- Тепловые насосы – холодильники наоборот
- В обоих приборах используются два хорошо известных свойства жидкости:
- Принцип работы теплового насоса
- Способы отбора низкопотенциального тепла
- Тепловой насос: энергетическое чудо или холодильник наоборот
- Основные узлы и компоненты
- Как это работает
- Область применения
- Как рассчитать мощность оборудования
- Изготавливаем аппарат своими руками
Тепловые насосы – холодильники наоборот
По прогнозам специалистов, доля отопления и горячего водоснабжения, генерируемого с использованием тепловых насосов, в развитых странах к 2020 году составит 75%.
Замечательным свойством тепловых насосов (ТН) является их способность извлекать энергию из окружающей среды: грунта, водоёмов и даже обычного воздуха. Температура этих сред может быть отрицательной (до -15°С), а температура воды, нагреваемой ТН, достигать 60-80°С.
Мы привыкли к тому, что количество тепловой энергии, получаемой на выходе теплового генератора, всегда меньше энергии, отобранной у энергоносителя – газа, топлива, электричества. КПД котла – всегда меньше 100%. С помощью же ТН для получения 1 кВт тепловой энергии можно затратить всего 0,25-0,4 кВт электроэнергии. Остальную энергию поставляет окружающая среда. Тепловой насос походит на обычный холодильник с той разницей, что последний извлекает тепло из продуктов, находящихся в камере, и рассеивает его в окружающее пространство, а ТН извлекает тепло из окружающего пространства и передаёт его в теплообменник. Таким образом, ТН – это холодильник наоборот.
В обоих приборах используются два хорошо известных свойства жидкости:
– при переходе воды из одного фазового состояния в другое (из жидкости в пар (кипение) или наоборот – из пара в жидкость (конденсация), происходит поглощение или выделение теплоты. В термодинамике этот процесс называется теплотой фазового перехода;
– при уменьшении давления жидкость начинает кипеть (испаряться) при более низкой температуре. В ТН и холодильниках используются специальные вещества – хладагенты, их называют фреонами или хладонами, которые кипят при температурах -20°С, -30°С. Хладагент является рабочим телом холодильной машины, циклические изменения агрегатного состояния которого позволяют производить перенос теплоты от среды с низкой температурой к среде с более высокой температурой. Среда с низкой температурой называется источником низкопотенциального тепла. Это могут быть грунт, водоём или воздух.
Принцип работы теплового насоса
ТН, как и холодильник, состоит из 4-х основных функциональных элементов: испарителя, компрессора, конденсатора и дросселя, по которым циркулирует рабочее тело – фреон.
К испарителю тем или иным способом подводится теплота от низкопотенциального источника тепла – грунта, воды, воздуха. В теплообменнике испарителя эта теплота передаётся рабочему телу – фреону, который находится под низким давлением и при данной температуре закипает. Образовавшийся пар втягивается в компрессор и сжимается. Температура пара при сжатии повышается до 90-100°С. Горячий фреон под давлением поступает в конденсатор – теплообменник, по внешнему контуру которого циркулируют вода или воздух, являющиеся теплоносителем для системы отопления.
В конденсаторе пары фреона конденсируются на холодных поверхностях, передают свою теплоту теплоносителю внешнего контура, а сами, охлаждаясь, переходят в жидкую фазу. Далее жидкий фреон проходит через дросселирующий вентиль, после которого его давление резко уменьшается, а температура становится ниже температуры источника низкопотенциального тепла.
В завершение цикла фреон снова попадает в испаритель, закипает, испаряется и т.д., и цикл автоматически повторяется. Так работают ТН парокомпрессионного типа, которые обычно используются в бытовых установках. Существуют также абсорбционные, эжекторные, термоэлектрические тепловые насосы.
Агрегат отбирает тепловую энергию у среды, температура которой может быть отрицательной, и закачивает её в теплоноситель потребителя, температуру которого может довести до 60-80°С. Характерно, что в ТН расходуется энергия, необходимая только для работы компрессора. Количество тепловой энергии, передаваемое от источника низкопотенциального тепла потребителю, может быть в несколько раз больше, чем затраты электроэнергии на привод компрессора.
Главной характеристикой ТН является коэффициент преобразования тепла. Он показывает отношение величины тепловой мощности, выдаваемой потребителю, к соответствующему показателю работы компрессора. На 1 кВт затраченной электрической энергии с помощью ТН можно получить от 2,5 до 4 кВт тепловой энергии.
