Основы теплотехники для отопления

Основы теплотехники для отопления

«Гидравлика и теплотехника» — лучший справочник по гидравлическим и теплотехническим расчетам касающихся систем водоснабжения и отопления! В этом разделе разработаны алгоритмы гидравлических расчетов. После того как Вы начнете что-то рассчитывать по специальным формулам, Вы сможете смело сказать себе:

«Я произвожу Гидравлический расчет. « И это правда.

Этот раздел посвящаю тем, кто хочет освоить курсы по гидравлике и теплотехники простым языком. Данный раздел я сам начал изучать с 9 января 2012 года. Изучая постепенно данный раздел, буду его поправлять и описывать свое личное понимание и как использовать данную тему на практике. Обязательно будут задачи и их решения по гидравлике и теплотехнике.

Один из примеров гидравлического расчета на видео:

Данный раздел нужен обязательно людям изучающим мастерство по системам водоснабжения, водоотведения и отопления.

Сначала, пока я не был знаком с данным разделом в полной мере, и сформулировал требование к данному разделу, чтобы не отдалится за пределы данного курса. И в конце курса я попытаюсь удовлетворить все требования того, чему я хочу научиться:

  • Я хочу уметь рассчитывать диаметр трубы, в зависимости от расхода потребления воды. (Понял!)
  • Я хочу точно уметь рассчитывать диаметр трубы, предназначенный для того, чтобы пропустить тепло на определенное количество радиаторов и на определенное количество теплоты (Понял!).
  • Хочу сам создавать различные схемы трубопроводов для отопления, то есть знать все законы которые мне помогут рассчитывать весь комплекс сети отопления. (Понял!)
  • Как посчитать, сколько литров необходимо расширительному бачку для системы отопления. (Понял!)
  • Как подбирать циркуляционный насос в зависимости от характеристик систем отопления. (Понял!)
  • Хочу рассчитывать скорости потока воды в трубопроводах и определять эффективность прохождения тепла и полезных теплопотерь. (Понял!)
  • Не известно когда я закончу этот курс, но я намерен закончить его, так как от этого зависит моя будущая карьера инженера. Хотелось бы получать обратную связь от читателей по выложенным темам. Так как я по роду своей деятельности занимаюсь системами водоснабжения и отопления, то собираюсь во что бы, то не стало, изучить этот раздел вдоль и поперек и в силах объяснять буду различные нюансы.

    Не забывайте посещать данную страницу! Тем в голове еще предостаточно! Пополнения гарантированны!

    Приступаю к изучению теплотехники для систем отопления: 14 мая 2013 год.

    Основы теплотехники

    Основные понятия и определения теплотехники

    Теплотехника – наука, которая изучает методы получения, преобразования, передачи и использования теплоты, а также принципы действия и конструктивные особенности тепловых машин, аппаратов и устройств.

    Теплота широко используется во всех областях хозяйственной деятельности человека и его нормального жизнеобеспечения. Разработка теоретических основ теплотехники необходима для установления наиболее рациональных способов использования тепловой энергии, анализа экономичности рабочих процессов тепловых установок и создания новых, наиболее совершенных типов тепловых.

    Любому техническому специалисту — инженеру, технику, механику необходимы знания основ этой науки, поскольку в настоящее время идет процесс интенсивного и широкого внедрения сложнейших тепловых машин и установок разного назначения практически во всех сферах хозяйственной деятельности человека.
    Невозможно представить жизнь современного общества без автомобилей, самолетов, сельскохозяйственной техники, тепловых электростанций и котельных установок и т. п. Все эти сложнейшие технические устройства используют в своей работе тепловые машины различной конструкции. Можно с уверенностью сказать, что научно-технический прогресс в ближайшем будущем позволит человеку использовать тепловую энергию все более эффективно.
    Поэтому без знания теоретических основ теплотехники и термодинамики современному техническому специалисту не обойтись.

    Различают два принципиально различных направления использования теплоты – энергетическое и технологическое.
    При энергетическом использовании, теплота преобразуется в механическую работу, с помощью которой в специальных установках (генераторах) создается электрическая энергия, наиболее удобная для передачи на значительное расстояние. Теплоту при этом получают сжиганием топлива в котельных установках или непосредственно в двигателях внутреннего сгорания.
    При технологическом использовании тепловой энергии она используется для направленного изменения механических, физических или химических свойств различных тел (расплавления, затвердевания, изменения структуры и т. п.) .

    Термодинамика — наука, изучающая энергию и законы ее превращения из одного вида в другой. Изучение основ термодинамики позволяет понимать принципы работы тепловых двигателей (паровых машин, двигателей внутреннего сгорания) , тепловых насосов, холодильной техники, кондиционеров и других устройств.

