- Таблица гидравлического расчёта систем водяного отопления
- Гидравлический расчет трубопроводов водяного отопления
- Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия
- Расчет гидравлики водяной системы отопления
- Расчет диаметра труб
- Вычисление местных сопротивлений
- Гидравлическая увязка
- Определение потерь
- Гидравлический расчет системы отопления – пример расчета
- Видео на тему
Таблица гидравлического расчёта систем водяного отопления
Уже несколько раз терял свою таблицу для гидравлического расчёта систем водяного отопления из стальных водогазопроводных и электросварных прямошовных труб.
Перевёл таблицу в формат PDF, на случай если будет необходимость распечатать её снова.
Таблица для гидравлического расчёта систем отопления трубопроводов водяного отопления из стальных водогазопроводных и электросварных прямошовных труб при перепадах температуры в системе 95-70, 105-70 и 130-70, 150-70. Вся таблица. Страница 212-234.
Скачать с Depositfiles : Скачать 602
Скачать с Облака.Mail.ru : Скачать 140
И по отдельности:
1. Таблица для гидравлического расчёта систем отопления трубопроводов водяного отопления из стальных водогазопроводных труб при перепадах температуры в системе 95-70, 105-70. 1 часть таблицы. Страница 212-217.
Скачать с Depositfiles : Скачать 154
Скачать с Облака.Mail.ru : Скачать 51
2. Таблица для гидравлического расчёта систем отопления трубопроводов водяного отопления из электросварных прямошовных труб при перепадах температуры в системе 95-70, 105-70. 2 часть таблица. Страница 217-223.
Скачать с Depositfiles : Скачать 84
Скачать с Облака.Mail.ru : Скачать 34
3. Таблица для гидравлического расчёта систем отопления трубопроводов водяного отопления из стальных водогазопроводных труб при перепадах температуры в системе 130-70, 150-70. 3 часть таблицы. Страница 223-229.
Скачать с Depositfiles : Скачать 77
Скачать с Облака.Mail.ru : Скачать 30
4. Таблица для гидравлического расчёта систем отопления трубопроводов водяного отопления из электросварных прямошовных труб при перепадах температуры в системе 130-70, 150-70. 4 часть таблицы. Страница 229-234.
Гидравлический расчет трубопроводов водяного отопления
Гидравлический расчет систем водяного и парового отопления выполняется с целью определения экономичных диаметров трубопроводов. При этом должно быть обеспечено перемещение расчетного количества теплоносителя в единицу времени по всем циркуляционным кольцам и ветвям отопительной системы.
Порядок гидравлического расчета трубопроводов системы водяного отопления по удельной линейной потери давления:
1. Размещаются на поэтажных планах здания отопительные приборы, подающие и обратные стояки. Выбирается рациональный вариант прокладки магистральных подающих и обратных трубопроводов. Выполняют аксонометрическую (расчетную) схему систем отопления со всей запорно-регулирующей и воздухоудаляющей арматурой. На схеме указывают тепловую мощность каждого отопительного прибора.
На рисунке 2.2. приведен вариант расчетной схемы отопления с горизонтальными стояками одноэтажного здания.
2. Выбирают главное циркуляционное кольцо. В двухтрубных системах за главное принимается кольцо, проходящее через нижний прибор дальнего от теплового узла (узла ввода) стояка, при горизонтальном расположении стояков – кольцо, проходящее через дальний отопительный прибор. В тупиковых схемах однотрубных систем за главное принимают кольцо, проходящее через дальний стояк.
На приведенной схеме (рис. 2.2) главное циркуляционное кольцо составляют участки аб+бв.
3. Выявляют и нумеруют расчетные участки – участки труб с неизменным расходом теплоносителя, а также указывают тепловую нагрузку и длину каждого участка. Сумма длин всех расчетных участков составляет величину расчетного циркуляционного кольца. На полке- выноске указывают номера участков, в числителе- тепловой поток, проводимый по этому участку, в знаменателе- длину участку.
