Нормы для оборотного водоснабжения
В СНиП 2.04.02-84 присутствовал раздел 11 «Охлаждающие системы оборотного водоснабжения». В актуализированной редакции СП 31.13330.2012 данный раздел отсутствует.
Подскажите, на какую нормативную литературу можно сослаться при проектировании оборотных систем водоснабжения?
Второй абзац пункта 1 свода правил СП 31.13330.2012 «СНиП 2.04.02-84* Актуализированная редакция. Водоснабжение. Наружные сети и сооружения» гласит:
«При разработке проектов систем водоснабжения следует руководствоваться действующими на момент проектирования нормативно-правовыми и техническими документами».
Отмена СНиП 2.04.02-84* «Водоснабжение. Наружные сети и сооружения», как документа по стандартизации, и замена его на свод правил СП 31.13330.2012, не означает, что этот документ не может быть использован в качестве технического документа для проектирования систем оборотного водоснабжения и их охлаждения (в части, не противоречащей действующим нормативно-правовым актам и документам по стандартизации), учитывая, что в СП 31.13330.2012 и других документах по стандартизации, требования по данному вопросу отсутствуют.
Кроме того, при проектировании целесообразно использовать и другие технические документы, например:
- Рекомендации для проектирования и эксплуатации охлаждающих систем оборотного водоснабжения производительностью до 1000 куб. м. в час с малогабаритными градирнями заводского изготовления», М., Изд-во ЗАО «ДАР/ НИИ ВОДГЕО», 2012 г.- 56 с.
- П 70.0010.021-91 «Пособие по проектированию систем оборотного водоснабжения с водоохладителями», 1991 г.
- «Промышленное водоснабжение» В.И.Аксёнов, Ю.А.Галкин, В.Н.Заслоновский, И.И. Ничкова, Екатеринбург: УрФУ, 2010, 221 с.
- Пономаренко В. С, Арефьев Ю. И. «Градирни промышленных и энергетических предприятий»: Справочное пособие/ Под общ. ред. В. С. Пономареико. — М.: Энергоатомиздат: 1998. — 376 с.
- «Выбор и оптимизация параметров систем оборотного водоснабжения». Методические указания к выполнению лабораторных работ по курсу «Комплексное использование водных ресурсов» СПбГАСУ; сост. Ю. А. Феофанов. — Спб., 2007 г.- 27 с.
3 Требования к качеству и свойствам воды в системах оборотного водоснабжения
1.4. Требования к качеству и свойствам воды в системах оборотного водоснабжения
Требования к качеству и свойствам воды, подаваемой для производственных целей, устанавливают в каждом конкретном случае в зависимости от применяемых в технологии оборудования, сырья и материалов. Общими являются следующие требования к технической воде /4/:
1. В открытых системах вода должна быть безвредной для здоровья обслуживающего персонала и не обладать отрицательными органолептическими свойствами. Поэтому содержание в I л воды кишечных палочек не должно превышать 1000.
2. Техническая вода может использоваться только для охлаждения машин и агрегатов или продукта через стенку по схеме, приданной на рис. 1.2,а. Температура воды не должна быть выше допустимой; так, для среднеевропейской полосы она должна быть ниже 28-30°. Поэтому оборотную воду охлаждают в градирнях или других сооружениях.
3. Содержание взвешенных веществ крупностью до 0,05 мм в воде не должно превышать допустимых значений, зависящих от скорости воды в охлаждаемом оборудовании, приведенных в табл.1.2.
Допустимая концентрация взвеси (крупностью до 0,05 мм) в охлаждающей оборотной воде
Скорость движения воды в теплообменных аппаратах, м/с
Допустимая концентрация взвеси в охлаждающей воде мг/л
4. Оборотная вода, используемая для охлаждения, должна быть термостабильной, т.е. из нее не должно выделяться более 0,2 г/ (м ч) карбоната кальция CaCO2, других солей и механических примесей (слой отложений не более 0,08 мм в месяц). В противном случае вода должка предварительно обрабатываться.
5. Вода не должна вызывать точечной и язвенной коррозии, а также равномерной коррозии металла со скоростью, превышающей 0,09 г/(мч) (слой до 0,1 мм в год) и разрушения бетона. Допустима равномерная скорость коррозии углеродистой стали, не превышающая 0,45 г/(м
ч), (слой до 0,5 мм в год) при отсутствии признаков точечной и язвенной коррозии. Следует выбирать стойкие материалы для оборудования, трубопроводов и сооружений, предусматривать их защиту покрытиями или производить соответствующую обработку воды.
