Оборотная система водоснабжения с прудами охладителями

Оборотное водоснабжение

Благодаря уникальным свойствам и дешевизне вода широко применяется в промышленности как рабочее тело. Ее обработка после использования (очистка, охлаждение) дает возможность создать водоснабжение оборотное с многократным применением. За счет этого водопотребление значительно снижается, а также предупреждается загрязнение окружающей среды. В результате создаются комфортные условия для проживания людей.

Принцип действия

Система водоснабжения должна постоянно восполняться и периодически обновляться. Вода преимущественно используется в качестве охладителя или теплоносителя. В каждом случае ее предварительно охлаждают или подогревают. Перед повторным применением воду могут очищать, поскольку она загрязняется продуктами технологических процессов.

Доля оборотного водоснабжения возрастает во всех отраслях промышленности. Жидкость чаще всего применяют в теплообменной аппаратуре. Вода многократно подвергается нагреву и охлаждению в брызгальных бассейнах или градирнях. Ее большая часть теряется в процессе испарения.

Оборотное водоснабжение предприятии химического производства составляет уже 98 %. Там оно применяется в технологических операциях, где требуется очистка воды от промышленных отходов.

Отделение шлама от воды дает возможность его перерабатывать и извлекать ценные компоненты.

Общие сведения

Оборотное водоснабжение – это такая система обеспечения, при которой отработанная вода, пройдя очистку, снова возвращается к потребителю.

В настоящее время на предприятиях нефтеперерабатывающей отрасли порядка 95-98 % воды поступает именно этим способом. В последнее время многие другие организации используют оборотное водоснабжение. Это, например, химические, металлургические заводы. На этих предприятиях вода загрязнена разными примесями, однако после отстаивания и очистки может вновь использоваться.

Система может комбинироваться и с обычным водопроводом. В этом случае к ней подключают оборудование, в котором используется и чистая, и отработанная вода. Для загрязненных вод устанавливают накопительную емкость. В ней могут размещаться разные фильтры, в том числе, используемые для биологической очистки. Выбор будет зависеть от потребностей конкретного предприятия. Кроме этого, устанавливается насос.

Трубопроводы

Вся система разделяется на несколько секций. Они включают в себя трубопроводы для:

  • Транспортировки загрязненной воды к накопительной емкости.
  • Доставки уже очищенной воды к потребляющему ее оборудованию.
  • Сброса излишков воды.
  • Сток, через который сливается использованная вода в канализацию. Она, в свою очередь, соединена с системой фильтрации воды и повторной ее подачи.

Следует понимать, что любая система, обеспечивающая оборотное водоснабжение, — это весьма габаритная конструкция. В ней присутствуют трубопроводы разного типа, насосы, фильтры, блоки управления, прочее оборудование, необходимое для работы.

Сфера применения

Где целесообразно устанавливать оборудование для оборотного водоснабжения? Очистные сооружения в настоящее время используются на предприятиях:

  • Металлургической отрасли. На этих предприятиях устанавливаются самые современные системы фильтрации. Они позволяют очистить воду до такой степени, что в ней вполне можно разводить рыбу. Соответственно, целесообразно использовать ее повторно для экономии водных ресурсов.
  • Энергетической отрасли. В частности, речь о тепловых и атомных станциях. Охлажденную воду, поступающую в виде пара от турбинных конденсаторов, используют для охлаждения подшипников во вспомогательных механизмах, понижения температуры самих турбин, а также генераторов. Определенный объем технической воды также позволяет восполнить потери в основном рабочем цикле оборудования.
  • Машиностроительной отрасли. Очищенную и охлажденную воду повторно используют для промывки деталей и при изготовлении электролитных растворов.
  • Целлюлозно-бумажной, нефтехимической, горнодобывающей отраслей.
  • Пищевой промышленности. На этих предприятиях отработанная и очищенная вода используется для промывки полуфабрикатов, организации систем охлаждения в холодильных агрегатах, а также в производстве напитков, молочной продукции.

Создание системы оборотного водоснабжения на промышленном предприятии позволяет существенно сократить расход водных ресурсов, минимизировать вред окружающей среде.

В последнее время все чаще системы используются на автомойках. При этом они оборудуются комплексом фильтрационных установок, в числе которых уловители нефтепродуктов, фильтры доочистки, отстойники, биокоагуляторы. В системах используются мощные турбофильтры. Они позволяют отсеять крупный мусор. За счет вращения водяного потока ускоряется процесс осаждения песка и прочих крупных частиц.

