Отопление что такое экм

Отопление что такое экм

Сколько выделяется тепла трубами? Расчет теплоизоляции труб. Расчет регистров отопления.

У многих сантехников рано или поздно возникает один интересный вопрос:

На такой вопрос нет внятного ответа! В интернете и в учебниках по теплотехнике тоже нет нормального объяснения!

Я решил проделать свое расследование и раскрыть тайну расчетов теплопотерь трубопровода! Также объясню, как рассчитать теплоизояцию трубопровода.

Чтобы это понять рассмотрим регистровые отопительные приборы.

Регистровый отопительный прибор

На их основе были разработаны расчеты тепловыделения (теплоотодачи). То есть когда-то давно были произведены специальные опыты для получения тепла от трубы. Данный метод расчетов был придуман для того чтобы рассчитать теплопотери трубы при естественной циркуляции. Как известно раньше система отопления с естественной циркуляцией была простой трубой проложенной по периметру наружных стен дома.

Система отопления с естественной циркуляцией

В этой статье я для Вас открою методы расчетов потерь тепла трубами, для передачи тепла. Таким методом Вы сможете рассчитать даже плинтусную систему отопления. Это когда отопительным прибором является трубопровод, расположенный вдоль стены отапливаемого помещения.

Как проводились опыты по расчету теплопотерь трубы?

Использовались гладкотрубные отопительные приборы (Одиночная и одна над другой):

Подбирался определенный диаметр трубы. Через трубу производился расход теплоносителя. Полученные данные о тепловой энергии заносились в таблицу для каждого диаметра.

Для расчетов был придуман специальный параметр: ЭКМ

ЭКМ — это эквивалентный квадратный метр.

Существует понятие — площадь поверхности отопительного прибора , которая контактирует с воздухом. Данная поверхность измеряется в квадратных метрах. Но данный параметр является не удобным для расчетов мощности отопительного прибора. Так как существует нелинейный график теплопотерь при разной температуре. И поэтому на помощь приходит другое понятие: Эквивалентный квадратный метр . Данная величина хороша тем, что она найдена опытным путем.

Расшифровка ЭКМ. Эквивалентный квадратный метр

Эквивалентный Квадратный Метр (ЭКМ) — это единица измерения предназначенная указать тепловые потери отопительного прибора относимого к площади поверхности отопительного прибора. Но площадь эта не является реальной площадью отопительного прибора. Это условная площадь поверхности отопительного прибора.

1 ЭКМ = Площадь нагревательного прибора, которая за 1 час времени отдает 435 ккалорий тепла при разности температур: Средняя температура теплоносителя — температура воздуха = 64,5 градусов Цельсия при расходе воды 17,4 кг/час. По схеме движения теплоносителя сверху вниз. Далее расход в расчеты влиять не будет!

Разность 64,5 градусов найдена таким образом: ((95 + 70)/2)-18=64,5

Откуда 95 градусов на подаче, 70 градусов на обратке. 18 градусов — температура в помещения. Средняя температура теплоносителя минус 18 градусов = 64,5

435 ккалорий = 506 Вт, 1 калория = 0,001163 Вт.

435000 калорий/час = 506 Вт/час

1 ЭКМ = 506 Вт при условии, что разность температур теплоносителя и воздуха равна 64,5 градусов Цельсия.

Нужно отопить помещение с теплопотерями 2000 Вт. Трубу использовать в один ряд горизонтально вдоль периметра помещения длиной 18 метров. Труба стальная. Температура воздуха в помещении 20 градусов. Рассчитать какой диаметр трубы применить к данному помещению?

Длина трубы = 5+4+5+4=18 м.

То есть средняя температура теплоносителя будет: 20+64,5=84,5 градусов

Подача: 89,5 градусов

Обратка: 79,5 градусов

Мы примем тот факт, что температура поверхности трубы равна температуре теплоносителя. Для практических примеров систем водяного отопления очень даже подходит. Термическое сопротивление стальной трубы очень мало и обычно может не включаться в расчет.

P.S. Мелочи будите считать, когда будите защищать докторскую диссертацию!

Находим ЭКМ для теплопотерь помещения 2000 Вт

2000 Вт делим на количество метров трубы 18 м. получается 111 Вт на метр трубы.

435 ккалорий = 506 Вт, поэтому 111Вт/м делим на 506Вт, получается 0,219 ЭКМ.

Ответ: ЭКМ = 0,219

Согласно задаче: один ряд. Сверяясь по таблице, нам подходит наружный диаметр трубы 50мм.