6. Вода не должна способствовать развитию биологических обрастаний теплообменных аппаратов и охладителей оборотной воды со скоростью, большей 0,07 г /(м ч) (слой до 0,05 в месяц) по сухому весу в воздухе. При необходимости воду периодически обрабатывают хлором, а охладители воды — раствором медного купороса.
Вода, используемая для охлаждения оборудования и продукта в теплообменных аппаратах, относится к воде I категории. Вода П категории используется в качестве среды, поглощающей и транспортирующей примеси по схеме рис.1.2,б при непосредственном контакте с продуктом (обогащение полезных ископаемых, гидрозоло-удаление и др.). Она может содержать взвешенные вещества в концентрации не более допустимой и крупностью не выше установленного предела во избежании осаждения их по пути движения воды. Норма допустимой концентрации взвешенных веществ в воде, подаваемой потребителям, устанавливается отдельно для каждого производства. Перед каждым циклом использования воды в системе оборотного водоснабжения эта вода должна быть очищена и, при необходимости, охлаждена. Вода Ш категории используется как среда, поглощающая и транспортирующая механические примеси и одновременно служащая охладителем продукта по схеме рис.1.2,в. В ней могут иметь место процессы растворения (выщелачивания) солей, органических веществ и газов. Количество и технологические свойства воды в таком случае должны отвечать требованиям, указанным выше для воды I и П категории.
Следует отметить, что качество и технологические свойства (термостабильность и коррозионность) воды, используемой для охлаждения или обогащения продукта при непосредственном контакте с ним, формируется в основном этим продуктом, а также условиями использования воды и от качества и свойств природной воды практически не зависят.
Особо чистая вода используется для приготовления технологических производственных растворов. Она не должна содержать осаждающихся взвешенных и других веществ, вредных для производства или образующих с растворяемыми веществами вредные примеси.
Примерные общие требования к качеству пресных вод, используемых для охлаждения продукта и оборудования, очистки газов и обогащения полезных ископаемых, приведены в табл.1.3.
1.5. Критерии рациональности использования воды
Эффективность использования вода на промышленных предприятиях оценивается тремя показателями.
I. Техническое совершенство системы водоснабжения оценивается количеством использованной оборотной воды ,%,
где — количество вода, используемой соответственно в обороте, забираемой из источника и поступающей в систему с сырьем.
2. Рациональность использования вода, забираемой из источника, оценивается коэффициентом использования
(1.11)
3. Потери воды и безвозвратное потребление в системе оборотного водоснабжения, %, определяются по формуле
где — количество вода, используемой в производстве последовательно.
1.6. Очистка и обработка вода систем оборотного водоснабжения
Необходимость очистки и обработки воды в системах оборотного водоснабжения определяется:
— требованиями, предъявляемыми потребителями к качеству и свойствам вода;
.- данными лабораторных анализов природной и оборотной воды, предназначенной к использованию;
— результатами исследования технологических свойств вода (термостабильность, биогенность и коррозионность), на моделях или в производственных условиях;
— опытом эксплуатации аналогичных систем, использующих воду данного (или аналогичного) источника водоснабжения.
Требования к качеству пресных вод, используемых дли охлаждения очистки газов и обогащения полезных ископаемых
Вода 1 категории при температурах охлаждения продукта или стенки теплообменника, С
Нормы для оборотного водоснабжения
11. Охлаждающие системы оборотного водоснабжения
11.1. Схема водоснабжения должна приниматься с оборотом воды, общим для всего промышленного предприятия, или в виде замкнутых циклов для отдельных производств, цехов или установок.
Количество охлаждающих систем оборотного водоснабжения на предприятии надлежит устанавливать с учетом технологии производства, требований, предъявляемых к качеству, температуре, давлению воды, размещения потребителей воды на генплане и очередности строительства.
Для уменьшения диаметра и протяженности труб водопроводных сетей надлежит применять на промышленном предприятии раздельные системы оборотного водоснабжения по отдельным производствам, цехам или установкам с максимально возможным приближением их к потребителям воды.
11.2. При проектировании охлаждающих систем оборотного водоснабжения должна учитываться возможность использования низкопотенциального тепла подогретой воды.
