Обеспечение нагрузки горячего водоснабжение

Расчет количества тепловой энергии на горячее водоснабжение

Количество тепловой энергии, потребляемой системами отопления, вентиляции и горячего водоснабжения здания, является необходимым показателем при определении тепловой эффективности зданий, проведении энергоаудита, деятельности энергосервисных организаций, сравнении фактического теплопотребления здания, измеренного теплосчетчиком, с требуемым исходя из фактических теплотехнических характеристик здания и степени автоматизации системы отопления и во многих других случаях. В этом номере редакция публикует пример расчета количества тепловой энергии на горячее водоснабжение жилого здания*.

Исходные данные

Объект (здание):

  • количество этажей в здании – 16;
  • количество секций в здании – 4;
  • количество квартир в здании – 256.

Отопительный период:

  • продолжительность отопительного периода, zht = 214 сут.;
  • средняя за период температура внутреннего воздуха в здании, tint = 20 °C;
  • cредняя за период температура наружного воздуха, tht = – 3,1 °C;
  • расчетная температура наружного воздуха, text = – 28 °C;
  • средняя за период скорость ветра, v = 3,8 м/с.

Горячее водоснабжение:

  • тип системы горячего водоснабжения: с неизо-лированными стояками и с полотенцесушителями;
  • наличие сетей горячего водоснабжения: при наличии сетей горячего водоснабжения после ЦТП;
  • средний расход воды одним пользователем, g = 105 л/сут.;
  • количество дней отключения горячего водоснабжения, m = 21 сут.

Порядок расчета

1. Средний расчетный за сутки отопительного периода объем потребления горячей воды в жилом здании Vhw определяют по формуле:

где g – средний за отопительный период расход воды одним пользователем (жителем), равный 105 л/сут. для жилых зданий с централизованным горячим водоснабжением и оборудованных устройствами стабилизации давления воды на минимальном уровне (регуляторы давления на вводе в здание, зонирование системы по высоте, установка квартирных регуляторов давления); для других потребителей – см. СНиП 2.04.01–85* «Внутренний водопровод и канализация зданий»;
mч – число пользователей (жителей), чел.

Vhw = 105 • 865 • 10 –3 = 91 м 3 /сут.

В случае проведения расчета для многоквартирного дома с учетом оснащенности квартир водосчетчиками из условия, что при квартирном учете происходит 40 %-е сокращение водопотребления, расчет потребления горячей воды будет производиться по формуле:

где Kуч – количество квартир, оснащенных водосчетчиками;
Kкв – количество квартир в заднии.

2. Среднечасовой за отопительный период расход тепловой энергии на горячее водоснабжение Qhw, кВт, определяют согласно СНиП 2.04.01–85*. Допускается определение среднечасового расхода Qhw по формуле:

(2)

где Vhw – средний расчетный за сутки отопительного периода объем потребления горячей воды в жилом здании, м 3 /сут.; определяют по формуле (1);
twc – температура холодной воды, °C, принимают twc = 5 °C;
khl – коэффициент, учитывающий потери теплоты трубопроводами систем горячего водоснабжения, принимают по табл. 1;
ρw – плотность воды, кг/л, ρw = 1 кг/л;
cw – удельная теплоемкость воды, Дж/ (кг • °C); cw = 4,2 Дж/ (кг • °C).

Оптимизация режимов работы систем горячего водоснабжения

К.т.н. П.В. Ротов, заместитель главного инженера,
УМУП «Городской теплосервис», г. Ульяновск

Характерной особенностью отечественных систем горячего водоснабжения является сильно выраженная циркуляционная составляющая. Циркуляция воды в системах горячего водоснабжения (ГВС) предназначена для компенсации тепловых потерь при отсутствии водоразбора [1]. Однако данные по тепловым потерям во внутридомовых системах горячего водоснабжения практически всегда отсутствуют в проектной или эксплуатационной документации теплопотребляющих систем. Без этих данных сложно производить режимно-наладочные мероприятия в системах горячего водоснабжения. Поэтому тепловые потери в трубопроводах систем горячего водоснабжения, как правило, определяют в долях от расхода воды. Согласно [2, 3] нормативные значения циркуляционного расхода предусмотрены в размере 10% от расчетного расхода воды, определенного для неотопительного периода. В [4] потери теплоты трубопроводами систем горячего водоснабжения учитываются прибавлением доли среднего за отопительный период расхода воды в системе ГВС. При этом коэффициент, учитывающий потери трубопроводами, зависит от конструктивных особенностей и наличия изоляции трубопроводов, изменяется от 0,15 до 0,35. Для широко распространенных в отечественном теплоснабжении систем горячего водоснабжения с неизолированными стояками и полотенцесушителями добавочный коэффициент равен 0,35.