Как внедрить систему?

Перед непосредственным созданием системы водоснабжения необходимо изучить технологию производства,провести технологический аудит. Эти мероприятия позволят выявить вероятные источники загрязнения природы, минимизировать объем потребления водных ресурсов.

Результаты проведенных исследований используются при разработке проекта системы. При этом в нем предусматривается не только установка оборудования, но организация безотходного или малоотходного производственного процесса.

При внедрении системы необходимо использовать комплексный подход. Для процессов, связанных с высоким расходом водных ресурсов, должны устанавливаться обоснованная норма потребления и требования к качеству воды.

Сточные воды должны быть разделены в зависимости от типа загрязняющих веществ. К каждому потоку целесообразно подобрать соответствующую фильтрационную систему.

Преимущества системы оборотного водоснабжения

Применение системы оборотного водоснабжения предприятия имеет целый ряд преимуществ:

  • резкое снижение вредных выбросов – сточные воды являются одной из основных причин ухудшения экологической обстановки. Система оборотного водоснабжения позволяет резко сократить объемы выброса загрязненной воды в окружающую среду, что позволит избежать выплат штрафных санкций за нарушение норм действующего экологического законодательства;
  • снижение фактического водопотребления – повторное многоразовое употребление воды позволяет сократить ее количественное использование в десятки раз. Это как никогда актуально для предприятий, которые располагаются в маловодных регионах (для Украины – это лесостепные и степные районы). Экономический эффект особенно показателен в тех случаях, когда промышленное предприятие находится на большом расстоянии от водоема (источника водоснабжения). В этом случае приходится создавать целую систему насосных станций, чтобы обеспечить подачу воды, что влечет значительные затраты на оплату используемой электроэнергии;
  • продление срока эксплуатации оборудования – вода, которая циркулирует в станции оборотного водоснабжения, проходит максимальную очистку от механических и химических примесей. Использование заборной воды требует её специальной предварительной подготовки, ведь в противном случае внутри на стенках теплообменников и трубопроводов может начаться образование кальцинированных наростов (отложений), что в дальнейшем может привести не только к снижению производительности оборудования, но и стать причиной его поломки. Непрерывная водоподготовка заборной воды ведет к увеличению расходов, а отказ от неё – к расходу на техническое обслуживание и ремонт оборудования. Именно поэтому оборотное водоснабжение это способ обеспечить оптимальные условия для функционирования промышленного оборудования;
  • сокращение потерь ценных компонентов, которые попадают в воду во время производственного процесса. Оборотное водоснабжение дает возможность извлечь их и употребить повторно в целях производства.
Читайте также:  Чем можно обшить трубы отопления

Установка системы оборотного водоснабжения

Установка системы оборотного водоснабжения предприятий – достаточно сложный для реализации в технологическом плане процесс, ведь практически для каждого производства приходится подбирать и проектировать системы для очищения и обеззараживания сточных (отработанных) вод.

Необходимо учитывать множество факторов: требуемая производительность системы (какие объемы жидкости придется перерабатывать), степень загрязненности сточных вод, необходимость извлечения ценных (полезных) компонентов для их использования повторно в производстве и т.д. Именно поэтому очень часто применяется двухступенчатая схема очистки воды для оборотного водоснабжения, при которой отдельные участки и цеха, имеющие приблизительно стабильные по составу сточные воды, получают собственные локальные водоочистные сооружения и системы.

После предварительной очистки, удаляющей специфические (характерные именно для этого участка производства или цеха) примеси, сточные воды направляются в общую систему доочистки. Такая схема, несмотря на усложнение процесса, позволяет добиться лучших показателей очистки воды.

Сферы использования систем оборотного водоснабжения

Многие современные производственные процессы требуют использования значительных объемов воды, поэтому оборотное водоснабжение предприятий получает все большее распространение. Такие системы водоснабжения особенно актуальны в следующих отраслях:

