Оборудование для наладки системы отопления

О наладке и режимах систем отопления

И.М. Сапрыкин, ООО ПНТК «Энергетические технологии», г. Нижний Новгород

В статье предлагается метод определения расхода теплоносителя через отопительные приборы по результатам измерения трех температур: теплоносителя на входе и выходе; температуры воздуха в помещении. Метод может быть полезен при проектировании и наладке систем отопления зданий и является более точным по сравнению с существующим методом для практических расчетов в нерасчетных режимах, особенно при малых температурных напорах и малых расходах теплоносителя.

Качество теплоснабжения (отопления) предполагает обеспечение расчетной температуры внутреннего воздуха в отапливаемом помещении независимо от колебаний температур наружного воздуха. Для этого разработаны специальные температурные графики центрального или местного регулирования.

Любая вновь смонтированная или подвергнутая реконструкции система теплоснабжения требует тепловой и гидравлической наладки.

Одной из главных задач наладки систем теплоснабжения является распределение теплоносителя по потребителям пропорционально их тепловым нагрузкам.

О методе контроля качества наладочных мероприятий в системах теплоснабжения

Ранее в [1] был предложен метод контроля качества наладочных мероприятий в системах теплоснабжения, включающих источник тепловой энергии, тепловые сети и внутренние системы отопления.

Метод содержит безразмерные показатели, позволяющие осуществлять контроль за обеспечением тепловых нагрузок и расходов теплоносителя, которые можно получить по результатам измерения двух температур теплоносителя до и после системы отопления.

Если для отдельного отапливаемого помещения определить qоб просто, измерив температуру внутреннего воздуха, то для здания в целом это довольно сложно.

Однако информация о qоб здания содержится в «отклике» системы — значении температуры теплоносителя τ2 в обратном трубопроводе на выходе из системы отопления. Эта температура зависит от ряда постоянных и переменных параметров, главными из которых являются температура наружного воздуха tнр, температура теплоносителя на входе в систему τλ, суммарная поверхность нагрева отопительных приборов F. Так как температуры относительно легко поддаются измерению, то информацию о qоб здания можно получить, измерив фактические температуры теплоносителя и температуру наружного воздуха. Естественно, что при этом заранее должны быть известны расчетные температуры теплоносителя и расчетные температуры внутреннего и наружного воздуха.

Параметр g имеет постоянное значение во всем диапазоне температур наружного воздуха. Параметр g может быть определен не только для отдельной системы отопления, но и для системы теплоснабжения в целом.

В налаженных системах теплоснабжения (с принудительной циркуляцией теплоносителя) несоблюдение на источнике теплоты температурного режима приведет к отклонению qоб от нормы qоб1, а расход теплоносителя при этом останется в норме g=1. При изменении гидравлического режима на источнике, или при несанкционированном изменении пропускной способности сужающего устройства (например, дроссельная диафрагма) у потребителя изменятся оба параметра qоб и g. Последнее обстоятельство может быть выявлено по отклонению g от 1.

В уравнении (2) отсутствует значение температуры внутреннего воздуха, т.к. для систем теплоснабжения в целом эта температура неизвестна. Однако, усредненная в целом по системе температура внутреннего воздуха определяется через qоб: tB=tH+Δtp*qTeK*qo6·

На основании показателей qоб, g возможно определить: текущее фактическое теплопотребление отдельного здания; суммарный расход теплоносителя в системе отопления; величину коррекции сужающего устройства.

Используя уравнения (2) и (3), можно достаточно просто осуществлять наладку и контроль режимов теплоснабжения.

Данный метод начал успешно применяться с 2001 г. сначала для наладки, а затем для контроля тепловых и гидравлических режимов в системах теплоснабжения на базе 18 водогрейных котельных в г. Дзержинске Нижегородской области.

Наладка систем отопления

Одной из главных задач наладки системы отопления является распределение теплоносителя по стоякам и отопительным приборам пропорционально их тепловым нагрузкам. При расчетных тепловых потерях через наружные ограждения отапливаемого помещения через отопительные приборы с расчетными поверхностями нагрева необходимо пропускать расчетные расходы теплоносителя.