Читайте также:  Декоративный экран для батареи отопления как установить

В современной законодательной и нормативно-технической литературе, регламентирующей эксплуатацию систем горячего водоснабжения, существует ряд противоречий, влияющих на экономичность работы систем горячего водоснабжения. Так, согласно требованиям [1, 5] в системах ГВС температура воды может изменяться в значительных пределах: 50-75 О С в закрытых системах, 60-75 О С в открытых системах. Нормативный документ [6] предписывает выдерживать температуру горячей воды в системах горячего водоснабжения дошкольных организаций не ниже 65 О С. Согласно требованиям [7, 8] температура горячей воды должна выдерживаться в пределах 60-75 О С независимо от применяемой системы горячего водоснабжения. Согласно [8] допускается отклонение температуры воды в точке водоразбора в ночное время (с 23:00 до 06:00) не более чем на 5 О С; в дневное время (с 06:00 до 23:00) не более чем на 3 О С.

Противоречия в законодательной и нормативной литературе [5, 6, 7, 8] заключаются в том, что в зданиях, подключенных к одной централизованной системе теплоснабжения, должны поддерживаться различные температуры в системе ГВС. Кроме того, в расчетах тарифа на горячую воду, как правило, применяют значения температур, соответствующие нижнему нормативному уровню, т.е. потребители не оплачивают избыточную тепловую энергию, которая поступает в систему ГВС при повышенной температуре воды. Особенно остро эта проблема стоит в системах, не оборудованных приборами коммерческого учета 9.

Сотрудниками научно-исследовательской лаборатории «Теплоэнергетические системы и установки» УлГТУ совместно со специалистами коммунальных предприятий проведено обследование систем горячего водоснабжения жилых домов г. Ульяновска в отопительном сезоне 2011-2012 гг. В результате обследования установлено, что реальное значение циркуляционного расхода существенно превышает расчетные значения. В табл. 1 приведены средние за отопительный период расходы в системах горячего водоснабжения ряда жилых домов.

Расход воды в циркуляционных трубопроводах систем горячего водоснабжения жилых домов G4 составляет 40-90% от расхода в подающем трубопроводе G3 и 70-500% от расхода воды на горячее водоснабжение Gf.

В табл. 2 приведены среднечасовые температуры воды и расходы тепловой энергии в системах горячего водоснабжения ряда жилых домов г. Ульяновска, подключенных к тепловым сетям по открытой схеме. Данные в табл. 2 усреднены за 7 месяцев отопительного сезона 2011-2012 гг.

Из табл. 2 следует, что в системах ГВС практически всех обследованных жилых домов, среднечасовая температура воды превышает нижний нормативный уровень на 2-6 О С. С учетом допускаемого отклонения 3 О С в дневное время и 5 О С в ночное [10], температура в системах ГВС превышает нормативный уровень на 5-9 О С в дневное время и на 7-11 О С — в ночное. Из табл. 2 также следует, что потери теплоты при циркуляции горячей воды составляют 40-70% от всего теплопотребления в системе горячего водоснабжения. Режим работы систем горячего водоснабжения отличается существенной часовой и суточной неравномерностью. Установка на циркуляционных трубопроводах дроссельных шайб с постоянным отверстием не позволяет в полной мере учесть изменения потребления ГВС. В результате температура воды в циркуляционных трубопроводах систем ГВС превышает температуру воды в обратных трубопроводах систем отопления, что приводит к повышению температуры воды в обратных трубопроводах тепловых сетей и, как следствие, к снижению экономической эффективности теплофикационных систем. На циркуляционных линиях систем ГВС всех домов в период проведения обследования были установлены шайбы, диаметры которых приведены в табл. 1.

На наш взгляд в системах ГВС необходимо применять технологии регулирования, позволяющие учесть неравномерность режимов их работы. Одной из таких технологий является технология поддержании температуры горячей воды вблизи нижнего предела в период минимального водоразбора, что позволяет добиться значительной экономии теплоты.

Читайте также:  Маты для теплых полов разновидность

В настоящее время существует большая номенклатура приборов, позволяющих осуществлять оптимизацию теплоснабжения в соответствии с графиками теплопотребления. Выбор типа прибора и схемы его включения должен быть обусловлен необходимостью решения различных задач при регулировании параметров теплоносителя.