  • предприятия металлургической отрасли – система оборотного водоснабжения активно используется в процессах газоочистки. Вода после использования значительно нагревается и содержит множество инородных включений. Обычно в такой системе используют три степени очистки – охлаждение, отстаивание и фильтрация. После этого вода пригодна для использования повторно в системах газоочистки;
  • предприятия в области машиностроения – в данной отрасли система оборотного водоснабжения дает возможность довести экономию потребления чистой (заборной) воды до 90%, особенно в процессах гальванизации металлов. При этом вода используется повторно как для приготовления электролитных растворов, так и для промывки деталей;
  • заводы, задействованные в переработке нефти. Здесь современные технологии позволяют повторно использовать до 98% воды, задействованной в технологических процессах;
  • пищевая промышленность – очищенную воду можно задействовать для промывания полуфабрикатов, а также в системах охлаждения как теплоноситель;
  • энергетическая отрасль – прежде всего электростанции, как тепловые, так и АЭС. Вода, которая образовалась как результат охлаждения и конденсации пара, может использоваться для восполнения недостачи для основного рабочего процесса, а также для отвода тепла от подшипников, масла турбин, генераторов и т.д.;
  • автомобильные мойки – сегодня их функционирование невозможно без установки целого комплекса водоочистных сооружений, состав которых включает отстойники, уловители нефтепродуктов, фильтры доочистки, биокаогуляторы и турбофильтры (вращение водяного потока позволяет отсеять крупные частицы земли, а также выполнить осаждение песка). Оборотное водоснабжение автомойки позволяет в разы сократить количество использованной заборной воды.

Очистка оборотной воды

Очистка механическим способом предназначена для удаления из использованной жидкости твердых минеральных и органических осадков. Механическая очистка основывается на подготовительном этапе промышленных стоков при надобности к биологическому и химическому способу более глубокой очистки.

Механическая очистка включает в себя процеживание жидкости через решетку, пескоулавливател и и систему отстаивания. Модели и диаметр этих оборудований зависят от составляющих деталей, характеристик и производственног о расхода стоков, а также способов химической и биологической обработки.

Установка обратного осмоса

Монтаж обратного осмоса позволит очистить воду в комплексном действии с удалением из нее катионов и анионов, а также других алкалоидных веществ.

Установка обратного осмоса совершает необходимый процесс, который состоит из:

Снижения объема на 75%, содержащих соль источников, подающихся на выпарное оборудование.

Снижает до минимальной степени финансовую затрату на покупку выпарного устройства.

Процесс выпаривания состоит из концентрации обратной жидкости с постепенным удалением частиц железа и кальция. Для полного избавления от канцерогенных взвесей применяют способ выпаривания, доводя процесс до кипения. Вся работа оборудования происходит за счет автоматического блока управления и составляет 24 часа в сутки.

«ИНТЕХ» — инжиниринговая компания. На нашем ресурсе air-ventilation.ru Вы можете узнать необходимую информацию и получить коммерческое предложение.

Отзывы о компании ООО «ИНТЕХ»:

Информация, размещенная на сайте, носит ознакомительный характер и ни при каких условиях не является публичной офертой.

© 2003-2021 ИНТЕХ — Вентиляция и кондиционирование. Контакты

2. Защита гидросферы от загрязнений

В.Ф. Панин
Теоретические основы защиты окружающей среды
Конспект лекций по учебной дисциплине. Томск: ТПУ, 2009. – 115с.

2. Защита гидросферы от загрязнений

2.7. Очистка сточных вод

2.7.8. Оборотные системы водоснабжения промышленных предприятий

Большинство промышленных предприятий являются крупными потребителями воды, что обусловлено универсальностью её свойств и распространённостью на Земле.

Так, в энергетической отрасли, на тепловых и атомных электростанциях (ТЭС и АЭС) рабочим телом являются вода и водяной пар. В зависимости от того, для каких целей используется вода на электростанции, к качеству воды предъявляются различные требования. На ТЭС и АЭС различают: воду и пар, используемые как рабочее тело (пар, кондесат, питательная вода); добавочную воду (для восполнения потерь рабочего тела в цикле электростанции); сетевую и подпиточную воду теплосетей и техническую воду. Последняя используется для отвода теплоты от отработавшего пара в конденсаторах турбин, в системе гидрозолошлакоудаления, для охлаждения масла и газа турбин и электрогенераторов, охлаждения подшипников вспомогательных механизмов, для отвода тепла из бассейнов выдержки тепловыделяющих элементов АЭС и для ряда других целей. Незначительная часть технической воды, поступающей на электростанцию, является исходной для подготовки добавочной воды основного цикла и подпиточной воды.