Установить расчетные расходы через отопительные приборы или стояки при наладке системы отопления не представляет трудностей в случае обеспечения на вводе системы в подающем трубопроводе расчетной температуры теплоносителя. Для этого необходимо изменением сопротивления дроссельного устройства установить температуру теплоносителя на выходе, соответствующую температурному графику.

Если же температурный график на вводе не обеспечивается, то становится неясно, какую температуру теплоносителя устанавливать на выходе из отопительного прибора или стояка.

В стационарном (неизменном во времени) состоянии системы отопления достаточно достоверными показателями потокораспределения теплоносителя по отопительным приборам и стоякам являются температуры теплоносителя на входе и выходе и температура внутреннего воздуха помещения, в котором установлен данный прибор (средневзвешенная по помещениям, в которых проходит стояк). Для отдельного отопительного прибора или стояка системы отопления влияние температуры внутреннего воздуха может быть весьма существенно.

Для определения относительного расхода теплоносителя через отдельный отопительный прибор, стояк или ветку системы отопления в зависимости от фактических температур теплоносителя и температуры внутреннего воздуха предлагается уравнение:

Из уравнения (4) следует, что расход теплоносителя в отопительном приборе (стояке) при его известных расчетных параметрах может быть определен путем измерения трех температур: теплоносителя на входе и выходе прибора и температуры внутреннего воздуха в помещении.

Знание фактического расхода теплоносителя через отопительный прибор (стояк) открывает возможность выбора или целенаправленной коррекции сужающих устройств (дроссельных диафрагм, балансировочных клапанов и т.д.).

Для практического определения фактического расхода теплоносителя удобно пользоваться заранее составленной табл. 1, рассчитанной по уравнению (4). Пример: T1=43 °C,T2=34 0 C,,tB=16 О C — относительный расход g=0,77.

В качестве следующего примера приведена реакция на изменение температурных режимов отпуска теплоты трех отопительных приборов, принадлежащих одной системе отопления. Установленные поверхности нагрева приборов равны расчетным f=1. Рассмотрены три температурных режима: нормальный (температурный график) τ1=τΓ; «недотоп» τ^ τΓ. Расчетные температуры: наружный воздух tнр=-30 ОC; теплоноситель в подающем трубопроводе τ1ρ=95 ОC; в обратном трубопроводе τ2ρ=70 ОC. Текущие температуры: наружный воздух tн=-12 ОC; теплоноситель по температурному графику в подающем трубопроводе τ1г=71,7 ОC; в обратном трубопроводе τ2г=55,7 ОC.

Читайте также:  Оказание услуг по отоплению нежилых помещений

В результате измерений температур прибора № 1 определено, что через прибор протекает расчетный расход теплоносителя д»1. В режиме «не-дотопа» при снижении температуры теплоносителя на входе до τ1=60 ОC температура воздуха в помещении снизится до tв=15,2 ОC, температура теплоносителя на выходе снизится до τ2=47 ОC, при этом «недотоп» составит 15% (qоб=0,85). В режиме «перетопа» при повышении температуры теплоносителя на входе до τ^δΟ ОC температура воздуха в помещении повысится до tв=23,5 ОC, температура теплоносителя на выходе повысится до τ2=62 ОC, при этом «перетоп» составит 11% (qоб=1,11).

В результате измерений температур приборов № 2, 3 определено, что: через прибор № 2 протекает заниженный расход д»0,7; через прибор № 3 протекает завышенный расход g≈1,42.

Результаты расчета сведены в табл. 2.

Уравнение (4) получено следующим образом.

В основу расчета температурных графиков регулирования тепловых нагрузок систем отопления положена эмпирическая зависимость коэффициента теплопередачи отопительного прибора kср от среднего по площади прибора температурного напора: kcp=a-(tcp-tB)n, где a — постоянная, зависящая от конструкции отопительного прибора и способа подачи теплоносителя.

Методика, базирующаяся на применении тср, показывает достаточную точность для практических расчетов в тех случаях, когда температуры теплоносителя существенно больше температуры внутреннего воздуха в помещении. В нерасчетных режимах, особенно при малых температурных напорах и малых расходах теплоносителя, вычисления по этой методике дают завышенные результаты. Предлагаемая ниже методика в этих диапазонах режимов дает более точные результаты, что существенно при наладке.