Если нам необходимо уменьшить температуру теплоносителя. То есть уменьшить разницу температур, то на помощь приходит такая таблица:

Зависимость теплоотдачи от температурного напора.

Давайте примем, что температура теплоносителя или поверхности трубы будет равна 60 градусов, тогда разница температур будет равна: 60-20=40 градусов.

При температурном напоре в 40 градусов, получается 270 кКалорий. ЭКМ = 0,26

Поэтому, 0,26*270=70,2 кКалорий

Ответ: Диаметр 50 не подходит для температурного напора в 40 градусов.

Чтобы найти диаметр необходимо выполнить следующее:

1. Находим кКалории при температурном напоре в 40 градусов = 270

2. 270*1,163 = 314 Вт

3. 2000 Вт делим на 18 метров = 111 Вт

4. 111 / 314 = 0,35 ЭКМ

5. Сверяемся по таблице, подходит 70мм

Ответ: Труба с диаметром 70мм.

Существует другой расчет.

Выбираем 50 трубу

Температурный напор 40 градусов умножаем на 2 кКал/градус = 80 ккалорий/час * 0,9 = 72 ккалор/час

Эквивалентная нагревательная поверхность прибора

При разработке новой конструкции отопительного прибора и при изготовлении прибора на заводе всегда проявлялось стремление, с одной стороны, всемерно повысить коэффициент теплопередачи, с другой — увеличить площадь внешней поверхности каждого элемента как измерителя, определяющего объем выпускаемой продукции (даже в ущерб величине коэффициента теплопередачи).

Читайте также:  Котлы для системы отопления теплого пола

С целью получения единого теплотехнического и производственного показателя в нашей стране в 1957 г. было введено измерение теплоотдающей поверхности всех отопительных приборов в условных единицах площади. За условную единицу площади был принят квадратный метр эквивалентной нагревательной поверхности (м 2 энп) или, короче, эквивалентный квадратный метр (экм). Такое измерение площади нагревательной поверхности стимулирует выпуск совершенных в теплотехническом отношении приборов.

Эквивалентным квадратным метром называется такая площадь теплоотдающей поверхности стандартно установленного отопительного прибора, через которую при средней температуре теплоносителя в приборе 82,5°С в воздух с температурой 18°С передается тепловой поток, равный 506 Вт (435 ккал/ч). За стандартную принимается открытая установка прибора у наружной стены с односторонним присоединением к трубам.

При расчетной разности температуры воды 95-70°C и температурном напоре, равном ((95+70)/2)-18=82,5-18=64,5°С, для передачи в помещение 506 Вт или 506*3,6 кДж/ч (435 ккал/ч) необходимо в расчете на 1 м 2 энп пропустить через отопительный прибор воды в количестве

G=(506*3,6)/((4,187*(95-70))=17,4 кг/(ч м 2 энп);

G=435/(1*(95-70)) =17,4 кг/(ч м 2 энп).

Это, в частности, испытательный расход воды для 1 м 2 энп секционного радиатора, на который делалась ссылка в пояснении к формуле:

где G — относительный расход воды в отопительном приборе (отношение действительного расхода воды к испытательному, принятому при экспериментальных исследованиях);

p — показатель степени по экспериментальным данным.

Выпускавшийся в 1957 г. секционный радиатор типа H-136 (его строительная глубина 136 мм, монтажная высота 500 мм) был принят за эталон. Через один квадратный метр внешней физической поверхности эталонного радиатора Н-136 (площадь поверхности четырех секций) при испытании в стандартных условиях (испытывался радиатор, состоящий из восьми секций) передавался в помещение тепловой поток, равный как раз 506 Вт (435 ккал/ч). Следовательно, восемь секций радиатора Н-136 имели площадь теплоотдающей поверхности, равную 2 м 2 или 2 м 2 энп (экм).

Исчисление площади внешней поверхности любого отопительного прибора в условных единицах и определение для одного и того же элемента прибора (секции, ребристой трубы, конвектора, панели) отношения площади эквивалентной нагревательной поверхности fэ к площади ею физической внешней поверхности fф есть сравнение конкретного прибора с эталонным.