Читайте также:  Как промывать систему отопления с котлом

Значит, в процессах использования технической (природной) воды на электростанции образуются: золошлаковая пульпа (для ТЭС на твёрдом топливе), замасленные и замазученные воды (для ТЭС на мазуте), стоки химцехов, в которых подготавливается вода для использования в цикле в качестве рабочего тела (засоленные воды), стоки химических промывок и консервации оборудования, обмывок поверхностей нагрева котлов и воздухоподогревателей и подогретая (в сравнении с источником) сбросная вода конденсаторов турбин (тепловое загрязнение).

Как и для других промышленных предприятий, для ТЭС и АЭС принципиально возможны два варианта водопользования. По первому техническая вода забирается из природного источника (река, озеро) и после использования на электрической станции и соответствующей очистки сбрасывается в тот же источник. Эта система технического водоснабжения – прямоточная.

По второму варианту на электростанции применяется замкнутое водопользование, а из природных источников техническая вода на ТЭС и АЭС подаётся лишь в количествах, необходимых для восполнения естественных её потерь на электростанции. Этому варианту соответствуют оборотные системы технического водоснабжения. Они снабжены прудами – охладителями или градирнями.

По варианту прямоточной системы водоснабжения электростанция должна располагаться вблизи крупного природного водного источника, во втором варианте это требование необязательно.

“Санитарные правила и нормы охраны поверхностных вод от загрязнения” регламентируют преимущественное использование оборотных систем водоснабжения, в которых сточные воды после очистки вновь используют в технологических процессах.

Анализ изложенного в настоящей главе позволяет сделать вывод: уже в обозримом будущем общество должно прийти к такому режиму водопользования, когда сброс вод, использованных на промышленных предприятиях, будет исключён: технологической схемой предприятия будет предусмотрено многократное использование некоторого количества воды в тех или иных технологических процессах. То есть повсеместно утвердится высокоэффективное оборотное водоснабжение.

В ряде технологий (фрагментов технологий) это имеет место уже сегодня или планируется на недалёкое будущее. Так, в энергетике реально стоит вопрос о создании бессточных систем ВПУ (водоподготовительных установок, обессоливающих природную воду для пароводяного цикла), об отказе от систем гидрозолошлакоудаления на ТЭС, работающих на твёрдом топливе, и переходе к “сухому”, бессточному удалению золы и шлака и т.п. [14]. Очень перспективной и, повидимому, ещё до конца не оценённой сегодня является разработка оборотной системы водоснабжения ТЭС с воздушно-конденсационной установкой Геллера (рисунок 2.9). [10]. Такая установка включает в себя конденсатор смешивающего типа, циркуляционный насос и радиаторно-охладительную башню (РОБ). Последняя состоит из корпуса, подобного корпусу градирни, в нижней части которого установлены алюминиевые радиаторы.

Вода (конденсат турбины) циркуляционными насосами прокачивается через радиаторы, в которых она охлаждается потоками воздуха, поступающими в вытяжную башню через боковые окна, имеющиеся в её нижней части. Охлаждённая вода после РОБ используется в конденсаторе смешивающего типа для конденсации отработавшего в турбине пара. Небольшая часть конденсата, в количестве, равном расходу пара, поступающего в конденсатор, после циркуляционных насосов отводится к конденсатному насосу и далее к паровому котлу. Основной поток вновь поступает в РОБ. Воздух через РОБ движется под воздействием естественной тяги. Для увеличения теплообмена радиаторы выполняют оребрёнными. Интенсивность теплообмена сильно зависит от высоты башни. Поэтому высота РОБ для мощных установок достигает 150 м.

Установка Геллера замечательна тем, что исключает испарение или капельный унос воды из конденсатора в процессе её охлаждения, как это имеет место в прудах – охладителях или в градирне. Это значительно уменьшает [14] безвозвратные потери воды по сравнению с прямоточной и, особенно, оборотной (с прудами – охладителями или градирнями) системами водоснабжения – до 1 % и 2 % от валового водопотребления соответственно. Валовое потребление – сумма расходов (м 3 /с) воды, находящейся в обороте и поступающей на станцию свежей воды. Например, по [10] для ТЭС мощностью 5 млн. кВт при прямоточной системе водоснабжения для целей конденсации пара в конденсаторе необходим постоянный забор свежей воды

140 м 3 /с. Это – валовое потребление, в котором есть только поступление свежей воды и нет оборотной воды. Безвозвратные потери воды при этом составляют 1 % или 1,4 м 3 /с. При оборотной системе, например, с градирнями, для конденсации пара в конденсаторе необходимо примерно такое же количество воды (140 м 3 /с), но здесь свежая вода составляет

5 % от валового водопотребления, то есть

7 м 3 /с, оборотная – 95 % или 2,8 м 3 /с.