11.3. Систему оборотного водоснабжения надлежит проектировать с отводом воды от технологических установок без разрыва струи с напором, достаточным для подачи воды на охладители, за исключением случаев, когда разрыв струи обусловлен конструкцией установок.
11.4. В системах оборотного водоснабжения следует использовать природные и сточные воды при соответствующей очистке и обработке. Использование очищенных сточных вод должно согласовываться с органами санитарно-эпидемиологической службы.
11.5. При проектировании сооружений оборотного водоснабжения следует учитывать требования разделов 7, 12 и 13
11.6. Оборотная вода не должна вызывать коррозии труб, оборудования и теплообменных аппаратов, биологических обрастаний, выпадения взвесей и солевых отложений на поверхностях теплообмена.
Для обеспечения указанных требований надлежит предусматривать соответствующую очистку и обработку добавочной и оборотной воды.
11.7. Выбор состава и размеров сооружений и оборудования для очистки, обработки и охлаждения воды надлежит производить из условий максимальной нагрузки на эти сооружения.
БАЛАНС ВОДЫ В СИСТЕМАХ
11.8. Для систем оборотного водоснабжения должен составляться баланс воды, учитывающий потери, необходимые сбросы и добавления воды в систему для компенсации убыли из нее.
11.9. При составлении баланса в состав общей убыли воды из системы необходимо включать:
а) безвозвратное потребление (отбор воды из системы на технологические нужды);
б) потери воды на испарение при охлаждении qисп, м 3 /ч, определяемые по формуле
(34)
где Dt = t1 — t2 — перепад температуры воды в градусах, определяемый как разность температур воды, поступающей на охладитель (пруд, брызгальный бассейн или градирню), t1 и охлажденной воды t2;
qохл — расход оборотной воды, м 3 /ч;
Кисп — коэффициент, учитывающий долю теплоотдачи испарением в общей теплоотдаче, принимаемый для брызгальных бассейнов и градирен в зависимости от температуры воздуха (по сухому термометру) по табл. 36, а для водохранилищ (прудов) -охладителей — в зависимости от естественной температуры в водотоке по табл. 37.
Температура воздуха, o С
Значения коэффициента Кисп для градирен и брызгальных бассейнов
Температура воды, o С, в реке или канале, впадающих в водохранилище (пруд)
Значения коэффициента Кисп для водохранилищ (прудов) — охладителей
*Примечания:
1. Для промежуточных значений температур значение определяется интерполяцией.
2. Потери воды на естественное испарение в водохранилищах (прудах)- охладителях следует определять по нормам для расчета водохранилищ.
Потери воды Р2 вследствие уноса ветром, % расхода охлаждаемой воды
Вентиляторные градирни с водоуловительными устройствами: при отсутствии в оборотной воде токсичных веществ
при наличии токсичных веществ
Башенные градирни без водоуловительных устройств и оросительные теплообменные аппараты
Башенные градирни с водоуловительными устройствами
Открытые и брызгальные градирни
Брызгальные бассейны производительностью, м 3 /ч:
до 500
*Примечание.
Меньшие значения потерь надлежит принимать для охладителей большей производительности, а также для расчетов обработки охлаждающей воды в целях предотвращения карбонатных отложений.
При охлаждении продукта в теплообменных аппаратах оросительного типа потери воды на испарение, вычисленные по формуле, следует увеличивать вдвое;
в) потери воды в брызгальных бассейнах, градирнях и оросительных теплообменных аппаратах вследствие уноса ветром Р2 принимаемые по табл. 38;
г) потери воды на очистных сооружениях, определяемые расчетами с учетом указаний разд. 6;
д) потери воды на фильтрацию из водохранилищ (прудов)- охладителей при водопроницаемых основаниях и фильтрующих ограждающих дамбах, определяемые расчетом на основании данных гидрогеологических изысканий. Потери воды на фильтрацию из брызгальных бассейнов и водосборных резервуаров градирен в расчетах не учитываются;
е) сброс воды из системы (продувка), определяемый в зависимости от качества оборотной и добавочной воды, а также способа ее обработки.