Граничные условия интегрирования уравнения (6): по поверхности от 0 до R по температурам от хл до τ2.

В результате интегрирования получится уравнение, описывающее зависимость расхода теплоносителя от площади поверхности теплообмена и 3-х температур: теплоносителя на входе и выходе прибора и температуры внутреннего воздуха в помещении:

Расход теплоносителя относительно своего расчетного значения — см. уравнение (4).

Средний интегральный температурный напор:

Из последнего выражения (8) видно, что температурный напор не зависит от закона изменения коэффициента теплопередачи вдоль поверхности прибора, а зависит только от конечных температур.

Сравнение методов с различными законами формирования коэффициентов теплопередачи, постоянным k=const и переменным k=var вдоль отопительного прибора, приведено в табл. 3. По форме табл. 3 аналогична табл. 2, только в ячейках дано отношение расходов gk=const/gk=var.

Из табл. 3 следует, что при расходах существенно меньших расчетных значений g

Перечень необходимого оборудования для систем отопления. Балансировка отопительной системы

Систему отопления невозможно назвать инженерной коммуникацией, которая проста в устройстве и балансировке. Каждый ее узел выполняет определенную функцию, при этом отсутствие какого-либо элемента может привести к перебоям в работе отопительного оборудования, а также к значительному снижению его энергоэффективности. В нашем проекте «ДОМ ЗА ГОД» можно увидеть, как мы делали систему отопления. В этой статье, в том числе, мы будем разбираться с основными принципами балансировки отопительной системы при помощи специалистов компании ГРУНДФОС.

Что касается балансировки: она обеспечивает стабильную работу системы и гарантирует соблюдение заданного температурного режима во всех отапливаемых помещениях.

Наличие профессионального проекта на отопительную систему является залогом ее эффективного функционирования. Тем же, кто не собирается тратить время и деньги на проектирование отопления, мы дадим несколько рекомендаций по ее созданию и правильной настройке.

В статье рассмотрим следующие вопросы:

  • Какие элементы должны входить в обвязку простых и многоконтурных систем отопления.
  • Правила установки и последовательность расположения основных элементов обвязки.
  • Какими функциями должен обладать современный циркуляционный насос.
  • Как можно произвести балансировку домашней системы отопления.

Перечисленные темы будут рассмотрены на примере закрытых систем отопления. Ведь именно они обладают сложной обвязкой и большим количеством элементов, которые позволяют обеспечивать устойчивый тепловой режим в помещении.

Обвязка простых систем отопления

Систему отопления можно назвать простой, если она содержит один прямой контур. Под прямым контуром подразумевается магистраль, в которую теплоноситель подается из котла без изменения начальной температуры. Простыми являются некоторые системы радиаторного отопления. Они могут быть однотрубными, двухтрубными и смешанными. Наиболее практичной разновидностью простого радиаторного отопления является двухтрубная система, базирующаяся на подающей и обратной магистрали.

И если её балансировка выполнена правильно, такая система обеспечит равномерный прогрев радиаторов по всему периметру отопления.

Несбалансированная система отопления почти сразу даст о себе знать. Трубы будут шуметь из-за неоптимальной скорости потока, в помещениях будет либо слишком жарко, либо слишком холодно, а счета за отопление будут каждый раз завышены на 20%.

Рассмотрим основные элементы системы и их функции.

Расширительный бак

Расширительный бак закрытого типа – резервуар, оснащенный резиновой мембраной, которая разделяет устройство на две части (в нижней половине находится теплоноситель, а в верхней – инертный газ). При повышении температуры в системе отопления в него поступает часть теплоносителя, тем самым, сглаживая разницу давлений в подающей и обратной магистрали.

Бак можно устанавливать в непосредственной близости от отопительного котла. Дополнительная запорная арматура (шаровый кран), установленная перед входом в бак, позволит легко отсоединить резервуар от системы, если возникнет необходимость в его ремонте или замене.