С декабря 2006 г. в системе теплоснабжения г. Ульяновска применяются технологии регулирования параметров горячего водоснабжения. Регулирование осуществляется на основе программируемых контроллеров с функцией реального времени, позволяющих программировать изменение температуры воды в системе горячего водоснабжения в соответствии с фактическим водопотреблением. Первоначально регулирование применялось в закрытых системах ГВС, что обусловлено большим диапазоном нормируемой температуры ГВС.

На рис. 1 показана схема включения контроллера в структуру центрального теплового пункта (ЦТП). Импульс от датчика температуры 8 поступает в контроллер 6, где формируется управляющий сигнал для электропривода регулятора 7.

Первоначально настройка регулятора была выполнена таким образом, что с 0:00 до 19:00 температура ГВС на выходе с ЦТП поддерживалась 55 О С, а с 19:00 до 0:00 — 58 О С. Затем, при неизменной продолжительности периодов регулирования, температуры были изменены соответственно на 54 О С и 60 О С. Такая настройка объясняется необходимостью поддержания повышенной температуры ГВС в пиковый период.

Анализ работы прибора и сравнение параметров работы ЦТП за декабрь 2006 г., январь и февраль 2007 г. показали, что суммарный расход теплоносителя через ЦТП снизился на 4264,4 т (152 т в сутки) в январе и на 5847,9 (244 т в сутки) в феврале (линия 1 на рис. 2). Вследствие понижения расхода существенно уменьшилось теплопотребление ЦТП. Так, в январе теплопотребление снизилось на 85,3 Гкал (3 Гкал в сутки), что составило 2,5% от теплопотребления в декабре 2006 г. Увеличение теплопотребления в феврале обусловлено повышением температуры сетевой воды в подающей магистрали: средняя разность температур между подающим и обратным трубопроводами составила 33,1 О С. Можно с полной уверенностью утверждать, что при отсутствии регулирования на ЦТП теплопотребление в феврале существенно превысило бы фактическое. Данные сравнительного анализа приведены в табл. 3.

Таблица 3. Технико-экономические показатели работы теплового пункта.

Наименование Декабрь 2006 г. Январь 2007 г. Февраль 2007 г.
Теплопотребление, Гкал 3412,2 3326,9 4025,3
Суммарный расход теплоносителя в подающем тубопроводе, т 127352,97 123088,6 121505,1
Средняя температура в подающем трубопроводе, °С 72,01 71,82 80,9
Средняя температура в обратном трубопроводе, °С 45,22 44,79 47,8
Средняя температура наружного воздуха, °С -2,3 -2,2 -14,3

Большее снижение расхода теплоносителя в феврале обусловлено изменением режима регулирования температуры ГВС. В феврале в период минимального водоразбора температура ГВС поддерживалась на более низком уровне, чем в январе. На рис. 3 показана динамика изменения температуры воды, подаваемой на ГВС, по часам суток. На графике четко прослеживаются периоды изменения температуры в соответствии с заданной программой.

На рис. 4 и 5 приведено сравнение параметров работы ЦТП с 0:00 до 13:00 29.01.07 г. и с 0:00 до 13:00 30.01.07 г. В период с 0:00 по 13:00 29.01.07 г. температура на выходе с ЦТП поддерживалась 54 О С, в период с 0:00 до 13:00 30.01.07 г. — 60 О С. Анализ суточных параметров ЦТП за это время показал: часовой расход теплоносителя увеличился на 1-2%; часовое теплопотребление ЦТП увеличилось на 5-6%; расход теплоты с ГВС увеличился на 8-10%. Сравнение режимов работы ЦТП за 29-30.01.07 г. является дополнительным подтверждением эффективности произведенной оптимизации режима работы системы ГВС.

Равенство средних температур наружного воздуха в декабре 2006 г. и январе 2007 г. позволяет провести технико-экономическое сравнение показателей работы ЦТП в эти месяцы и сделать вывод о том, что снижение расхода теплоносителя через ЦТП в январе обусловлено только оптимизацией режима работы системы ГВС.

Читайте также:  Evoh труба для теплого пола характеристики

Технико-экономические расчеты показывают, что в январе 2007 г. за счет оптимизации режима теплопотребления было сэкономлено 43503 руб. при тарифе 510 руб./Гкал. Стоимость прибора и монтажных работ составили 15000 руб. Таким образом, затраты на покупку и монтаж контроллера окупились менее чем за месяц. Чистая экономия от установки прибора составила 28503 руб.

