- Microsoft предлагает обогревать дома серверами
- Учет в тепловом балансе теплопоступлений от офисного оборудования
- Паспортные данные и результаты измерений
- Результаты исследования различных типов оборудования
- Компьютеры
- Мониторы
- Лазерные принтеры
- Копировальные аппараты
- Прочее оборудование
- Коэффициент неравномерности
- Удельная тепловая нагрузка помещения
- Соотношение лучистых и конвективных тепловыделений
- Перспективы
- Выводы
- Литература
Microsoft предлагает обогревать дома серверами
Microsoft совместно с Виргинским университетом опубликовала доклад, в котором в жилых домах вместо традиционных печей предлагается использовать серверы. выделяемого тепла при работе которых достаточно для того, чтобы обогревать помещение зимой, сообщает PhysOrg.
По словам авторов доклада, один небольшой ЦОД (центр обработки данных) с числом процессоров от 40 до 400 штук, интегрированный в систему отопления, способен играть роль основного источника тепла для обогрева одного жилого дома.
Ученые предлагают размещать так называемые «дата-печи» (Data Furnaces) в подвалах, а в качестве канала передачи данных использовать существующие широкополосные соединения. Таким образом, никакого дополнительного оборудования устанавливать не придется. Обслуживать системы можно будет удаленно, поэтому они будут полностью автономнными.
Предполагается, что наибольшее число таких домов будет сконцентрировано по окраинам крупных мегаполисов, в которых потребность в облачных ресурсах растет наиболее быстрыми темпами.
Также предлагается использовать серверы для обогрева офисных помещений — они более просторны, и число вычислительных машин может быть больше, а соответственно и выделяемый ими объем тепла. Летом, когда помещения обогревать не нужно, излишнее тепло предлагается выводить на улицу с помощью вентиляции или использовать для нагрева холодной воды.
Серверы можно рассредоточить по жилым домам и использовать как печи
Основные цели проекта: сократить выбросы парниковых газов и стоимость расходов на содержание серверов, а также расходы потребителей на отопление и горячую воду. По данным Microsoft, в настоящее время ЦОДы потребляют около 3% вырабатываемой всеми электростанциями в США электроэнергии, а на отопление всех американских домов приходится 6% от этого объема. Таким образом, если сократить потребление энергии на отопление в 2 раза, это позволило бы удвоить мощность доступных вычислительных ресурсов, рассуждают ученые.
Добавим, что идея отапливать здания с помощью серверов не нова. В мае 2010 г. суперкомпьютер IBM, интегрированный в систему отопления Швейцарского технологического института, заработал в Цюрихе. В октябре аналогичную платформу представили российские разработчики. Для того чтобы направить тепло от серверов в систему отопления используется простейший принцип теплообмена. Особенность проекта Microsoft в том, чтобы интегрировать технологию в бытовые коммуникации.
Учет в тепловом балансе теплопоступлений от офисного оборудования
C. Wilkins, M. Hosni, члены Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE)
Технический комитет ASHRAE 4.1. «Методы расчета нагрузок» завершил два исследовательских проекта, результаты которых могут представить интерес для инженеров, выполняющих расчеты холодильных нагрузок. Задачей исследовательского проекта была разработка методики измерения реальных теплопоступлений от оборудования зданий и их лучистой и конвективной составляющих [Hosni и др., 1996]. Эта методика в дальнейшем была использована в другом исследовательском проекте, где рассматривался более широкий состав оборудования [Hosni и др., 1999]. Группа исследователей в Канзасском университете под руководством M. Hosni выполнила оба проекта. Это явилось развитием и завершением независимого исследования, проведенного Wilkins и McGaffin в 1994 году.
В независимом исследовании Wilkins и McGaffin были получены важные данные по тепловым нагрузкам здания путем измерений энергопотребления на электрощитах, обслуживающих определенные зоны зданий. Данные этих измерений сопоставлялись с замерами мощности, потребляемой каждой из установок офисного оборудования в данной зоне. Исследования, выполненные группой Hosni, базировались на тех же методах, но с более точными измерениями и обработкой результатов.