Способы отбора низкопотенциального тепла
Важный компонент теплового насоса – устройство, которое отбирает теплоту из среды. Так как источником низкопотенциального тепла могут быть разные среды (грунт, вода, воздух), то и способы отбора теплоты разлтчны:
1. Грунтовые зонды. Тепло отбирается из одной или нескольких скважин глубиной 50-150 м. Температура грунта на такой глубине всегда одинакова – около +10°С. Поэтому грунтовые зонды наиболее эффективны. Тепловая мощность глубоких зондов составляет от 30 до 100 Вт на погонный метр скважины. Глубина и количество скважин зависят от вида грунта и тепловой мощности, необходимой потребителю;
2. Грунтовые коллекторы. Тепло отбирается из неглубокого слоя земли (1-2 м) с помощью горизонтально уложенных полиэтиленовых труб с незамерзающим теплоносителем. Способ укладки трубы может быть петлёй, змейкой, спиралью и т.п. и определяется свойством грунта и геометрией участка. Тепловая мощность грунтового коллектора составляет 10-35 Вт на погонный метр трубы, стоимость ниже стоимости грунтовых зондов. Не обязательно укладывать контур ниже уровня промерзания грунта;
3. Водяные коллекторы. Трубы укладываются на дно непромерзающего водоёма. Система более эффективна, чем грунтовый коллектор, и не требует производства земляных работ, однако условия для её реализации достаточно редки;
4. Воздушные контуры. Всё большее распространение получают воздушные тепловые насосы, которые используют тепло наружного воздуха. Они эффективно работают до температуры воздуха -10°С и даже ниже. Коэффициент преобразования тепла воздушных ТН – 3-3,8, а максимальная температура воды в системе отопления достигает 55°С. При температуре воздуха ниже -10°С эффективность воздушных ТН снижается и нужно подключать второй (резервный) котёл – дизельный или электрический. Для этой цели в конструкции некоторых моделей воздушных ТН предусмотрены встроенные ТЭНы.
В последние годы воздушные ТН научились также использовать тёплый воздух вытяжных вентиляционных систем жилого дома. Это дополнительное тепло направляется на увеличение эффективности тепловых насосов или на подогрев земли вокруг грунтовых коллекторов.
Тепловой насос: энергетическое чудо или холодильник наоборот
Каждое здание оборудовано системой вентиляции, именно она спасает саму постройку и жильцов от таких нежелательных явлений как повышенная влажность и застой воздуха. Повышенная влажность влияет на конструкцию здания, перекрытия и отделочные материалы, которые при плохой вентиляции подвергаются разрушительному воздействию коррозии.
Но вентиляционная система, без соответствующего современного оборудования, выбрасывает в воздух тысячи килокалорий тепла из наших помещений, увеличивая затраты на отопление жилища в холодное время года. Утилизировать тепло можно применяя современные методы и оборудование, которое поможет не только сохранить выбрасываемое в окружающее пространство драгоценное тепло, но и приумножить, получая его обратно в виде горячего водоснабжения, поступающего теплого приточного воздуха из вентиляции или теплых радиаторов отопления.
Для того чтобы эффективно утилизировать тепло, покидающее квартиры через вентиляционные отверстия, было придумано устройство, под названием тепловой насос. Он позволяет перенести низкотемпературную тепловую энергию из воздуха, выбрасываемого вентиляционной системой, к системе потребления, но уже с более высокой температурой. В качестве потребителя используется система отопления или горячего водоснабжения.
Основные узлы и компоненты
Такое оборудование, состоит из важнейших компонентов, без которых невозможна его работа:
- Замкнутого контура, по которому циркулирует фреон.
- Испарительного теплообменника.
- Конденсаторного теплообменника.
- Расширительного клапана или дросселирующего устройства.
- Компрессора.
Именно из таких устройств состоит практически любой холодильник, бытовой или промышленный кондиционер и сплит-система. Только в кондиционере, внешний блок обогревает окружающий воздух, а в воздушном тепловом насосе – систему отопления дома или входящие воздушные потоки.
Как это работает
Принцип действия теплового насоса основан на цикле Карно, который большинство из нас изучали в средней школе на уроках физики. Рассмотрим обобщенную схему прибора.
- Система представляет собой замкнутый трубопровод, в котором находится фреон. Контур оснащен компрессором, приводящим в движение газ, и расширительным клапаном. Это устройство предназначено для создания высокого давления фреона. При этом вступает в силу важнейший физический закон — при сжимании газ нагревается, а при понижении давления остывает.
- На участке выхода фреона из компрессора, газ сжат и благодаря чему имеет высокую температуру, а проходя через расширительный клапан, происходит резкая потеря давления и газ теряет свою температуру. В замкнутом фреоновом контуре, кроме компрессора и клапана есть еще и два теплообменника. Один находится сразу после компрессора в системе высокого давления газа, а второй устанавливается после дросселирующего устройства.
- Протекая по теплообменнику, фреон отдает часть своей тепловой энергии теплообменнику системы отопления, после чего газ остывает и поглощает тепло воздуха, протекающего по системе вентиляции. Принцип работы теплового насоса очень напоминает принцип работы холодильника.
- В качестве отопительных приборов могут выступать радиаторы отопления, фанкойлы, теплые полы. Такое устройство называется воздух — вода.
Вместо отопительного контура может выступать приточная вентиляция, поступающий воздух будет нагреваться от конденсаторного теплообменника. Устройство, которое будет работать по такой схеме, называется тепловой насос воздух-воздух.