Группа безопасности

Группа безопасности состоит из трех элементов, подключенных последовательно, либо к одному корпусу:

  1. Аварийный предохранительный клапан, позволяющий сбрасывать излишки теплоносителя при повышении давления в системе. Сброс можно вывести в прозрачную емкость (например, в пластиковую бутылку). Это сделает работу устройства более безопасной и уведомит о том, что имела место аварийная ситуация (даже если дома никого не было).
  2. Автоматический воздухоотводчик – избавляет теплоноситель от воздуха, который при наличии в системе отопления может привести ее в нерабочее состояние.
  3. Манометр – позволяет осуществлять визуальный контроль над давлением теплоносителя в подающей магистрали.
Читайте также:  Конвектор отопления стальной напольный

Группа безопасности врезается в подающую магистраль сразу на выходе из котла отопления. Делается это для того, чтобы в первую очередь защитить котел, который обладает самой высокой температурой.

Группа безопасности устанавливается строго вертикально, при этом она должна находиться выше уровня отопительного котла.

Незнание, невнимательность, спешка, усталость и другие человеческие факторы могут привести к аварийным ситуациям. Например, поменял манометр, а кран повернуть забыл и т. п.

В самой высокой точке системы следует установить дополнительный клапан автоматического сброса воздуха. Воздух обязательно будет попадать в систему во время ее заправки (дозаправки), а это устройство поможет стабилизировать работу системы, избежать застоя теплоносителя по причине скопления воздуха и продлит срок эксплуатации циркуляционного насоса.

Воздухоотводчик ставим в верхнюю точку системы. Он необязательно должен быть на группе безопасности.

Насос

Циркуляционный насос – устройство, обеспечивающее принудительную циркуляцию теплоносителя по системе отопления. В простых одноконтурных системах насос, как правило, врезается в обратную магистраль и устанавливается перед котлом отопления.

На входе в насос, а также на выходе из него ставятся шаровые краны. Благодаря кранам устройство можно снять, не сливая теплоноситель из системы.

Подпитка системы

Системы отопления закрытого типа оснащаются отводами для подпитки контура теплоносителем. Если в качестве теплоносителя используется вода, то обратный контур отопления можно подключить непосредственно к водопроводу. Подпитка будет производиться через запорную арматуру и фильтр-грязевик (также не лишним здесь будет фильтр-умягчитель).

Манометр поможет отследить перепад давления в прямой и обратной магистрали.

Если в качестве теплоносителя используется антифриз, то в контуре делается специальное ответвление для закачки антифриза. Также не следует забывать о кранах для слива теплоносителя, которые врезаются в нижнюю точку системы.

Регулировочная и запорная арматура радиаторов

Отопительные радиаторы оснащаются полуоборотными шаровыми кранами, позволяющими полностью перекрыть или, наоборот, открыть подачу теплоносителя в радиатор. Краны ставятся на входе в устройство. Иногда вместо них используются термостатические радиаторные клапаны (без преднастройки), автоматически перекрывающие подачу теплоносителя, когда температура в помещении превышает заданные значения.

Фильтры

Фильтры-грязевики – обязательные элементы современных систем отопления. Выполняя монтаж фильтров-грязевиков, важно учитывать правила их установки, поскольку именно при монтаже очень часто допускаются ошибки. Важно также время от времени не забывать их чистить. В замкнутую систему отопления иногда бывает достаточно вмонтировать один грязевой фильтр. Устанавливается он на участке магистрали, через который проходит весь теплоноситель. Таким местом может быть, например, участок перед главным циркуляционным насосом.

Основные правила установки фильтров-грязевиков:

  1. Фильтр предпочтительнее всего устанавливать на горизонтальных участках трубопровода.
  2. Устанавливая фильтр, важно обратить внимание на то, чтобы направление движения теплоносителя совпало с метками, нанесенными на корпус устройства.
  3. Ответвление крана, оснащенное сеткой, гайкой (или сливным краном), должно располагаться внизу.
  4. Фильтр-грязевик должен быть установлен в легко доступном для обслуживания месте.
  5. На входе в фильтр, а также на выходе из него следует установить запорную арматуру (полуоборотные краны).

Обвязка многоконтурной системы отопления

Если отопительная система имеет два и более контура (речь идет о системах с теплыми полами, с бойлером косвенного нагрева и т. д.), в дополнение к основному насосу каждый контур оснащается отдельным циркуляционным насосом и дополнительной запорной арматурой.