Работа группы Hosni включала также измерение лучистой и конвективной составляющих в тепловыделениях оборудования. Отдельные данные по конвективным и лучистым тепловыделениям существенны для современных методов расчета тепловых нагрузок.
В исследовательском проекте проводились измерения по тепловыделениям оборудования офисов, лабораторий и больниц. Заключительным результатом этого исследования было обобщение данных с целью более широкого их применения. Было установлено, что данные по офисному оборудованию могут быть обобщены, в то время как результаты, касающиеся лабораторного и больничного оборудования, носят более частный характер.
Мы представляем здесь обобщенную методологию, разработанную на основе результатов всех вышеупомянутых исследований для офисного оборудования.
Таблица 1 Расчетные теплопоступления от компьютеров | ||||||||||||||
|
Тепловыделения компьютеров во время простоя оказались ненамного меньше, чем во время работы. Исключением явились компьютеры с энергосберегающим режимом. Этот режим переводит компьютер в «спящее» состояние, если он не используется в течение определенного, заданного периода времени. Группа Hosni определила, что типичная величина тепловыделений компьютера в «спящем» режиме составляет 18 Вт. Разумеется, «спящий» режим одного компьютера не повлияет на величину пиковой нагрузки, но он может оказать влияние на коэффициент неравномерности и на величину максимальной тепловой нагрузки для больших зон внутри здания.
Из этих данных можно сделать два вывода. Первый – в расчете нагрузки не следует ориентироваться на паспортную мощность компьютеров. Второй вывод – имеется возможность установить расчетную величину тепловыделений от компьютеров, которой можно руководствоваться в практических расчетах. Инженеры обычно стремятся рассчитывать нагрузку с резервом. Данные, приведенные в табл. 1, позволяют инженерам выбирать расчетную величину тепловыделений компьютеров с различным коэффициентом запаса.
Мониторы
Величина паспортной мощности мониторов, протестированных группой Hosni, находилась в диапазоне 168–565 Вт. Максимальная величина тепловыделений составляла 53–86 Вт соответственно. Размеры экрана исследованных мониторов – от 14 до 20 дюймов (36–51 см). Группа Hosni обнаружила прямую зависимость между тепловыделениями и размером экрана. Они вывели следующую зависимость для оценки тепловыделений монитора в зависимости от размера экрана:
Тепловыделения = 5 х S – 20,
где S – размер экрана в дюймах, а теплопоступления определяются в Вт. Например, для 15-дюймового монитора тепловыделения составляют 55 Вт.
Wilkins и McGaffin не группировали полученные данные по размеру монитора. Они представили данные на 10 мониторов от 13 до 19 дюймов и определили среднюю величину тепловыделений – 60 Вт. Их исследования выполнялись в 1992 году, когда еще применялась ОС DOS, а ОС Windows только входила в обращение. Они установили, что мониторы, отображающие Windows, потребляют больше энергии, чем при отображении DOS. В табл. 2, составленной по результатам исследований группы Hosni и Wilkins, представлена краткая справка для инженеров, которые предпочитают табличные данные уравнениям. Энергосберегающий режим мониторов снижает потребление энергии и, соответственно, тепловыделения до нуля.
Таблица 2 Расчетные теплопоступления от мониторов | ||||||||||||
|
Лазерные принтеры
Группа Hosni в 1999 году определила, что потребляемая мощность и тепловыделения лазерных принтеров в значительной мере зависят от их расчетной производительности. В табл. 3 приведены данные для четырех основных категорий лазерных принтеров. Группа Hosni в работе 1999 года установила, что небольшие принтеры чаще работают в прерывистом режиме, а большие могут работать непрерывно в течение продолжительного времени.
Эти данные могут быть использованы двумя способами. Наиболее очевидный способ состоит в том, что принимается величина для непрерывной работы, а затем вводится поправочный коэффициент на неравномерность загрузки. Поправочные коэффициенты будут рассмотрены ниже. Этот способ кажется наиболее подходящим для офисов с большими открытыми зонами. Другой подход заключается в том, чтобы использовать величины, соответствующие предполагаемому режиму работы принтеров, без поправочных коэффициентов. Этот вариант подходит для небольших зон или отдельных помещений.