ПРЕДОТВРАЩЕНИЕ МЕХАНИЧЕСКИХ ОТЛОЖЕНИЙ
11.10. Возможность и интенсивность образования механических отложений в резервуарах градирен и в теллообменных аппаратах надлежит определять на основе опыта эксплуатации систем оборотного водоснабжения, расположенных в данном районе, работающих на воде данного источника, или исходя из данных о концентрации, гранулометрическом составе (гидравлической крупности) механических загрязнений воды и воздуха.
Для предотвращения и удаления механических отложений в теплообменных аппаратах следует предусматривать периодическую гидроимпульсную или гидропневматическую очистку их в процессе работы, а также частичное осветление оборотной воды.
11.11. Вода поверхностных источников, используемая в качестве добавочной в системе оборотного водоснабжения, должна подвергаться осветлению в соответствии с разд. 6.
БОРЬБА С ЦВЕТЕНИЕМ ВОДЫ И БИОЛОГИЧЕСКИМ ОБРАСТАНИЕМ
11.12. Борьба с цветением воды в водохранилищах и прудах-охладителях должна предусматриваться согласно указаниям рекомендуемого прил. 11 путем разбрызгивания раствора медного купороса по поверхности воды. Применение медного купороса надлежит в каждом случае согласовывать с органами санитарно-эпидемиологической службы и охраны рыбных запасов.
11.13. Для предупреждения развития бактериальных биологических обрастаний в теплообменных аппаратах и трубопроводах надлежит применять хлорирование оборотной воды согласно рекомендуемому прил. 11. Дозу хлора следует определять по опыту эксплуатации систем водоснабжения на воде данного источника или исходя из хлоропоглощаемости добавочной воды.
11.14. Хлораторные установки для обработки охлаждающей воды и расходные склады надлежит проектировать согласно разд. 6.
Резервные хлораторы предусматривать не следует. Подачу хлорной воды от хлораторов надлежит производить в приемную камеру охлажденной воды.
При высокой хлоропоглощаемости воды и большой протяженности трубопроводов системы оборотного водоснабжения допускается рассредоточенный ввод хлорной воды в нескольких точках системы.
11.15. В целях предупреждения обрастания водорослями градирен, брызгальных бассейнов и оросительных теплообменных аппаратов должна применяться периодическая обработка охлаждающей воды раствором медного купо-роса согласно рекомендуемому прил. 11. Концентрацию раствора медного купороса в растворном баке надлежит принимать 2-4%.
11.16. Для предупреждения биологического обрастания градирен, брызгальных бассейнов и оросительных холодильников надлежит применять дополнительно периодическое хлорирование воды перед сооружениями согласно рекомендуемому прил. 11. Дополнительную обработку воды хлором надлежит производить одновременно или после обработки ее раствором медного купороса.
11.17. Баки, лотки, трубопроводы, оборудование и запорная арматура, соприкасающиеся с раствором медного купороса, должны приниматься из коррозионно-стойких материалов.
ПРЕДОТВРАЩЕНИЕ КАРБОНАТНЫХ ОТЛОЖЕНИЙ
11.18. Указания подраздела распространяются на проектирование систем оборотного водоснабжения для охлаждения теплообменных аппаратов, машин и агрегатов, в которых не происходит кипения охлаждающей воды у поверхности теплообмена и нагревание воды не превышает 60 o С при использовании пресных вод источников и очищенных сточных вод.
*Примечание. При специальных требованиях к охлаждающей воде. нагреве воды св. 60 o С и местном кипении ее у поверхностей теплообмена надлежит принимать умягчение добавочной воды на ионообменных фильтрах (натрий-катионирование или водород-катионирование с «голодной» регенерацией); допускается применение известкования с последующим подкислением или фосфатированием.
11.19. Обработку воды для предотвращения карбонатных отложений следует предусматривать при условии ЩдобК > 3, Щдоб — щелочность добавочной воды, мг-экв/л, Ку — коэффициент концентрирования (упаривания) солей, не выпадающих в осадок. При этом надлежит принимать следующие методы обработки воды: подкисление, рекарбонизацию, фосфатирование полифосфатами и комбинированную фосфатно-кислотную обработку. Допускается применение фосфорорганических соединений.
11.20. Методы обработки воды для предотвращения карбонатных отложений надлежит принимать:
— подкисление — при любых величинах щелочности и общей жесткости природных вод и коэффициентах упаривания воды в системах;
— фосфатирование — при щелочности добавочной воды Щдоб до 5,5 мг-экв/л;
— комбинированную фосфатно-кислотную обработку воды — в случаях, когда фосфатирование не предотвращает карбонатных отложений или величина продувки экономически нецелесообразна;
— рекарбонизацию дымовыми газами или газообразной углекислотой — при щелочности добавочной воды до 3,5 мг-экв/л и коэффициентах упаривания, не превышающих 1,5.