    Техническая термодинамика — раздел термодинамики, в котором рассматриваются взаимопревращения тепловой и механической энергии с помощью материальных тел, называемых рабочими телами.
    Техническая термодинамика является основой теории тепловых двигателей и других промышленных установок, связанных с взаимопревращениями указанных видов энергии.

    Как отмечалось выше, преобразование теплоты в механическую работу происходит с помощью рабочего тела. Наиболее эффективным с точки зрения технической термодинамики рабочим телом является то, которое обладает выраженными упругими свойствами, позволяющими телу в значительной мере деформироваться (изменять свой объем) под влиянием механической силы (давления) , термического воздействия (теплоты) или комбинированного термомеханического воздействия.

    Наблюдая за агрегатным состоянием различных тел, можно заметить, что наиболее целесообразными рабочими телами для применения в различных тепловых устройствах являются газы или пары. Именно они наиболее полно могут быть использованы в процессах преобразования теплоты в механическую работу, так как газы и пары, с одной стороны, легко деформируемы (легко сжимаются, расширяются) под влиянием внешних сил, а с другой стороны, им свойственны значительные (по сравнению с другими агрегатными состояниями тел) коэффициенты объемного расширения. Газы упруги — сжатый, т. е. деформированный объем газа стремится восстановить и даже увеличить свой первоначальный объем при снятии внешней нагрузки.

    Одним из основных в технической термодинамике является понятие о термодинамической системе , представляющей собой совокупность тел, находящихся во взаимодействии, как между собой, так и с окружающей средой. Простым примером термодинамической системы может служить газ, расширяющийся или сжимающийся в цилиндре с движущимся поршнем.

    Материальные тела, входящие в термодинамическую систему, разделяют на источники тепла и рабочие тела , которые под воздействием источника теплоты совершают механическую работу.

    Для определения конкретных физических условий, в которых находится термодинамическая система, используют ряд показателей, называемых параметрами состояния. В число основных параметров входят: абсолютная температура Т , абсолютное давление р и удельный объем v (или величина, обратная удельному объему, — плотность ρ ) .

    Последовательность изменения состояния рабочего тела в термодинамической системе называют термодинамическим процессом . Основным признаком процесса является изменение хотя бы одного из параметров состояния.

    Рассмотрим физический смысл каждого из параметров рабочего тела с точки зрения науки теплотехники.

    Давление

    Давление (р) в термодинамике определяется как сила, действующая по нормали на единицу площади поверхности тела.
    Давление газа — результат воздействия молекул газа на стенки сосуда, в котором он заключен. Известно, что молекулы любого газа находятся в постоянном движении, перемещаясь спонтанно в произвольном направлении. В результате хаотического движения молекул газа они систематически ударяются о стенки сосуда, оказывая на них силовое воздействие. Суммарное действие всех ударяющихся молекул определяет давление газа на стенки сосуда.
    Именно это свойство газов (оказывать давление на стенки сосуда) позволяет использовать его в качестве рабочего тела в термодинамических процессах.
    Давление измеряется в Паскалях (Па) . Один Паскаль равен силе величиной 1 ньютон, действующей на площадь размером 1 квадратный метр:

    В теплотехнических установках шкалы приборов для измерения давления часто градуируют в единицах системы МКГСС, в которой за единицу давления принята техническая атмосфера, (ат или at) :

    1 ат = 1 кг/см 2 ≈ 9,814 Н/м 2 ≈ 0,0981 МПа .

    При этом не следует путать единицы измерения техническая атмосфера (ат) с единицей измерения физическая атмосфера (атм или atm) , характеризующей нормальное (физическое) атмосферное давление p0 , которое принято выражать, также, в миллиметрах ртутного столба:

    p0 = 760 мм рт. ст. ≈ 101325 Па ≈ 0,101325 МПа .

    В соответствии с определением между этими единицами существует зависимость:

    1 атм ≈ 101 325 Па ≈ 1,033233 ат .

    В настоящее время международными и российскими органами стандартизации и метрологии приняты меры по исключению этих единиц измерения давления из применения.

    В технической термодинамике различают абсолютное и избыточное давление .
    Под абсолютным понимают действительное давление рабочего тела внутри сосуда.
    Под избыточным давлением понимают разность между абсолютным давлением в сосуде и давлением окружающей (внешней) среды.
    Приборы, служащие для замера разности между абсолютным и избыточным давлением, называют манометрами .
    Из приведенных выше определений следует, что для случая, когда давление в сосуде превышает давление окружающей среды,

    где:
    рабс — абсолютное давление в сосуде;
    ризб — манометрическое или избыточное давление (измеренное прибором) ;
    рб — давление окружающей среды (атмосферное или барометрическое давление) .