Область применения
Основное системы это отопление, причем как квартир и частных домов, так и промышленных помещений. Но тепловой насос не только обогревает помещения, он может их и охлаждать, экономя при этом средства на кондиционировании. Для этого потребуется только подключить вместо радиаторов отопления фанкойлы.
В Европе, такой вид утилизации тепла достаточно давно пользуется популярностью. Многие владельцы жилья по достоинству оценили экономию средств от использования тепловых насосов для отопления и горячего водоснабжения своих жилищ. Стоит только представить, что на отопление частного дома площадью около 100 м.кв. будет расходоваться менее 2 кВт электроэнергии, а это меньше чем потребляет обычный электрочайник. Кроме частных домов, тепловые насосы применяются:
- Для отопления и кондиционирования офисных помещений. Если площадь помещения более 1500 м.кв, то используется принцип каскадного подключения нескольких тепловых насосов.
- Для создания комфортного микроклимата в складских помещениях тепловой насос затратит в 10 раз меньше энергии, чем при электрическом отоплении.
- Для обогрева воды в бассейнах.
- Для отопления теплиц и парников.
Многие сторонники применения тепловых насосов заявляют, что КПД системы более 100%, при этом приводят в качестве примера, что на 1 кВт затраченной энергии, это устройство отдает 2,5 кВт тепловой мощности в помещение, называя полученный эффект «энергетическим чудом». Расчеты верны, но те, кто заявляет о чудесах, путают КПД с тепловым коэффициентом. На самом деле, коэффициент полезного действия устройства равен 46%. Но и такие показатели гораздо выше, чем у электрического или печного отопления.
Как рассчитать мощность оборудования
Совет:
Ввиду того, что тепловой насос является достаточно дорогостоящим оборудованием, то правильный расчет мощности позволит значительно сократить расходы, связанные с его приобретением, монтажом и дальнейшей эксплуатацией. В связи с этим все расчеты лучше всего доверить профессионалам.
Для того, чтобы самостоятельно произвести расчет теплового насоса, требуется определить все теплопотери по каждому помещению. Основные потери тепла происходят:
- Из-за разницы температур между помещением и улицей через стены.
- Через естественные неплотности в окнах и дверях.
- Через вентиляционную систему.
Чтобы не утомлять вас сложными вычислениями и ненужными расчетами, в среднем, теплопотери жилого помещения составляют от 60 до 100 Вт. В качестве примера можно взять небольшой частный дом, общая площадь помещений которого будет равна 150 м.кв. Тогда при теплопотерях в 60 Вт на их покрытие потребуется мощность аппарата в 9 кВт. Но нужно сюда прибавить около 700 Вт на обогрев воды в системе отопления. В итоге получается, что на коттедж, общей площадью в 150 м.кв. потребуется устройство, мощностью 9,7 кВт.
Изготавливаем аппарат своими руками
Прочитав эту статью многие уже решив для себя «прикупить по случаю» тепловой насос и свести к нулю свои затраты на отопление и кондиционирование, с удивлением обнаружили, что стоимость этого оборудования как минимум шестизначная. Именно поэтому те, кто после такой информации не потерял энтузиазма и пытаются сделать такой прибор самостоятельно.
Для изготовления вам понадобятся основные узлы, включающие в себя:
- Компрессор для теплового насоса.
- Испарительный теплообменник.
- Конденсаторный теплообменник.
- Дросселирующее устройство.
- Медный трубопровод.
Прежде всего, следует выбрать месторасположение компрессора и само устройство. Его лучше всего взять от кондиционера. Компрессор при помощи кронштейнов нужно зафиксировать на стене.
- Следует изготовить конденсаторный теплообменник. Для его изготовления потребуется бак, изготовленный из нержавейки. Объем бака приблизительно 100-130л. В него следует вставить змеевик и заварить горловину. Выходы змеевика вывести из бака при помощи резьбовых соединений. Кто хоть раз изготавливал самостоятельно змеевик для самогонного аппарата, тому будет проще, конструкция практически одинаковая.
На готовый конденсатор нужно намотать медную трубу и тщательно ее зафиксировать. Концы трубы вывести при помощи сгонов.
Важно!
Выводы внутреннего змеевика (для фреона) следует делать: вход в верхней части конденсатора, а выход в нижней, для предотвращения образования воздушных пробок.
После проведения всех мероприятий изготовление теплового насоса своими руками подошло к концу.
Совет!
Для того чтобы изготовить оборудование своими руками требуются глубокие познания в физике. Если вы ознакомились с устройством и принципом работы только на основе одной статьи, то не рискуйте, так как разгерметизация прибора может привести к тяжелым травмам.
Область применения этих климатических аппаратов очень велика. На сегодняшний день это один из самых экономически выгодных, экологически чистых и безопасных способов организации отопления в жилых, административных и производственных помещениях.