Для каждого отопительного прибора площадь внешней поверхности в м 2 энп (экм) является таким же характерным показателем, как и площадь поверхности в м 2 . Любой отопительный прибор будет совершеннее в теплотехническом отношении эталонного радиатора, если его эквивалентная площадь Fэ в экм будет больше площади внешней физической поверхности Fф в м 2 . Например, если прибор имеет Fэ=6 экм и Fф=5 м 2 , то его 1 экм=5/6 м 2 и тепловой поток в 506 Вт (435 ккал/ч) передается прибором в стандартных условиях с 5/6 м 2 его внешней поверхности или его 1м 2 =6/5 экм и теплопередача с 1 м 2 поверхности составляет 50б*(6/5)=607Вт/м 2 [522ккал/(ч м 2 )].

Сопоставление площади поверхности одного элемента отопительного прибора в м 2 энп (экм) с площадью его поверхности в м 2 дает возможность судить о совершенстве прибора в теплотехническом отношении.

Сказанное можно также пояснить схемами, изображенными на рисунке. На рисунке представлены два отопительных прибора равных размеров, состоящие из трех элементов с физической поверхностью по 1 м 2 . Прибор на рисунке имеет эквивалентную площадь нагревательной поверхности в экм Fэ>3, что свидетельствует о высоком коэффициенте теплопередачи. Поэтому часть длины этого прибора, соответствующая площади поверхности в 1 экм (на чертеже заштрихована), меньше длины одного элемента –l1 l.

Схематическое изображение площади эквивалентной нагревательной поверхности в 1 экм (заштрихована) двух отопительных приборов в сравнении с их физической площадью поверхности в 1 м 2 , соответствующей длине l.
а и б — соответственно для приборов с высоким и низким коэффициентом теплопередачи.

Следует сделать вывод: чем совершеннее в теплотехническом отношении отопительный прибор, тем меньше площадь его физической поверхности, передающая тепловой поток, равный 506 Вт (435 ккал/ч). Можно, например, измерить выпущенные заводом 1000 м 2 стальных панелей примерно 1400 экм и 1000 м 2 ребристых труб — только 690 экм.

Измерение поверхности отопительных приборов в м 2 энп не изменяет формы уравнений; изменяются лишь численные коэффициенты а, b и m (при сохранении значений n и p).

Уравнение для водяных отопительных приборов примет вид:

Для паровых отопительных приборов уравнение принимает вид:

где kэ — коэффициент теплопередачи, отнесенный к 1 м 2 эквивалентной нагревательной поверхности прибора;

m’ — экспериментальный численный коэффициент.

На основании уравнений можно написать формулы для определения плотности теплового потока, передаваемого через 1 м 2 эквивалентной нагревательной поверхности (через 1 экм) любого отопительного прибора.

При теплоносителе воде:

при теплоносителе паре:

где qэ — поверхностная плотность теплового потока, Вт/м 2 энп [ккал/(ч м 2 энп)].

В этих формулах и в приведенных выше уравнениях температурный напор вычисляется по выражению как Δt=tт-tв в зависимости от средней температуры теплоносителя в отопительных приборах.

Читайте также:  Биметаллические радиаторы отопления терем

В системах водяного отопления, как уже указывалось, за температуру теплоносителя tт принимается

т. е. полусумма температуры воды, входящей tвх и выходящей tвых из прибора.

Применительно к однотрубным системам водяного отопления с последовательно соединенными отопительными приборами выражение, если тепловая мощность прибора Qпр, Вт, принимает вид:

Уравнение более удобно для пользования, так как при расчете площади нагревательной поверхности приборов в однотрубных стояках известна температура воды, входящей в прибор, а температура выходящей воды зависит от расхода Gпр, не всегда заранее известного.

В двухтрубных системах водяного отопления с параллельно соединенными отопительными приборами температура воды, входящей и выходящей из прибора, в большинстве случаев принимается без учета ее понижения вследствие охлаждения в магистралях. Тогда за температуру воды, входящей в каждый прибор, может быть принята общая температура горячей воды в системе tr; за температуру воды, выходящей из каждого прибора, — общая температура охлажденной воды в системе t0, и выражение перепишется в виде:

где tг — расчетная (соответствующая температуре наружного воздуха, расчетной для отопления в данной местности) температура горячей воды, поступающей в систему отопления;

tо — расчетная температура охлажденной (обратной, как ее часто называют) воды, уходящей из системы.

В системах парового отопления, как уже отмечалось, за температуру теплоносителя принимается

где tнас — температура насыщенного пара, поступающего в отопительный прибор. Эта температура, как известно, зависит от давления пара и не изменяется при его конденсации.