    Если абсолютное давление меньше давления окружающей среды, то разность между ними называется разряжением, или вакуумом .
    Для измерения разрежений служит вакуумметр — прибор, показывающий разность давления окружающей среды и абсолютного давления в сосуде.
    В этом случае:

    где: ризб – показание величины разрежения на шкале вакуумметра.

    Под удельным объемом рабочего тела понимают объем, занимаемый массой в 1 кг этого тела.
    Удельный объем обозначается буквой v и измеряется в кубических метрах на килограмм (м 3 /кг) .

    Под плотностью рабочего тела понимают величину, обратную удельному объему, т.е. массу вещества, заключенную в объеме 1 м 3 . Плотность обозначается буквой ρ и измеряют в килограммах на кубический метр (кг/м 3 ) . Из приведенных определений следует:

    поэтому произведение удельного объема на плотность будет равно единице:

    здесь: V – объем рабочего тела, м 3 ; m – масса рабочего тела, кг.

    Температура

    Абсолютная температура – это один из основных параметров, характеризующих тепловое состояние тела, мера степени нагретости тела. Величина этого параметра определяется средней кинетической энергией движения молекул газа.
    Знак разности температур двух неодинаково нагретых тел определяет направлении передачи тепла.

    Температуру измеряют либо по абсолютной (термодинамической) шкале в градусах Кельвина (К) и обозначают буквой Т , либо по Международной практической шкале в градусах Цельсия (˚С) и обозначают буквой t .

    За ноль абсолютной температуры абсолютной по шкале Кельвина принята температура вещества, когда полностью отсутствует тепловое движение его молекул и атомов. По этой шкале температура может быть только положительной (либо равной нулю, хотя, доказано, что абсолютный ноль — температура недостижимая, также, как и скорость света) .

    Ноль температуры в международной практической шкале соответствует температуре плавления льда при нормальном давлении (760 мм рт. ст.) . Эту температуру называют, также, тройной точкой воды , поскольку все три фазы воды (твердая, жидкая и газообразная) при такой температуре находятся в состоянии равновесия. Сотому делению этой шкалы соответствует температура кипения воды (100˚С) при нормальном давлении.

    Цена деления шкалы Кельвина одинакова с ценой деления шкалы Цельсия, т. е. равна 1 градусу, а соотношение между абсолютной температурой Т и практической температурой t определяется формулой:

    В США, Канаде и некоторых других странах для измерения температуры применяется шкала Фаренгейта , в которой за ноль принята температура смеси равных частей льда и нашатыря. В этой шкале температура таяния льда равна 32˚ F, а температура кипения химически чистой воды равна 212˚ F.
    Соотношение между значениями температуры, измеренной по шкалам Цельсия и Фаренгейта:

    Считается, что рабочее тело находится при нормальных физических условиях, если давление его равно
    р0 = 760 мм рт. ст. ≈ 101325 Па ≈ 0,101325 МПа, а температура t0 = 0˚ C.

    Киломоль

    В технической термодинамике часто используют понятие киломоль (кмоль) , который характеризует количество вещества в килограммах, численно равное его молекулярной массе μ . Например, киломоль кислорода О2, имеющего молекулярную массу μ = 32, равен 32 кг, киломоль углерода C (молекулярная масса μ = 12) равен 12 кг, киломоль углекислого газа СО2 (молекулярная масса μ = 44) равен 44 кг и т. д.
    Единицей измерения киломоля является килограмм деленный на киломоль: кг/кмоль.

    Скачать теоретические вопросы к экзаменационным билетам
    по учебной дисциплине «Основы гидравлики и теплотехники»
    (в формате Word, размер файла 68 кБ)

    Скачать рабочую программу
    по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

    Скачать календарно-тематический план
    по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

    Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему

    Проектирование и тепловой расчет системы отопления – обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий – определение оптимальных параметров котла и системы радиаторов.

    Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.

    В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.

    Тепловой расчёт отопления: общий порядок

    Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

    Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

    Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

    Основные задачи расчёта и проектирования системы отопления:

    • наиболее достоверно определить тепловые потери;
    • определить количество и условия использования теплоносителя;
    • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

    При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.

    На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

    Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.

    В результате теплового расчёта в наличии будет следующая информация:

    • число тепловых потерь, мощность котла;
    • количество и тип тепловых радиаторов для каждой комнаты отдельно;
    • гидравлические характеристики трубопровода;
    • объём, скорость теплоносителя, мощность теплового насоса.

    Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

    Нормы температурных режимов помещений

    Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.

    Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

    Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

    Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.

    А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

    В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

    Для нежилых помещений офисного типа площадью до 100 м 2 :

    • 22-24°С – оптимальная температура воздуха;
    • 1°С – допустимое колебание.

    Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

    Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

    И всё же для конкретных помещений квартиры и дома имеем:

    • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
    • 19-21°С – кухня, туалет, допуск ±2°С;
    • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
    • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

    Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

    Расчёт теплопотерь в доме

    Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

    Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

    Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так “заметен” в сравнении с частным домом, поскольку квартира находиться внутри здания и “соседствует” с другими квартирами.

    В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени “уходит” тепло.

    Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

    Итак, объём утечек тепла от здания вычисляется по следующей формуле:

    Qi – объём теплопотерь от однородного вида оболочки здания.

    Каждая составляющая формулы рассчитывается по формуле:

    Q=S*∆T/R, где

    • Q – тепловые утечки, В;
    • S – площадь конкретного типа конструкции, кв. м;
    • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
    • R – тепловое сопротивление определённого типа конструкции, м 2 *°C/Вт.

    Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

    Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

    R=d/k, где

    • R – тепловое сопротивление, (м 2 *К)/Вт;
    • k – коэффициент теплопроводности материала, Вт/(м 2 *К);
    • d – толщина этого материала, м.

    В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.

    В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

    Определение мощности котла

    Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

    Базисом системы отопления выступают разные виды котлов: жидко- или твердотопливные, электрические или газовые.

    Котел – это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

    Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.

    Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

    • Sпомещения– общая площадь отапливаемого помещения;
    • Руделльная– удельная мощность относительно климатических условий.

    Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.

    Существует иное соотношение, которое учитывает этот параметр:

    Ркотла=(Qпотерь*S)/100, где

    • Ркотла– мощность котла;
    • Qпотерь– потери тепла;
    • S – отапливаемая площадь.

    Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.

    Дабы предусмотреть запас мощности котла в последнюю формулу надо добавить коэффициент запаса К:

    Ркотла=(Qпотерь*S*К)/100, где

    К – будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%.

    Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

    Особенности подбора радиаторов

    Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы “тёплый” пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

    Тепловой радиатор – это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через “лепестки”.

    Существует несколько методик расчёта радиаторов отопления в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.

    1. По площади. N=(S*100)/C, где N – количество секций, S – площадь помещения (м 2 ), C – теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт – количество теплового потока, которое необходимо для нагрева 1 м 2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
    2. По объёму. N=(S*H*41)/C, где N, S, C – аналогично. Н – высота помещения, 41 Вт – количество теплового потока, которое необходимо для нагрева 1 м 3 (эмпирическая величина).
    3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 – аналогично. к1 – учёт количества камер в стеклопакете окна комнаты, к2 – теплоизоляция стен, к3 – соотношение площади окон к площади помещения, к4 – средняя минусовая температура в наиболее холодную неделю зимы, к5 – количество наружных стен комнаты (которые “выходят” на улицу), к6 – тип помещения сверху, к7 – высота потолка.

    Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

    Гидравлический расчёт водоснабжения

    Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

    Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

    Объём горячей воды в отопительной системе рассчитывается по формуле:

    W=k*P, где

    • W – объём носителя тепла;
    • P – мощность котла отопления;
    • k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).

    В итоге конечная формула выглядит так:

    W = 13.5*P

    Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

    Эта величина помогает оценить тип и диаметр трубопровода:

    V=(0.86*P*μ)/∆T, где

    • P – мощность котла;
    • μ – КПД котла;
    • ∆T – разница температур между подаваемой водой и водой обратном контуре.

    Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.

    Пример теплового расчёта

    В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, “зимний сад” и подсобные помещения.

    Обозначим исходные параметры дома, необходимые для проведения расчетов.

    • высота этажа – 3 м;
    • малое окно фасадной и тыльной части здания 1470*1420 мм;
    • большое окно фасада 2080*1420 мм;
    • входные двери 2000*900 мм;
    • двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

    Общая ширина постройки 9.5 м 2 , длинна 16 м 2 . Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

    Начинаем с расчёта площадей однородных материалов:

    • площадь пола – 152 м 2 ;
    • площадь крыши – 180 м 2 , учитывая высоту чердака 1.3 м и ширину прогона – 4 м;
    • площадь окон – 3*1.47*1.42+2.08*1.42=9.22 м 2 ;
    • площадь дверей – 2*0.9+2*2*1.4=7.4 м 2 .

    Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м 2 .

    Переходим к расчёту теплопотерь на каждом материале:

    А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.

    В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.

    Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

    Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

    Переходим к расчёту количества теплоносителя в системе – W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.

    В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

    Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

    Выводы и полезное видео по теме

    Простой расчёт отопительной системы для частного дома представлен в следующем обзоре:

    Все тонкости и общепринятые методики просчёта теплопотерь здания показаны ниже:

    Ещё один вариант расчёта утечек тепла в типичном частном доме:

    В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

    Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

    Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

    Читайте также:  Сколько сейчас платить за отопление
    Оцените статью