, что уровень грунтовых вод нестабилен и может значительно меняться.

Воздух – наиболее доступный источник тепла

В случае использования воздуха в качестве источника тепла теплообменником выступает радиатор, принудительно обдуваемый вентилятором. Если работает тепловой насос для отопления дома по системе «воздух-вода», пользователь получает преимущества:

  • Возможность обогреть весь дом. Вода, выступающая в качестве теплоносителя, разводится по приборам отопления.
  • При минимальных затратах электроэнергии – возможность обеспечить жильцов горячим водоснабжением. Это возможно за счет наличия дополнительного теплоизолированного теплообменника с емкостью накопительной.
  • Насосы аналогичного типа могут использоваться для нагрева воды в бассейнах.


Схема отопления дома воздушным тепловым насосом.

Если насос работает по системе «воздух-воздух», теплоноситель для нагрева помещения не используется. Обогрев производится за счет полученной тепловой энергии. Примером реализации такой схемы может служить обычный кондиционер, установленный на режим обогрева. Сегодня все устройства, использующие воздух как источник тепла, – инверторные. В них переменный ток в постоянный преобразуется, обеспечивая гибкое управление компрессором и его работу без остановок. А это увеличивает ресурс устройства.

Структура с циркуляцией теплоносителя


Система отопления

Сердцем системы является котел. Он преобразует водородное топливо в тепловую энергию путем открытого горения. Внутри котла происходит нагрев теплоносителя, и далее по системе трубопроводов данный вид энергии распределяется по квартире или дому.

За равномерное распределение отвечает насос. В эту систему так же входят клапана различного назначения, радиаторы отопления, трубопроводы типа «теплый пол», бойлер для нагрева воды в кране, бак расширитель, счетчики и автоматика.

Схема подключения беспроводного термостата.

В данный момент беспроводные термостаты получили широкое распространение и серьезно потеснили своих проводных собратьев. С ними проще работать, не нужно тянуть через весь дом провода от термостата до датчика. Достаточно просто настроить адрес датчика и установить его в месте с устойчивым приемом сигнала от термостата. Что касаемо схем подключения таких устройств, то их может быть две:

Схема соединения по разрыву цепи.

Схема ничем не отличается от схемы подключения механического термостата. Включение котла, насоса или сервопривода происходит по появлению тока в цепи.

Схема соединения по потенциалу (напряжению).

В данной схем при соединении цепи термостат передает на вход котла напряжение, которое включает котел, насос или сервопривод.

Система отопления


Отопительная система

  • корпусная деталь;
  • латунная крыльчатка;
  • перегородка, которая изолирует отделение крыльчатки (мокрое) и исполнительные механизмы насоса (сухое);
  • сам двигатель;
  • клеммная плата подключения проводки питания;
  • микросхема с управляющими элементами двигателя насоса.

Корпус, как правило, изготавливается из чугуна, крыльчатка крепится на вал насоса. Так же есть приспособление, через которое из системы удаляется попавший в него воздух.

Функциональное назначение термостатов


Электронный термостат

В большинстве случаев при работе теплоснабжения наблюдается неравномерное распределение тепла в радиаторах и тубах. Это связано с его остыванием во время продвижения по транспортным магистралям. Для стабилизации и своевременной регулировки устанавливают комнатные термостаты для отопления.

Их задача заключается в ограничении притока горячей воды в определенный элемент отопления – отдельный контур, радиатор или батарею. Конструктивно они состоят из запорной части (задвижка-шток) и управляющего компонента. Установленный термостат для батареи или отдельного контура отопления улучшает следующие параметры системы:

  • Контроль степени нагрева радиатора. Регулируя приток горячей воды, изменяется температура на поверхности отопительного прибора;
  • Оптимизация затрат на нагрев теплоносителя. Накладной термостат для отопления снижает расходы на нагрев горячей воды, уменьшая разницу температуры теплоносителя между подающей и обратной трубами;
  • Автоматизация работы отопления. Практически все модели терморегулирующих устройств работают в автономном режиме. Важно изначально правильно установить исходные параметры функционирования.

Чем отличается термостат для котла отопления от аналогичной модели для радиатора или циркуляционного насоса? Прежде всего – скоростью срабатывания управляющего элемента и температурным режимом работы. Поэтому рекомендуется подбирать оптимальную модель для каждого компонента отопления. А для этого следует рассмотреть их типы и особенности конструкции.

Любой термостат для отопления дома имеет индивидуальные эксплуатационные параметры – особенность установки, степень регулирования температуры и т.д. Они должны соответствовать характеристикам отопительного элемента, на который будет установлен прибор.

Оцените статью