Дозы кислоты, углекислоты и фосфатных реагентов надлежит определять согласно рекомендуемому прил. 11.
ПРЕДОТВРАЩЕНИЕ СУЛЬФАТНЫХ ОТЛОЖЕНИЙ
11.21. Для предотвращения отложений сульфата кальция произведение активных концентраций ионов Са 2+ и SO4 2- в оборотной воде не должно превышать произведения растворимости сульфата кальция (рекомендуемое прил. 11).
11.22. Для поддержания величин произведения активных концентраций ионов Са 2+ и SO4 2- в указанных пределах следует принимать соответствующий коэффициент упаривания оборотной воды путем изменения величины продувки системы или частичного снижения концентраций ионов Са 2+ и SO4 2- в добавочной воде.
11.23. Для борьбы с сульфатными отложениями в системах оборотного водоснабжения надлежит принимать обработку воды триполифосфатом натрия дозой 10 мг/л по РО4 3- или карбоксиметилцеллюлозой дозой 5 мг/л.
11.24. Для предовращения коррозии трубопроводов и теплообменных аппаратов следует применять обработку воды ингибиторами, защитные покрытия и электрохимическую защиту.
11.25. При применении ингибиторов и защитных покрытий в системах оборотного водоснабжения следует предусматривать тщательную очистку теплообменных аппаратов и трубопроводов от отложений и обрастаний.
11.26. В качестве ингибиторов следует применять триполифосфат натрия, гексаметафосфат натрия, трехкомпонентную композицию (гексаметафосфат или триполифосфат натрия, сульфат цинка и бихромат калия), силикат натрия и др.
Наиболее эффективный вид ингибитора коррозии должен определяться в каждом конкретном случае опытным путем.
Примечание. При обосновании допускается применять нитрит натрия и фосфорорганические соединения.
11.27. При использовании триполифосфата и гексаметафосфата натрия для создания защитной фосфатной пленки концентрация ингибиторов в воде оборотной системы в течение 2-3 сут должна приниматься 100 мг/л (в расчете на Р2О5), в добавочной воде для поддержания фосфатной пленки -7-15 мг/л по Р2О5. При этом скорость движения воды в теплообменных аппаратах должна быть не менее 0,3 м/с.
11.28. При применении трехкомпонентного ингибитора дозу бихромата калия следует принимать 2-4 мг/л по CrO4 2- , сульфата цинка — 1,5-3 мг/л по Zn 2+ и гексаметафосфата или триполифосфата натрия — 3-5 мг/л по РО4 3- .
При этом необходимо определять концентрации хрома в водоеме при сбросе продувочной воды и в атмосферном воздухе рабочей зоны при уносе ветром капель воды из градирен. Эти концентрации не должны превышать предельно допустимые (ПДК).
Скорость движения воды в системе должна быть не менее 0,5 м/с.
11.29. При использовании силиката натрия дозу жидкого стекла в расчете на SiO2 следует принимать равной 10 мг/л, при высоких концентрациях хлоридов и сульфатов (500 мг/л и более) дозу необходимо увеличивать до 30-40 мг/л.
11.30. Защитные покрытия и электрохимическую защиту трубопроводов следует проектировать согласно пп. 8.32-8.41.
ОХЛАЖДЕНИЕ ОБОРОТНОЙ ВОДЫ
11.31. Тип и размеры охладителя должны приниматься с учетом:
расчетных расходов воды;
расчетной температуры охлажденной воды, перепада температур воды в системе и требований технологического процесса к устойчивости охладительного эффекта;
режима работы охладителя (постоянный или периодический);
расчетных метеорологических параметров;
условий размещения охладителя на площадке предприятия, характера застройки окружающей территории, допустимого уровня шума, влияния уноса ветром капель воды из охладителей на окружающую среду;
химического состава добавочной и оборотной воды и др.
11.32. Область применения охладителей воды надлежит принимать по табл. 39.