Таблица 3 Расчетные теплопоступления от лазерных принтеров | |||||||||||||||||||||||
|
Копировальные аппараты
Группа Hosni в 1999 году представила данные по пяти копировальным аппаратам. Копировальные аппараты были разделены на две группы: настольные и офисные. В табл. 4 представлена сводка результатов. По наблюдениям группы Hosni, настольные копировальные аппараты обычно не работают непрерывно, а офисные установки часто работают непрерывно в течение часа и более.
Отдельно стоящие копировальные аппараты часто размещаются в помещениях вне основной рабочей зоны офиса. В таких копировальных помещениях обычно допускается временное повышение температуры в период непрерывной работы копировального аппарата. Инженеры должны принимать во внимание конкретные условия и выбирать для расчета соответствующий режим.
Таблица 4 Расчетные теплопоступления от копировальных аппаратов | |||||||||||||||
|
Прочее оборудование
В табл. 5 перечислены некоторые другие типы используемого оборудования. Данные для факсов и сканеров взяты из работ Hosni (1999). Величины для матричных принтеров получены путем обработки данных Hosni (1999) и Wilkins (1994).
Таблица 5 Расчетные теплопоступления от прочего оборудования | ||||||||||||||
|
Коэффициент неравномерности
Реально пиковое значение суммарных тепловыделений по зоне меньше, чем сумма пиковых значений по каждому виду оборудования, по причине их неодновременного использования. Для корректного применения вышеприведенных данных очень важно иметь ясное представление о фактической неравномерности нагрузки оборудования. Как уже упоминалось, неравномерность загрузки в данном случае не имеет отношения к различиям между паспортной мощностью и измеренными тепловыделениями. Коэффициент неравномерности вводится в уравнение, если часть оборудования простаивает или отключается; соответствующая доля теплопоступлений не вносится в расчет общей холодильной нагрузки данного помещения или системы.
Wilkins и McGaffin смогли определить неравномерность загрузки путем сопоставления измерений потребляемой мощности на электрощите и подробной регистрации работы оборудования, подключенного к данному щиту. Их работа проводилась в 23 помещениях пяти различных зданий общей площадью 25 500 м 2 . На первом этапе выполнялось обследование всего оборудования в помещении и измерялось его энергопотребление. Пиковое потребление энергии (предполагалось равным максимальным тепловыделениям) суммировалось по всему оборудованию, чтобы определить величину максимально возможных тепловыделений оборудования в данном помещении.
В течение рабочей недели проводились длительные измерения энергопотребления на электрощите, обслуживающем данное помещение. При этом тщательно контролировалось подключение к данному щиту именно исследуемого оборудования. Зарегистрированный максимум расхода энергии на щите соответствовал фактическому максимуму тепловыделений от оборудования в помещении. Отношение максимального расхода энергии на щите к сумме максимума мощности всех единиц оборудования представляет собой коэффициент неравномерности загрузки оборудования.
Было установлено, что коэффициент неравномерности находится в пределах 37–78 %. Средняя неравномерность (средневзвешенная по площади помещения) составляет 46 %. Рис. 1 иллюстрирует соотношение между паспортной мощностью, суммой максимальной мощности и фактическим максимумом с учетом коэффициента неравномерности. Указанный график заимствован из работы Wilkins и McGaffin; он основан на данных, усредненных по всем исследованным помещениям. Данные по коэффициентам неравномерности могут быть использованы для общего руководства, но в реальности эти коэффициенты сильно различаются. Например, коэффициент неравномерности загрузки оборудования для помещения операторов, принимающих заказы по телефону, будет отличаться от соответствующего коэффициента для офиса разъездных торговых агентов.
Таблица 6 Расчетные коэффициенты нагрузки помещений | |||||||||||||||
|
Удельная тепловая нагрузка помещения
Wilkins и McGaffin определили для исследованных помещений удельную тепловую нагрузку от 4,74 до
11,30 Вт/м 2 , при этом средневзвешенная по площади величина составляла 8,72 Вт/м 2 . Эти данные были получены путем обработки результатов измерений офисов общей площадью 25 500 м 2 в пяти различных зданиях. Все помещения были полностью заняты персоналом и автоматизированы – компьютер с монитором на каждом рабочем месте. В табл. 6 приведены коэффициенты загрузки помещений с описанием типов рабочих мест.