Рисунок 2.9 – Схема оборотного водоснабжения с воздушноконденсационной установкой Геллера

1 – смешивающий конденсатор; 2 – форсунки конденсатора; 3 – паровая турбина;

4 – генератор; 5 – вытяжная башня; 6 – охлаждающие колонны; 7 – трубопровод нагретой воды; 8 – трубопровод охлажденной воды; 9 – гидротурбина; 10 – циркуляционный насос; 11 – конденсатный насос

Внедрение установок Геллера может снизить норму забора свежей воды на электростанциях в 17(!) раз, а норму безвозвратных потерь – в 4 раза.

Конечно, в бессточных технологических процессах в разных отраслях индустрии есть и будут расходы воды на собственно производство продукции и безвозвратные потери, которые будут компенсироваться в соответствии с уравнением:

При этом тарифная политика в области водопотребления в соответствии с концепцией устойчивого развития (постоянное ужесточение тарифов) с неизбежностью будет вести к уменьшению как Qпотребл, так и Qпотерь, поскольку потребитель воды должен будет оплачивать и то, и другое. И если сегодня существует известная сдержанность в части внедрения воздушно-конденсационной системы Геллера (из-за необходимости больших расходов на это) [14], то в рамках осуществления концепции устойчивого развития владельцы электростанций будут вынуждены пойти на большие расходы по внедрению установок Геллера, и этим будет внесён вклад в защиту гидросферы.

В том, что техносфера придёт к бессточным технологиям, сомневаться не приходится: ещё 40…50 лет назад господствовали прямоточные системы водоснабжения предприятий; сегодня в большинстве стран прямоточное водоснабжение просто немыслимо. Если, положим, всё та же ТЭС 5 млн. кВт стоит на берегу реки с дебитом 140 м 3 /с (это средняя река; напомним, что дебит реки Урал составляет 360 м 3 /с, Днестра – 340 м 3 /с, Эльбы (Лабы) – 690 м 3 /с), то при прямоточной системе водоснабжения ТЭС водозабор составляет 140 м 3 /с, и вся вода реки должна прокачиваться через теплообменники ТЭС. То есть весь водоток реки превратится в стоки, а русло между водозабором и водосбросом будет осушено. В то же время при утвердившейся сегодня оборотной системе водоснабжения для целей конденсации пара в конденсаторе должен производиться забор свежей воды

Читайте также:  Демонтаж отопления без отключения

7 м 3 /с, а сброс сточной воды составит 4,2 м 3 /с – с учётом безвозвратных потерь в 2% от валового водопотребления – 2,8 м 3 /с. То есть прогресс в уменьшении доли стоков в валовом водопотреблении большой энергетики очевиден. Следующий шаг в направлении уменьшения стоков в энергетике – использование воздушно-конденсационных установок Геллера.

Что касается замасленных и замазученных вод и вод обмывок поверхностей нагрева, то здесь формируются высокоэффективные локальные замкнутые системы, в которых очищенные и охлаждённые до приемлемого уровня сточные воды будут снова направляться на охлаждение масла и газа, подшипников, на обмывку поверхностей нагрева и др.

В части уменьшения стоков химпромывок и консервации оборудования стратегическим для энергетики остаётся вопрос разработки материалов для внутренних поверхностей элементов пароводяного цикла, способных противостоять коррозии и связанному с ней образованию отложений. Решение этого вопроса приведёт к исключению данных стоков вообще. Это – вопрос совершенствования технологии энергетического производства, направленного на исключение самих причин возникновения стоков химических промывок и консервации оборудования пароводяного цикла, являющийся одной из компонент общей проблематики создания малоотходных и безотходных технологий (см. п. 2.7.5).

Такие же тенденции – развитие оборотного водоснабжения и уменьшение объёма сточных вод – наблюдаются в других отраслях индустрии. Так, в машиностроении в большом числе случаев используют оборотные системы водоснабжения отдельных цехов и участков, стоки которых стабильны по составу. Используются также двухступенчатые схемы очистки, при которых в локальных очистных сооружениях сточные воды предварительно очищаются от специфических (для данных цехов, участков) примесей, а доочистка от других примесей осуществляется на общезаводских очистных сооружениях. Выбор схем очистки стоков и, соответственно, схем оборотного водоснабжения определяется типом и мощностью предприятия, степенью “безотходности” используемых технологий, характеристиками источников водоснабжения [12].