На примере одного ЦТП показана эффективность энергосбережения от внедрения простого, малозатратного и быстроокупаемого технического решения.

В структуру системы теплоснабжения г. Ульяновска входит более 100 центральных тепловых пунктов. По результатам этого пилотного проекта было рекомендовано в системе теплоснабжения г. Ульяновска внедрять технологии регулирования температуры ГВС с учетом часовой и суточной неравномерности потребления ГВС. В настоящее время в системе теплоснабжения г. Ульяновска такое регулирование осуществляется на 25 ЦТП с расчетной максимальной тепловой нагрузкой ГВС равной 171 Гкал/ч (расчетная среднечасовая нагрузка ГВС 85,5 Гкал/ч). Ежегодная экономия тепловой энергии на этих ЦТП за счет ночного понижения температуры ГВС составляет более 3,96 млн руб. при средневзвешенном тарифе на покупку тепловой энергии в размере 1100 руб./Гкал (с учетом НДС). Экономия определялась из условия ежедневного 6-часового понижения параметров. При этом затраты на привод регуляторов температуры, питание датчиков температуры и контроллеры составляют не более 105 кВт.ч в год, стоимостью не более 500 руб.

Реализация подобного технического решения на каждом ЦТП позволит добиться существенной экономии топливно-энергетических ресурсов, снижения себестоимости производства и транспорта теплоты и, как следствие, снижения тарифов для населения.

Выводы

1. Проведен анализ режимов работы систем горячего водоснабжения жилых домов г. Ульяновска. В результате обследования определено, что в системах горячего водоснабжения происходит существенный перерасход тепловой энергии и теплоносителя, обусловленный нерегулируемой циркуляцией теплоносителя и отсутствием регулирования температуры горячей воды в периоды минимального водоразбора.

2. С 2006 г в системе теплоснабжения г. Ульяновска реализуется автоматическое регулирование температуры горячей воды с нормативным понижением температуры в периоды минимального водоразбора. Обследование режимов работы ЦТП показало, что за счет автоматического понижения температуры ГВС в периоды минимального водоразбора теплопотребление системы горячего водоснабжения снижается более чем на 2,5 %.

3. В период с 2006 по 2012 гг. автоматическое понижение температуры ГВС в периоды минимального водоразбора реализовано на 25-ти ЦТП в системе теплоснабжения г Ульяновска. Расчетная годовая экономия тепловой энергии на этих ЦТП за счет ночного понижения температуры ГВС составляет более 3,96 млн руб. при средневзвешенном тарифе на покупку тепловой энергии в размере 1100 руб./Гкал (с учетом НДС).

Литература

1. Строительные нормы и правила. СНиП 2.04.01-85. Внутренний водопровод и канализация зданий. М.: ЦИТП Госстроя СССР, 1986.

2. Строительные нормы и правила. СНиП 2.04.07-86. Тепловые сети. М.: ЦИТП Госстроя СССР, 1988. — 50 с.

4. Свод правил по проектированию и строительству. СП 41-101-95. Проектирование тепловых пунктов / Минстрой России. — М.: Изд-во ГУП ЦПП, 2003. — 78 с.

6. Об утверждении СанПиН 2.4.1.2660-10 «Санитарно-эпидемиологические требования к устройству, содержанию и организации режима работы в дошкольных организациях». Постановление Главного государственного санитарного врача Российской Федерации от 22.07.2010 г. № 91 //Российская газета, 2010. — № 5280. — 08.09.2010.

9. Ротов П.В., Егоров В.Н., Сидорова Л.Ю. О необходимости приборного учета в системах горячего водоснабжения// Сантехника, отопление, кондиционирование.

10. Ротов П.В., Егоров В.Н. Учет воды на горячее водоснабжение — важнейший фактор энергосбережения в жилищно-коммунальном хозяйстве / П.В. Ротов, В.Н. Егоров // Материалы Пятой Российской научно-технической конференции «Энергосбережение в городском хозяйстве, энергетики и промышленности». — Ульяновск: УлГТУ, 2006. Т. 2. С. 66-70.

11. Ротов П.В., Егоров В.Н. Приборный учет в системе ЖКХ на примере г. Ульяновска. // Строительная инженерия. 2006. — № 5. С.

Оцените статью