Выражение для определения относительного расхода воды в отопительном приборе G в формулах имеет вид:

для колончатых радиаторов и колончатых стальных панелей при испытательном расходе воды Gисп=17,4 кг/(ч м 2 энп).

для остальных отопительных приборов

где Fр — расчетная площадь нагревательной поверхности радиатора или колончатой панели, м 2 энп.

Для определения относительного расхода воды в колончатых радиаторах и панелях необходимо знать площадь нагревательной поверхности (чтобы найти действительный расход воды, приходящийся на 1 м 2 энл), которая в вычислениях является искомой величиной.

Поэтому выражение должно быть видоизменено, что будет сделано несколько ниже.

Каждая формула для определения плотности теплового потока, передаваемого через 1 м 2 энп конкретного отопительного прибора при теплоносителе воде, отражает влияние на тепловой поток, поступающий в помещение, следующих факторов:

а) температурного напора Δtсp (как и при теплоносителе паре);

б) расхода воды Gпp;

в) дополнительной потери тепла через наружное ограждение в связи с размещением около него прибора (в формулу вводится значение knp, уменьшенное на 5% против действительного);

г) схемы движения воды в приборе, обусловленной способом его присоединения к трубам, т. е. местами подачи и отвода воды (в формуле изменяются числовые значения коэффициента m’ показателей степени n и p).

На рисунке представлены четыре схемы движения воды в колончатых радиаторах и панелях, которые кратко называются: 1 — сверху — вниз (односторонняя и разносторонняя); 2 — снизу — вниз; 3 — снизу — вверх (односторонняя); 4 — снизу вверх (разносторонняя).

Для примера в таблице приведена часть формул, по которым определяется плотность теплового потока через 1 м 2 энп колончатых радиаторов и панелей при теплоносителе воде.

Формулы для определения поверхностной плотности теплового потока колончатых радиаторов и панелей при схеме движения воды сверху-вниз (односторонней и разносторонней)

носительный расход воды G Плотность теплового потока qэ
Вт/м 2 энп ккал/(ч м 2 энп)
1-7
>7 2,2*Δср 1,32 1,89*Δср 1,32

В формуле даются: коэффициент m’=2,08 (1,79) и показатели степени: при температурном напоре 1+n= 1,32 и при относительном расходе р=0,03. Формула представлена в виде, приведенном к температуре воды tвx, входящей в прибор, и к перепаду температуры воды Δtпр в приборе. В таком виде формулой удобно пользоваться при расчете отопительных приборов однотрубных систем водяного отопления.

Схемы подачи и отвода воды из колончатых радиаторов

1 — сверху — вниз (односторонняя и разносторонняя); 2 — снизу — вниз; S — снизу — вверх (односторонняя); 4 — снизу — вверх (разносторонняя).

Теплотехнические испытания чугунных радиаторов при относительном расходе воды G>7 не выявили дальнейшей зависимости коэффициента теплопередачи и плотности теплового потока от количества воды, протекающей через них. Поэтому при G>7 формула меняется формулой, в которой влияние расхода воды учитывается увеличением постоянного множителя m’ до 2,2 (1,89).

Формулы, приведенные в таблице, действительны в пределах изменения температурного напора от 30 до 140°.

Подобную же структуру имеют формулы для определения плотности теплового потока колончатых радиаторов и панелей при других схемах движения воды, а также остальных отопительных приборов.

Рассмотрим влияние схемы движения и расхода воды на плотность теплового потока отопительных приборов на примере колончатых радиаторов и панелей. Перепишем уравнение в виде:

где q1=m’*Δtср1+n — плотность теплового потока отопительного прибора при относительном расходе воды G=1;

α=Gp—поправочный коэффициент, зависящий от расхода воды в приборе.

Читайте также:  Срок службы пластинчатых батарей отопления

Влияние схемы движения воды, обусловленной схемой присоединения колончатых радиаторов и панелей к трубам, установим при действительном расходе воды, равном 17,4 кг/(ч м 2 энп), когда поправочный коэффициент α равен единице. Вычислим и запишем в таблице плотность теплового потока q1 при Δtср=0,5 (95+10)-18=64,5°.

Поверхностная плотность теплового потока q1 колончатого радиатора или колончатой панели при G=1 и Δtср=64,5°.