Отопительные контуры, которые нуждаются в регулировке температурного режима, оснащаются устройствами, представленными ниже.

Автоматические смесители

Трехходовые смесительные клапаны – устройства, позволяющие автоматически снижать/регулировать температуру в подающей магистрали, подмешивая в нее остывший теплоноситель из обратки. Дело в том, что котел посылает на все контуры отопления теплоноситель с одинаковой температурой. Теплые полы при этом имеют строгие требования к соблюдению температурного режима, а температура в контуре отопительных радиаторов, как правило, выше, чем в контуре теплых полов. Смесительные клапаны позволяют во всех контурах системы достичь заданной температуры.

Коллекторы

Коллекторные группы разделяют между собой основные контуры отопления, а также отдельные контуры системы теплых полов.

Так выглядит коллекторный узел теплого пола с трехходовым смесительным клапаном.

Помимо перечисленных случаев коллекторные узлы используются в системах отопления лучевого типа.

Много споров возникает по поводу того, куда ставить циркуляционные насосы в коллекторных, впрочем, как и в простых системах отопления – на подачу или на обратку? Вот что по этому поводу говорят специалисты.

По большому счету, нет разницы, куда встраивать циркуляционный насос – в подачу или в обратку. Важно, чтобы насос было удобно обслуживать – это, пожалуй, основной критерий выбора места установки. Исключением является случай, когда температура теплоносителя в системе отопления может превысить максимальную температуру, на которую рассчитан циркуляционный насос. В этом случае насос рекомендуется устанавливать на обратку, где температура теплоносителя ниже.

Многоконтурное отопление – это громоздкая инженерная коммуникация с множеством элементов, которые необходимо правильно рассчитать, установить и объединить в единую систему.

Для того чтобы сделать схему обвязки более простой, надежной и эстетичной, специалисты рекомендуют использовать насосные группы (группы быстрого монтажа), которые полностью готовы к установке и продаются уже в собранном виде. В их состав входят циркуляционные насосы и элементы обвязки, которые могут понадобиться в том или ином случае.

Насосные группы можно использовать в составе простых и сложных систем отопления.

Читайте также:  Как настроить терморегулятор теплого пола е51 716

Насосные группы просты в установке и эксплуатации. Все элементы обвязки, входящие в группу быстрого монтажа, уже подобраны по характеристикам и собраны в единую конструкцию. Более того, каждая выпущенная насосная группа обязательно проходит проверку опрессовкой на заводе, что делает её гораздо более надёжным решением, чем обвязка насоса, собранная «из россыпи» с рынка. Это существенно упрощает жизнь и монтажникам, и жильцам. Вдобавок компактные насосные группы, имея эстетичный внешний вид, идеально вписываются в интерьер современной котельной.

Балансировка системы отопления

Важный шаг на пути к эффективной балансировке – это правильный выбор циркуляционного насоса. Например, циркуляционные насосы, обладающие функцией автоматической регулировки напора и расхода, в постоянном режиме будут регулировать перепад давления между подающей магистралью и обраткой. Благодаря этому в систему не потребуется встраивать дополнительные элементы обвязки (перепускные клапаны-регуляторы перепада давления, байпасы, соединяющие подачу с обраткой и т. д.).

Чаще всего балансировка отопительных систем осуществляется тремя способами:

  1. Расчетный – учитывает проектный расход теплоносителя на каждом участке системы.
  2. Балансировка по реальной температуре отопительных приборов (радиаторов, контуров теплых полов и т. д.).
  3. Электронная балансировка – наиболее точный способ, позволяющий с первого раза правильно настроить систему. Производится с помощью специального мобильного приложения, запорной арматуры и функций регулировки, встроенных в циркуляционный насос.

Балансировка по проектировочным расчетам

Проще всего произвести балансировку системы, используя данные, указанные в проекте отопления. Суть балансировки, независимо от выбранного способа, сводится к установке требуемого расхода теплоносителя на различных участках системы. Расход регулируется с помощью балансировочных клапанов, либо термостатических клапанов с преднастройкой.

Балансировочный клапан имеет собственную градацию. При этом различные положения регулировочного вентиля соответствуют определенному объему теплоносителя, который способен пройти через устройство в единицу времени при заданном напоре.