4. Определяют расчетное циркуляционное давление главного кольца. В системах отопления с принудительной циркуляцией теплоносителя расчетное циркуляционное давление
где Рн — давление, создаваемое насосом, Па; Ре — естественное давление от охлаждения воды в нагревательных приборах и трубопроводах, Па.
Для производственных и малоэтажных жилых и общественных зданий с принудительной циркуляцией теплоносителя естественным давлением от охлаждения воды в приборах и трубопроводах можно пренебречь, так как оно значительно меньше давления, создаваемого насосом [1].
Тогда расчетное циркуляционное давление Р приравнивается давлению насоса Рн, т.е. Р=Рн. Расчетное циркуляционное давление рекомендуется определять, исходя из средней потери давления, равной 100 Па на каждый метр наиболее протяженного расчетного кольца [2].
Тогда Р=100∙∑l, где ∑l – сумма длин всех участков главного циркуляционного кольца.
5. Определяют средние значения удельного падения давления на трение в трубопроводах рассчитываемого кольца
(2.43)
где 0,65 – коэффициент, учитывающий долю потери давления на трение от общей потери в трубопроводе; ∑l – общая длина всех участков кольца, м.
6. Определяют расходы теплоносителя на каждом расчетном участке Gуч, кг/ч
(2.42)
где — тепловая нагрузка участка (тепловая мощность всех отопительных приборов, к которым поступает теплоноситель по этому участку), Вт; с — теплоемкость воды кДж/(кг· º С); t1,t2 – температура теплоносителя в подающем и обратном трубопроводах, о С; β1,β2 – то же, что и в формуле 2.33; 3,6 — коэффициент перевода Вт в кДж/кг.
7. По полученным значениям , кг/ч и Rср, Па/м с помощью расчетных таблиц (например, приложение 6 [8] и 10[4]) или специальной номограммы (рис. 2.3) подбирают оптимальные диаметры труб расчетного кольца.
По этой же номограмме (или таблицам) определяют скорость движения теплоносителя м/с и фактические удельные потери давления на трение R.
Например, если расход теплоносителя по расчетному участку составляет 400 кг/ч, то при R ср=65 Па/м условий диаметр трубопровода может быть d= 20 или 25 мм. Если выбрать d= 20 мм, фактически удельные потери давления на участке составляет R=90 Па/м, скорость движения теплоносителя v= -0,32 м/с.
Все данные, полученные при расчете теплопровода, заносят в специальную таблицу (см. табл. 2.11).
Сводная таблица результатов гидравлического расчета трубопроводов систем отопления
№ участка | Тепловая нагрузка, Qуч, Вт | Расход воды Gуч, кг/ч | Длина участка l,м | Диаметр трубы d ,мм | Скорость движения теплоносителя v ,мс | Удельная потеря давления R,Па/м | потеря давления на трение, Rtl , Па | Сумма коэффициентов местных сопротивлений | Потеря давления в местных сопротивлениях Z, Па | Суммарная потеря давления Rtl+Z |
8. Определяют потери давления z, Па, на преодоление местных сопротивлений на каждом расчетном участке:
(2.43)
где — сумма коэффициентов местных сопротивлений на рассчитываемом участке трубопровода; v – скорость теплоносителя, м/с; ρ – плотность теплоносителя, кг/м 3 .
Ориентировочные значения коэффициентов местных сопротивлений системы отопления приведены в таблице 2.12. При расчете отдельных участков теплопровода местное сопротивление тройников и крестовин относят лишь к расчетному участку с наименьшим расходом теплоносителя; местные сопротивления отопительных приборов, котлов и подогревателей учитывают поровну в каждом примыкающем к ним теплопроводе.
После этого находят общие потери давления Rl + Z на каждом участке и суммарную потерю давления в рассчитываемом кольце. .