Область применения охладителя воды
Удельная тепловая нагрузка, тыс. ккал/(м 2 /ч)
Перепад температур воды, o С
Разность температуры охлажденной воды и температуры атмосферного воздуха по смоченному термометру, o С
Радиаторные (сухие) градирни
0ткрытые и брызгальные
*Примечание. Показатели в таблице даны для воды. поступающей на охладитель, с температурой не более 45 o С.
11.33. Технологические расчеты градирен и брызгальных бассейнов надлежит производить исходя из среднесуточных температур атмосферного воздуха по сухому и влажному термометрам (или относительной влажности воздуха) по замерам в 7, 13 и 19 ч за летний период года по многолетним наблюдениям при обеспеченности 1-10%. Для тепловых и атомных электростанций расчеты надлежит производить исходя из среднесуточных температур атмосферного воздуха, по сухому и влажному термометрам за летний период среднего и жаркого года. Выбор обеспеченности производится в зависимости от категории водопотребителя по табл. 40.
Степень ухудшения технологического процесса производства или ухудшения работы оборудования в результате превышения температуры охлажденной воды над расчетной
Обеспеченность метеорологических параметров при расчете охладителей воды, %
Нарушение технологического процесса производства в целом и, как следствие, значительные убытки
Допускаемое временное нарушение технологического процесса отдельных установок
Временное снижение экономичности технологического процесса производства в целом и отдельных установок
При отсутствии данных о среднесуточных температурах и влажности атмосферного воздуха с указанной обеспеченностью следует принимать средние температуры и влажности в 13 ч для наиболее жаркого месяца согласно СНиП 2.01.01-82 с добавлением к температуре воздуха по влажному термометру 1-3 o С при неизменной величине влажности в зависимости от категории водопотребителя.
11.34. Технологические расчеты градирен должны выполняться по методике, учитывающей тепломассообмен в активной зоне охлаждения и аэродинамические сопротивления градирни, или по графикам, составленным на основании экспериментов.
11.35. Технологические расчеты охлаждающей способности брызгальных бассейнов и открытых градирен должны выполнятся по экспериментальным графикам.
11.36. Технологические расчеты радиаторных градирен должны выполняться по методике, принятой для расчета теплообменных аппаратов с оребренными трубами, охлаждаемых воздухом.
11.37. Технологические расчеты водохранилищ-охладителей для тепловых и атомных электростанций должны выполняться исходя из среднемесячных гидрологических и метеорологических факторов среднего года с учетом теплоаккумулирующей способности водохранилища, графиков нагрузки и ремонта оборудования. Для летнего периода среднего и жаркого года обеспеченностью 10% проверяется мощность оборудования, устанавливаются пределы и длительность ограничения мощности по максимальным суточным температурам охлаждающей воды. При использовании для охлаждения воды существующих водоемов другого назначения необходимо учитывать особенности пространственного формирования температурного режима в естественных условиях и при сбросе подогретой воды.
11.38. При наличии в оборотной воде примесей, агрессивных по отношению к материалам конструкций градирен и брызгальных бассейнов, должны предусматриваться обработка воды или защитные покрытия конструкций.
11.39. Глубина воды в брызгальных бассейнах и водосборных резервуарах градирен должна приниматься не менее 1,7 м, расстояние от уровня воды до борта бассейна или резервуара — не менее 0,3 м.
Для градирен, располагаемых на покрытиях зданий, допускается устройство поддонов с глубиной воды не менее 0,15 м.
11.40. Водосборные резервуары градирен и брызгальные бассейны должны оборудоваться отводящими, спускными и переливными трубопроводами, а также сигнализацией минимального и максимального уровней воды. На отводящем трубопроводе надлежит предусматривать сороудерживающую решетку с прозорами не более 30 мм.
Днища водосборных резервуаров и брызгальных бассейнов должны иметь уклон не менее 0,01 в сторону приямка со спускной трубой.
11.41. На подающем и отводящем трубопроводах брызгальных бассейнов следует предусматривать запорные устройства для выключения бассейнов на период очистки и ремонта.
11.42. Вокруг водосборных резервуаров градирен и брызгальных бассейнов следует предусматривать водонепроницаемое покрытие шириной не менее 2,5 м с уклоном от сооружений, обеспечивающим отвод воды, выносимой ветром из входных окон градирен и брызгальных бассейнов.
11.43. Градирни надлежит применять в системах оборотного водоснабжения, требующих устойчивого и глубокого охлаждения воды при высоких удельных гидравлических и тепловых нагрузках.