На рисунке 2.10 представлена схема типичной оборотной системы водоснабжения крупного машиностроительного предприятия [12].

Рисунок 2.10 Схема оборотного водоснабжения машиностроительного предприятия [12]

В основные и вспомогательные цехи поступает питьевая 2, техническая 3, техническая деминерализованная 4 вода и сточные воды 1 и 17. Состав сточных вод: маслосодержащие 5 – 60,6 %; с преобладающим содержанием твёрдых примесей 9 – 23,7 %; концентрированные маслосодержащие сточные воды, в том числе: отработанные моющие и обезжиривающие растворы 8 и отработанные смазочно-охлаждающие жидкости 6 – 1,6 %; стоки окрасочных камер 7 – 1,2 %; стоки с преобладающим содержанием растворимых примесей, в том числе: цианосодержащие 10, кислотно-щелочные 11, никельсодержащие 12 и хромосодержащие 13 – 12,8 %. Маслосодержащие стоки очищают в очистных сооружениях 23 и очищенные воды 1 возвращают в технологический процесс; отделённые маслопродукты идут в сборник 22, откуда часть поступает на установку 20 регенерации масел, остальные – на термическую утилизацию 21. На очистные сооружения одновременно поступают и предварительно очищенные в установке 24 отработанные смазочно-охлаждающие жидкости 6. В очистных сооружениях 25-27 производится очистка соответственно стоков окрасочных камер 7, отработанных моющих и обезжиривающих растворов 8 и стоков с преобладанием твёрдых частиц 9, которые после очистки вновь используются в технологическом процессе, а выделенные масла и твёрдые частицы направляют в сборник маслопродуктов 22 и шламосборник 19. Цианосодержащие 10, кислотно-щелочные 11 и никельсодержащие 12 сточные воды после нейтрализации в нейтрализаторе 15 направляют в очистные сооружения 16, из которых очищенную сточную воду вновь подают в технологический процесс или сбрасывают в водоём по трубопроводу 18. Хромосодержащие сточные воды 13 после выделения из них хрома в очистных сооружениях 14 направляют через трубопровод 28 для дальнейшей очистки на городскую станцию очистки стоков.

Как следует из рисунка 2.10, данная схема оборотного водоснабжения одноступенчатая, кроме той её части, которая относится к очистке хромосодержащих стоков: последняя имеет две ступени, правда, вторая ступень – не общезаводские (их нет), но коммунальные очистные сооружения. И ешё: рассматриваемая система водоснабжения, можно сказать, малосточная, так как за пределы предприятия передаются только сточные воды 13, очищенные от хрома. Думается, что по мере ужесточения тарифов на водопотребление предприятие найдёт возможным доочистить эти стоки собственными силами и направить очищенную воду повторно в технологический процесс. В последующем предприятие, скорее всего, будет воздерживаться и от сброса в водоём очищенных вод после очистных сооружений 16. Этот сброс и, соответственно, забор свежей воды могут стать гораздо дороже доочистки (если доочистка требуется) и повторного использования данных сточных вод. Если это осуществится (прекращение сбросов 18 и 28), то рассмотренная оборотная система водоснабжения станет фактически идеальной, бессточной. Тогда на повестку дня встанет другой вопрос: как сократить потери воды в технологическом процессе и тем самым минимизировать забор всё более дорожающей свежей воды.

На рисунке 2.11 приведена также схема локального оборотного и бессточного водоснабжения окрасочных камер (поз. 25 на рисунке 2.10) [12]. Сточные воды из окрасочных ванн 1 поступают в ёмкость 9 и насосом 2 подаются в электрокоагулятор 3 с растворяемыми алюминиевыми электродами, питающимися от выпрямителя 4. В электрокоагуляторе образующиеся хлопья гидроксида алюминия поглощают частицы краски и твёрдые частицы, в отстойнике 5 указанные хлопьеобразные образования оседают и подаются в шламонакопитель 8. Очищенная сточная вода насосом 2 подаётся в электрокоагулятор 6 с нерастворимыми алюминиевыми электродами, в котором при протекании тока вода обеззараживается и направляется в накопитель 7, а затем – в окрасочные ванны для повторного использования.

Рисунок 2.11 – Схема локального оборотного и бессточного водоснабжения окрасочных камер [12]

Оцените статью