Диаметры трубопроводов считаются подобранными правильно, если имеется некоторый (5-10%) запас давления в кольце на неучтенные местные сопротивления и возможные неточности в монтаже системы отопления, т.е должно быть выполнено условие
P
Если это условие не выполняется, то следует произвести перерасчет (изменить диаметры труб) некоторых участков циркуляционного кольца.
После расчета главного циркуляционного кольца выполняют гидравлический расчет остальных колец. Из них некоторые кольца могут иметь общие расчетные участки с главным циркуляционным кольцом.
Так, например, кольцо а-б-г (рис.2.2) имеет общие расчетные участки №№1…5, 10…13 с главным циркуляционным кольцом, а кольцо а-д не имеет общих участков с ним.
Расчетное (располагаемое) циркуляционное давление кольца а-д равно расчетному давлению главного циркуляционного кольца. Исходя из этого средняя удельная потеря давления на трение в трубопроводах этого кольца по формуле 2.43 составляет
где Р – располагаемое давление, Па ; ∑lа-д – длина всех расчетных участков кольца а-д.
В системе отопления, приведенной на рис.2.2. Р для кольца а-д равно расчетному циркуляционному давлению главного кольца, м.
Расчетное циркуляционное давление ветви б-г кольца а-б-г, имеющее общие участки с главным циркуляционным кольцом, определяется как сумма потерь давления участков главного циркуляционного кольца, не вошедших в кольцо а-б-г, то есть участков №6…9
где ∑(Rl+ Z)6…9 – суммарные потери давления на участках № 6…9 главного циркуляционного кольца.
Средняя удельная потеря давления ветви б-г составит
Значение коэффициента местного сопротивления конструктивных элементов систем водяного отопления ( по данным ВНИИГС)
Элемент системы | При диаметре условного прохода Dy,мм | ||||||
Кран трехходовой КРТ | 1,5 | — | — | — | — | ||
Кран трехходовой КРТ | 4,5 | — | — | — | — | ||
Кран трехходовой поворотный КРП | 3,5 | — | — | — | — | ||
Кран двойной регулировки КРД | — | — | — | — | |||
Кран проходной | 3,2 | — | — | — | |||
Вентиль прямой | 2,5 | 2,5 | — | ||||
Задвижка параллельная | — | — | — | — | 0,5 | 0,5 | 0,5 |
Отвод под углом 90 0 | 0,9 | 0,8 | 0,6 | 0,5 | 0,3 | 0,3 | 0,3 |
Утка гнутая | 0,9 | 0,8 | 0,7 | 0,6 | 0,6 | 0,6 | 0,6 |
Скобка гнутая | 2,5 | 1,2 | 0,6 | 0,4 | 0,4 | 0,4 | |
Воздухосборник | 1,5 | Независимо от диаметра труб (относятся к большей скорости) | |||||
Внезапное расширение | |||||||
Внезапное сужение | 0,5 | ||||||
Грязевик | |||||||
Радиатор чугунный секционный | 1,3 | 1,4 | |||||
Радиатор стальной | 2,0 | 2,0 | |||||
Тройник: | |||||||
на проходе | |||||||
на отверстие | 1,5 | 1,5 | 1,5 | 1,5 | 1,5 | 1,5 | |
на противотоке | |||||||
Крестовины: | |||||||
на проходе | |||||||
на ответвлении | |||||||
Компенсатор | |||||||
П-образный |
При выполнении расчётов возможны большие расхождения между Rср и фактическим R, особенно на расчётных участках с малыми расходами. Так как минимальный диаметр трубопроводов отопления составляет 15 мм, то заниженные потери на этих участках должны быть компенсированы завышением потерь давления на других участках или установкой кранов двойной регулировки на последнем отопительном приборе рассчитываемого кольца.Потери давления в разных циркуляционных кольцах не должны различаться более чем на 15%. Неувязка потерь давления, превышающая 15%, может привести к разрегулировке системы с отклонением от расчётных расходов, температуры воды и теплоотдачи отопительных приборов. Рис. 2.2. Расчетная схема двухтрубной отопительной системы одноэтажного здания с горизонтальным расположением стояков
Рис. 2.3. Номограмма для расчета трубопроводов отопления
Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия
Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.
Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.
Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.
Расчет гидравлики водяной системы отопления
Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.
Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.
Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.
Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.
На данном этапе проектирования определяются:
- диаметр труб и их пропускная способность;
- местные потери давления по отдельным участкам системы отопления;
- требования гидравлической увязки;
- потери давления по всей системе (общие);
- оптимальный расход теплоносителя.
Для производства гидравлического расчета необходимо проделать некую подготовку:
- Собрать исходные данные и систематизировать их.
- Выбрать методику расчета.
Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.
Схематичное изображение отопительной системы в частном доме
На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:
- мощности радиаторов;
- расхода теплоносителя;
- расстановки теплового оборудования и пр.
Расчет диаметра труб
Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:
- для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
- для однотрубной – расход теплоносителя G, кг/ч.
Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.
При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.
Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени
Q (Вт) = W (Дж)/t (с)
Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.
Таблица параметров участков
Обозначение участка | Длина участка в метрах | Количество приборов а участке, шт. |
1-2 | 1,8 | 1 |
2-3 | 3,0 | 1 |
3-4 | 2,8 | 2 |
4-5 | 2,9 | 2 |
Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.
Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир. Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления. Далее на каждом участке размер трубы уменьшают на один шаг.
Вычисление местных сопротивлений
Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:
- шероховатость внутренней поверхности трубы;
- наличие мест расширения или сужения внутреннего диаметра трубопровода;
- повороты;
- протяженность;
- наличие тройников, шаровых кранов, приборов балансировки и их количество.
Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).
Исходные данные для расчета:
- длина расчетного участка – l, м;
- диаметр трубы – d, мм;
- заданная скорость теплоносителя – u, мм;
- характеристики регулирующей арматуры, предоставляемые производителем;
- коэффициент трения (зависит от материала трубы), λ;
- потери на трение – ∆Pl, Па;
- плотность теплоносителя (расчетная) – ρ = 971,8 кг/м 3 ;
- толщина стенки трубы – dн х δ, мм;
- эквивалентная шероховатость трубы – kэ, мм.
Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.
Символ ξ в формуле означает коэффициент местного сопротивления.
Если в доме стоит печка, отопить она сможет лишь небольшое помещение. Установка батарей отопления в частном доме большой площади обязательна, так как в противном случае отдаленные от печи комнаты отапливаться не будут.
Основные характеристики газового котла Buderus представлены в этом обзоре.
О том, как запустить газовый котел, расскажем в этой статье.
Гидравлическая увязка
Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.
Гидравлическая увязка системы производится на основании:
- проектной нагрузки (массового расхода теплоносителя);
- данных производителей труб по динамическому сопротивлению;
- количества местных сопротивлений на рассматриваемом участке;
- технических характеристик арматуры.
Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.
Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где
S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).
Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.
Определение потерь
Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:
- первичного контура – ∆Plk;
- местных систем – ∆Plм;
- генератора тепла – ∆Pтг;
- теплообменника ∆Pто.
Гидравлический расчет системы отопления – пример расчета
В качестве примера рассмотрим двухтрубную гравитационную систему отопления.
Исходные данные для расчета:
- расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
- параметры системы – tг = 75 0 С, tо = 60 0 С;
- расход теплоносителя (расчетный) – Vсо = 7,6 м 3 /ч;
- присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
- автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 80 0 С;
- автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
- система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).
Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.
На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.
На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:
0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.
Варианты двухтрубной отопительной системы
Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.
Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.
Самодельная печь хорошо подойдет для обогрева дачного домика или подсобного помещения. Печка из газового баллона своими руками – смотрите инструкцию по изготовлению.
Как собрать пресс для топливных брикетов своими руками, вы узнаете в этой статье.
Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.