При необходимости сокращения объемов строительных работ, маневренного регулирования температуры охлажденной воды, автоматизации для поддержания заданной температуры охлажденной воды или охлаждаемого продукта следует применять вентиляторные градирни.
На застроенных территориях следует преимущественно применять вентиляторные градирни на покрытиях зданий.
В южных районах допускается применять поперечно-точные вентиляторные градирни.
В районах с ограниченными водными ресурсами, а также для предотвращения загрязнения оборотной воды токсичными веществами и защиты окружающей среды от их воздействия следует рассматривать возможность применения радиаторных (сухих) градирен или смешанных (сухих и вентиляторных) градирен.
11.44. Для обеспечения наиболее высокого эффекта охлаждения оборотной воды надлежит применять градирни с пленочным оросителем.
При наличии в оборотной воде жиров, смол и нефтепродуктов следует применять градирни с капельным оросителем; при наличии взвешенных веществ, образующих отложения, не смываемые водой, — брызгальные градирни.
11.45. Оросители надлежит предусматривать в виде блоков, конструкция и расстановка которых должны обеспечивать равномерное распределение потоков воды и воздуха по площади градирни.
11.46. Систему распределения воды надлежит принимать напорной трубчатой, допускается применение лотков. При установке разбрызгивающих сопел факелами, направленными вниз, расстояние от сопел до оросителя следует принимать 0,8-1 м, при направлении факелов вверх — 0,3-0,5 м.
11.47. Расположение сопел на трубах распределительной системы должно обеспечивать равномерное распределение воды по площади градирни над оросителем.
11.48. Для предотвращения выноса из градирни капель воды в зоне воздухораспределителя надлежит устанавливать ветровые перегородки, а над водораспределительными системами — водоуловительные устройства.
11.49. Конструкция и расстановка водоуловительных устройств должны обеспечивать отсутствие сквозных вертикальных щелей «оптическую плотность» по всей площади градирни, при этом вынос капель воды не должен превышать:
0,1-0,2% расхода оборотной воды при отсутствии в ней токсичных веществ,
0,05% — при наличии токсичных веществ.
В вентиляторных градирнях водоуловительные устройства надлежит размещать на расстоянии не менее 0,5 диаметра вентилятора от его рабочего колеса.
11.50. При расположении градирен на покрытиях зданий необходимо предусматривать жалюзи на воздуховходных окнах градирен.
11.51. Конструкция обшивки каркаса градирни должна исключать возможность подсасывания наружного воздуха.
11.52. Вентиляторные градирни надлежит принимать секционными с забором воздуха с двух сторон или односекционными с забором воздуха по всему периметру.
11.53. Площадь входных окон градирни должна составлять 34-45% площади градирни в плане.
11.54. Форму градирен в плане следует принимать: у секционных вентиляторных градирен — квадратную или прямоугольную с соотношением сторон не более 4:3, у односекционных и башенных — круглую, многоугольную или квадратную.
11.55. Для предотвращения обледенения градирен в зимнее время необходимо предусматривать возможность повышения тепловой и гидравлической нагрузок за счет отключения части секций или градирен, уменьшения подачи холодного воздуха в ороситель.
11.56. Для поддержания необходимой температуры охлажденной воды в зимнее время следует предусматривать устройства для сброса теплой воды в водосборный резервуар градирни.
11.57. Конструкции градирен надлежит принимать:
— каркас — из железобетона, стали или дерева;
— обшивку — из дерева, асбестоцементных или пластмассовых листов;
— ороситель — из дерева, асбестоцемента или пластмассы;
— водоуловительные устройства — из дерева, пластмассы или асбестоцемента;
— водосборные резервуары — из железобетона.
Деревянные конструкции должны быть антисептированы невымываемыми антисептиками, при применении древесины мягколиственных пород — модифицированы (пропитаны специальными растворами).
Металлические конструкции должны быть защищены антикоррозионными покрытиями согласно СНиП 2.03.11-85Б.
Железобетонные конструкции должны выполняться из марок бетона по морозостойкости и водопроницаемости, указанных в п. 14.24.
11.58.Водохранилища-охладители надлежит применять при невысоких требованиях к эффекту охлаждения воды, наличии свободных малоценных земельных площадей вблизи предприятий, наличии естественных водоемов или искусственных водохранилищ.