Wilkins и McGaffin обследовали 25 500 м 2 офисной площади с высокой степенью автоматизации, включающей 21 помещение различного типа в пяти различных зданиях. Максимальное значение удельной тепловой нагрузки составляло 11,63 Вт/м 2 . Эта величина соответствовала среднему уровню загрузки помещения по субъективной классификации (табл. 6). Можно предположить, что средний уровень загрузки помещения является характерным для большинства стандартных офисов. Помещения с повышенной или высокой нагрузкой также встречаются, но для таких помещений, даже при очень высокой плотности размещения персонала и оборудования, расчеты надо проводить осмотрительно. Изложенное подтверждается результатами других исследований, в том числе работами Komor 1997 года. Komor обобщил данные, полученные в различных помещениях, и во всех случаях его выводы не противоречили данным, приведенным в табл. 6.
Таблица 7 Лучистая и конвективная составляющие тепловыделений | ||||||||||||||||||||||||||||
|
Соотношение лучистых и конвективных тепловыделений
Офисное оборудование выделяет теплоту лучистым и конвективным путем. Конвективные тепловыделения представляют собой прямую нагрузку на холодильное оборудование, в то время как лучистый тепловой поток вначале поглощается строительными конструкциями, а по прошествии некоторого времени тепло вновь отдается в помещение как составляющая тепловой нагрузки. Это различие может оказать влияние на время наступления пиковой нагрузки на охлаждение и на ее величину. Группа Hosni в 1998 году разработала методику измерения лучистых тепловыделений оборудования с использованием радиометра, укрепленного на рычаге с шарниром.
Группа Hosni в 1999 году обнаружила, что соотношение лучистой и конвективной составляющих тепловыделений практически одинаково для всех видов оборудования. Наиболее существенные различия определяются тем, использовался ли охлаждающий вентилятор. В табл. 7 представлены итоговые результаты исследований группы Hosni 1999 года.
Перспективы
Приведенные данные основаны на исследовании современного оборудования. Возникает законный вопрос о возможности их применения в будущем. Национальной лабораторией Беркли было проведено исследование перспектив энергопотребления оборудованием и был сделан вывод, что интенсивность энергопотребления будет снижаться до 2002 года, а затем медленно возрастать до 2010 года. В настоящее время видно, что этот прогноз подтвердился. Таким образом, представленные здесь данные, по-видимому, останутся актуальными еще в течение нескольких лет.
Выводы
Тепловыделения от оборудования вносят существенный вклад в тепловую нагрузку помещения. Информация, приведенная в данной статье, может стать полезным инструментом для инженеров, выполняющих расчеты нагрузок на холодильное оборудование или анализ энергопотребления. Мы также выражаем надежду, что изготовители оборудования осознают важность величины паспортной мощности для определения тепловых нагрузок и предпримут необходимые шаги для предоставления более реалистичной информации о потребляемой мощности.
Литература
1. Hosni M. H., Jones B. W., Sipes J. M., Xu Y. Test method for measuring the heat gain and radiant/convective split from equipment in buildings // Final Report for ASHRAE Research Project 822-RP. Institute for Environmental Research. Kansas State University. 1996. October.
2. Hosni M. H., Jones B. W., Xu H. Measurement of heat gain and radiant/convective split from equipment in buildings // Final Report for ASHRAE Research Project 1055-RP. Institute for Environmental Research. Kansas State University. 1999. March.
3. Wilkins C. K., McGaffin N. Measuring computer equipment loads in office buildings // ASHRAE Journal. 1994. № 36 (8). P. 21–24.
4. Komor P. Space cooling demands from
office plug loads // ASHRAE Journal. № 39 (12). 1997. P. 41–44.
5. Koomey J., Cramer M., Piette M., Eto J. Efficiency improvements in U.S. office equipment: expected policy impacts and uncertainties. LBNL. Berkeley, Calif. 1995. December.
Перепечатано с сокращениями из журнала ASHRAE.