Схемы движения воды Плотность теплового потока qт
Вт/м 2 энп ккал/(ч-м 2 энп) %
Сверху-вниз 506 435 100
Снизу-вниз 455 391 90
Снизу-вверх (односторонняя) 395 339 78

Сопоставление полученных значений плотности теплового потока позволяет оценить тепловую эффективность различных схем подачи и отвода воды при ее относительном расходе, равном единице, для стандартно установленных колончатых радиаторов и панелей: наиболее эффективна схема движения воды сверху — вниз, теплопередача при схеме снизу — вниз сокращается на 10%, а при схеме снизу — вверх — на 22% по сравнению со схемой сверху — вниз.

Подобная же закономерность отмечается и для отопительных приборов с трубчатыми греющими элементами, однако она проявляется менее заметно. Так, например, исследованиями в МИСИ установлено, что теплопередача двухрядного гладкотрубного прибора, состоящего из труб d=76ХЗ мм, последовательно соединенных по воде, уменьшается при переходе от схемы движения воды сверху — вниз к схеме снизу — вверх на 9%. При этом увеличивается степень неравномерности теплопередачи каждой из труб.

Зависимость поверхностной плотности теплового потока колончатых радиаторов и панелей qэ при Δtср=64,5° соотносительного расхода воды G для схем движения воды

1 — сверху — вниз, 2 — снизу — вниз; 3 — снизу — вверх

Выявленная зависимость теплопередачи отопительных приборов от схемы движения воды показывает, что для передачи в помещение равного теплового потока площадь нагревательной поверхности приборов в рассмотренных условиях должна отличаться: площадь получится наименьшей при движении воды в приборе сверху — вниз и наибольшей при подаче воды снизу с односторонним отводом ее вверху.

Уменьшение плотности теплового потока при подаче воды в прибор снизу объясняется усилением неравномерности температурного поля его внешней поверхности, связанной с понижением температуры во вторичных контурах циркуляции воды внутри прибора. При односторонней подаче снизу и отводе воды сверху создается наиболее неровное поверхностное температурное поле («отстает», как говорят, часть площади прибора, удаленная от места ввода горячей воды) и в результате значительно сокращается общий тепловой поток от теплоносителя через внешнюю поверхность прибора в помещение.

Влияние расхода воды на плотность теплового потока колончатых радиаторов и панелей проследим по графикам на рисунке, относящимся к первым трем рассмотренным выше схемам движения воды.

При увеличении относительного расхода воды от 1 до 7 плотность теплового потока qэ возрастает, но в различном темпе в зависимости от схемы движения воды в приборе.

При схеме сверху — вниз плотность теплового потока, постепенно возрастая, достигает значения qэ= 1,07 q1, т.е. при увеличении расхода воды более чем в 7 раз возрастает всего на 7%.

При схеме снизу — вниз можно отметить наиболее значительное возрастание qэ до величины 1,23 q1, превышающей предельное значение плотности теплового потока в схеме сверху — вниз. Это свидетельствует об экономической целесообразности применения колончатых радиаторов и панелей в горизонтальных однотрубных системах водяного отопления со значительным относительным расходом воды (G>5).

При схеме снизу — вверх также наблюдается заметное возрастание плотности теплового потока — в пределе до qэ= 1,18 q1, т. е. до величины, на 18% превышающей первоначальное значение при G=1. Однако и это предельное значение qэ для схемы снизу — вверх существенно ниже, чем при других схемах, что свидетельствует об экономической нецелесообразности использования колончатых радиаторов и панелей в вертикально однотрубных системах с «опрокинутым» и иногда с «П-образным» движением воды в стояках. Действительно, расчеты показывают, что площадь нагревательной поверхности радиаторов в однотрубных проточных стояках систем отопления зданий повышенной этажности (12-16 этажей) при схеме снизу — вверх увеличивается не менее чем на 12% по сравнению со схемой сверху — вниз. Введение в однотрубные стояки со схемой снизу — вверх замыкающих участков с постоянным протоком воды сокращает относительный расход воды в радиаторах и приводит к еще большему увеличению площади их нагревательной поверхности.

Численные множители к величине q1, приведенные выше, выражают максимальное значение поправочного коэффициента α для колончатых радиаторов и панелей в формуле:

для схемы сверху — вниз αм = 1,07
для схемы снизу — вниз αм = 1,23
для односторонней схемы снизу — вверх αм = 1,18

При относительном расходе воды в радиаторе или панели G α>1.

Для других отопительных приборов плотность теплового потока также зависит от расхода воды в них: для водоемких приборов, подобных радиатору, эта зависимость проявляется в большей степени, для трубчатых приборов — в меньшей.

Оцените статью