11.59. Глубина водохранилищ-охладителей при летних уровнях воды должна быть не менее 3,5 м на 80% площади зоны циркуляции водохранилища. Следует предусматривать мероприятия по ликвидации мелководий, удалению всплывающего торфа, а также обеспечению требуемого качества воды.
11.60. Плотины, дамбы, водосбросы, водовыпуски и каналы для водохранилищ-охладителей надлежит проектировать по нормативным документам на проектирование гидротехнических сооружений.
11.61. Водохозяйственные расчеты водохранилищ-охладителей надлежит выполнять аналогично водохозяйственным расчетам водохранилищ с учетом потерь на дополнительные испарения.
11.62. Коэффициенты использования водохранилищ-охладителей должны определяться по аналогам на основании модельных лабораторных исследований, а при расширении предприятий — на основании натурных исследований.
11.63. Расположение и конструкции водозаборных и водовыпускных сооружений, а также сооружений, повышающих охлаждение воды (струераспределительные сооружения, струенаправляющие дамбы), необходимо принимать с учетом ветрового влияния, гидрологических особенностей водоемов (стоковых, ветровых, плотностных и других течений), а также возможностей использования и создания вертикальной циркуляции охлаждаемой воды.
С целью снижения температуры, повышения качества забираемой воды и зашиты рыбной молоди следует рассматривать целесообразность устройства глубинных водозаборов.
11.64. Для водохранилищ-охладителей с притоком свежей воды следует предусматривать сброс части отработавшей воды в нижний бьеф водохранилища.
11.65. При проектировании водохранилищ надлежит предусматривать мероприятия по подготовке их ложа (расчистку от деревьев, кустарников и пр.). Состав и объем мероприятий определяются в каждом конкретном случае.
11.66. Для предотвращения размыва берегов водохранилища-охладителя и его заиления должны предусматриваться: укрепление берегов, организация стока поверхностных вод, устройство в устьях оврагов дамб, установление запретных зон запашки, травосеяние, насаждение кустарника на склонах водохранилища.
11.67. При заболачивании прилегающих к водохранилищу территорий необходимо предусматривать мелиоративные мероприятия.
11.68. Для уменьшения концентраций солей в воде водохранилища в случае необходимости надлежит предусматривать устройство сброса воды из нижних слоев водохранилища и подачу воды из других водотоков.
11.69. Брызгальные бассейны надлежит применять при невысоких требованиях к эффекту охлаждения воды, наличии открытой площади для доступа воздуха. Их следует располагать длинной стороной перпендикулярно направлению господствующих ветров. При размещении брызгальных бассейнов следует учитывать возможность образования тумана и обледенения соседних сооружений и дорог.
11.70. Брызгальные бассейны надлежит проектировать не менее чем из двух секций, одна секция допускается для оборотных систем с периодическим режимом работы.
11.71. Расположение разбрызгивающих сопел на трубах распределительной системы должно обеспечивать равномерное распределение воды по площади брызгального бассейна.
11.72. Ширина брызгального бассейна в осях крайних сопел должна быть не более 50 м.
Для уменьшения уноса капель воды ветром крайние сопла устанавливаются на расстоянии 7-10 м от границы бассейна в зависимости от величины напора у сопел и скорости ветра.
11.73. В целях поддержания необходимого температурного режима в зимнее время в каждой секции брызгального бассейна необходимо предусматривать трубопровод для сброса воды без разбрызгивания.
11.74. Конструкцию брызгальных бассейнов надлежит принимать из бетона или железобетонных плит с устройством гидроизоляционного экрана.
11.75. Брызгальные устройства допускается располагать над естественными водоемами. При этом следует предусматривать планировку и крепление берегового откоса.
Размещение охладителей на площадках предприятий
11.76. Размещение охладителей на площадках предприятий необходимо предусматривать из условий обеспечения свободного доступа к ним воздуха, а также наименьшей протяженности трубопроводов и каналов. При этом надлежит учитывать направления зимних ветров для исключения обмерзания зданий и сооружений (для градирен и брызгальных бассейнов).
11.77. Минимальное расстояние между охладителями воды, зданиями и сооружениями, а также между охладителями необходимо принимать согласно СНиП II-89-80*.
ПОКУПАЙ ШУБУ ЛЕТОМ, БИОФЛУИД ЗИМОЙ!