Если у вас имеется проект на систему отопления, произвести ее правильную балансировку можно довольно просто: выставив расход теплоносителя в соответствии с имеющимися расчетами.

Но важно учитывать тот факт, что зачастую проектные расчеты отличаются от реальных параметров системы отопления. Например, гидравлическое сопротивление отопительного контура может быть легко изменено добавлением в систему или удалением из нее какого-либо элемента. А, в целом, хороший и правильный проект – большая редкость для частных домов.

Следовательно, даже при наличии проекта представленные ниже способы балансировки не теряют своей актуальности.

Балансировка по температуре

Для балансировки системы по температуре понадобятся уже знакомые нам балансировочные клапаны (или термоголовки с преднастройкой) и электронный термометр для бесконтактного измерения температуры поверхностей.

Балансировка начинается с того, что на последнем и предпоследнем радиаторе полностью открываются балансировочные клапаны. Расход теплоносителя на первом, а также на последующих от котла радиаторах устанавливается на минимальных значениях (с повышением расхода по мере удаления радиаторов от котла).

Например, если в системе установлено 8 радиаторов, а винт балансировочного клапана имеет регулировку в пределах 4,5 оборотов, то первый от котла радиатор вначале полностью перекрывается, затем его балансировочный клапан отвинчивается на 1,5 оборота. Регулятор второго радиатора отвинчивается на 2 оборота, третьего – на 2,5 и так далее. Расход теплоносителя на последнем и предпоследнем радиаторе в большинстве случаев остается максимальным. Регулировку по возможности производят только на тех радиаторах, которые ближе всего расположены к котлу (расстояние измеряется от начала подающей магистрали).

Более тонкая регулировка производится по показаниям термометра. Основная цель балансировки в данном случае состоит в том, чтобы добиться примерно одинаковой разницы температур на входе и на выходе каждого радиатора.

И еще: шум в радиаторе во время работы отопительной системы говорит о том, что расход теплоносителя следует уменьшить.

Электронная балансировка системы

Балансировка по температуре – процесс долгий и кропотливый. Осуществлять точную регулировку сложных систем отопления таким способом весьма затруднительно. Гораздо проще использовать смартфон со специальным мобильным приложением, дополнительную электронику и циркуляционный насос с функцией балансировки.

Стандартная балансировка с помощью тепловизоров, термометров и балансировочных клапанов отнимает очень много времени и сил. Кроме того, для правильного выполнения этой процедуры потребуются специальные навыки. При этом очень важно правильно выполнить балансировку с первого раза. Циркуляционный насос с функцией точной электронной балансировки автоматизирует и тем самым существенно упрощает процесс настройки системы. Такой способ даёт возможность откалибровать систему отопления в доме площадью до 200 м² примерно за один час. Более того, если обычные методы настройки предполагают использование громоздкого и дорогостоящего оборудования, то для балансировки с помощью специального насоса достаточно иметь легко помещающийся в кармане модуль связи и смартфон. Кстати, правильно выполнить электронную балансировку сможет даже тот человек, который ни разу до этого не проводил подобных процедур.

Устройства, которые понадобятся для электронной калибровки системы:

  • циркуляционный насос с соответствующей функцией (в некоторых случаях на имеющийся насос устанавливается съемная голова насоса, предназначенного для балансировки системы);
  • смартфон и специальное программное обеспечение;
  • модуль беспроводной связи, устанавливаемый на голову насоса.

Электронная балансировка системы производится в четыре этапа:

  1. Подготовительный – установка специального приложения на мобильное устройство и подключение модуля связи к насосу.
  2. Ввод данных о системе (площадь отапливаемых помещений, количество отопительных устройств, температура теплоносителя и т. д.), измерение напора и расхода в каждом радиаторе или контуре теплого пола (выполняется с помощью мобильного приложения).
  3. Балансировка системы по данным мобильного приложения – производится с помощью балансировочных вентилей (клапанов).
  4. Демонтаж модуля связи и сохранение отчета по балансировке, сформированного мобильным приложением.

Вместо заключения: правильная балансировка позволяет точно настроить рабочие параметры отопления.

Это заметно снижает затраты на эксплуатацию системы и обеспечивает максимально комфортную температуру во всех помещениях.

Оцените статью