Отопление мкд через теплообменник

Содержание
  1. Для чего нужен теплообменник в системе отопления
  2. Зависимая система теплоснабжения, работающая без теплообменника.
  3. Независимая система теплоснабжения с теплообменником.
  4. Как подключить теплый пол к системе отопления через теплообменник.
  5. Как работает теплообменник в многоквартирном доме?
  6. Для чего нужен теплообменник в системе отопления
  7. Зависимая система теплоснабжения, работающая без теплообменника
  8. Независимая система теплоснабжения с теплообменником
  9. Как подключить теплый пол к системе отопления через теплообменник
  10. Разновидности теплообменников для отопления: как разобраться в них и выбрать нужный?
  11. Смесительные водяные
  12. Поверхностные
  13. Рекуперативный и его разновидности
  14. Кожухотрубчатые
  15. Погруженные
  16. Оросительные
  17. Графитовые: что это такое
  18. Пластинчатые воздушные с вентилятором
  19. Пластинчато-ребристые: принцип работы
  20. Оребрённо-пластинчатые
  21. Спиральные
  22. Как подобрать теплообменник ЦТП
  23. Толщина и материал пластин
  24. Давление
  25. Коэффициент передачи тепла
  26. Масса
  27. Запас поверхности для теплообмена
  28. Типы и материалы
  29. Популярные производители: фото
  30. В каких случаях нужен теплообменник для систем отопления
  31. Пластинчатые теплообменники области применения
  32. Положительные качества
  33. Из чего состоит современный теплообменник
  34. Двухступенчатая последовательная схема
  35. Зависимая схема с трёхходовым клапаном и циркуляционными насосами
  36. Данную схему в ИТП применяют при соблюдении условий:
  37. Описание работы схемы ИТП с трёхходовым клапаном
  38. Как работает теплообменник в многоквартирном доме? — Справочник домашнего мастера
  39. Материалы изготовлени
  40. Сферы применения
  41. Классификация
  42. Строение и принцип работы
  43. Характеристики оборудования
  44. Монтаж
  45. Принцип работы и схема пластинчатого теплообменника
  46. Особенности конструкции
  47. Устройство пластин
  48. Требования к прокладкам
  49. Принцип работы
  50. Область использования
  51. Характеристики и расчет
  52. Способы обвязки
  53. В каких случаях вам понадобится теплообменник для системы отопления?
  54. Что такое теплообменник
  55. Виды теплообменников
  56. Из каких материалов изготавливают теплообменники
  57. Принцип работы теплообменника
  58. Внешний вид устройства
  59. Установка теплообменника
  60. В каких сферах используется теплообменник

Для чего нужен теплообменник в системе отопления

Теплообменник устройство, передающее тепло от одного источника теплоты другому, исключая при этом непосредственный контакт теплоносителей. Поэтому теоретически теплообменник можно установить в любой системе отопления, главное чтобы от этого была польза , поскольку стоимость самой системы отопления при этом возрастает прямо пропорционально нагрузке, или попросту стоимости самого устанавливаемого теплообменника с регулирующей измерительной и контрольной аппаратурой.

Главная область применения теплообменников в системе отопления это независимая система теплоснабжения. Чтобы понять, зачем нам это нужно необходимо совершить небольшой экскурс в природу имеющихся у нас в стране тепловых сетей.

Зависимая система теплоснабжения, работающая без теплообменника.

Индивидуальный тепловой пункт, спроектированный для работы в зависимой системе теплоснабжения без теплообменника

Существуют две схемы отопления или как правильно говорить теплоснабжения. Зависимая система отопления, с которой мы все хорошее знакомы, это когда котел, нагревая воду, подает ее по трубопроводам прямо в отопительные приборы – батареи отопления в квартире, минуя теплообменник. Конечно, в такой схеме есть тепловой пункт, регулирующие и измерительные приборы, иногда устанавливается погодозависимая автоматика. Только без теплообменника влиять на температуру в батареях, а значит, в целом в квартирах мы можем только в сторону уменьшения температуры.

Для котлов в котельной такая схема тоже не удобная, она требует больших насосов, котлы и трубы тепловой сети работают как гармошка, от того рвутся постоянно, а об утечках тепла и потерянных при этом потерях тепла лучше и не вспоминать. Зато на первичном этапе без установки теплообменника в системе отопления получается довольно дешево, но не эффективно, котельная не знает, сколько тепла нужно каждому, а потребитель не в силах влиять на выработку тепла для отопления, отсюда перетоп и низкая энергетическая эффективность такой системы отопления без разделительного теплообменника.

Независимая система теплоснабжения с теплообменником.

Индивидуальный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения с теплообменником

Теплообменник в такой системе отопления главный прибор позволяющий экономить. Конечно, экономит не он, он только отделяет среды друг от друга, экономит автоматика. Как экономит? Вот пример независимой системы отопления – современная централизованная отопительная система, в ней имеется один главный тепловой пункт, распределяющий тепло и дополнительные теплообменники для каждого потребителя установленные уже в ИТП жилых домов.

От котельной к центральному тепловому пункту, где установлен главный теплообменник, тепло подается в жестком, фиксированном тепловом режиме – например 95 градусов на подаче и теоретически 70 градусов на обратке. В котельной не нужна автоматика и операторы, мощность насосов и диаметр труб тепловой сети могут быть гораздо меньше, утечек в контуре котлов нет по своей природе. Иногда теплообменник большой мощности устанавливают непосредственно в системе отопления котельной, тогда контур получается двойным и в котлах, из-за малого объема теплоносителя во внутреннем контуре, отсутствует накипь, котлы служат вечно.

Блочный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения и горячего водоснабжения с теплообменниками

Установив теплообменник в системе отопления, потребитель получает возможность влиять на температуру в квартире, сколько нужно каждому столько и возьмет, конечно, если в квартире на батареях тоже установлены регулирующие приборы. Выгода для всех налицо.

Как подключить теплый пол к системе отопления через теплообменник.

Нужен теплообменник и для теплого пола. Если вы, например, захотите сделать теплый пол, врезав его в систему отопления без теплообменника вы оставите весь дом без тепла, тепла на полы пойдет немного, но вот вода – теплоноситель будет циркулировать только через ваш пол и не пойдет к соседям, она «лентяй» и идет по самому короткому пути.

Недостаток установки теплообменника в систему отопления только один, увеличение затрат на первоначальном этапе монтажа, но он с лихвой перекрывается всеми ее достоинствами.

Зависимую систему отопления легко модернизировать в независимую систему, путем установки дополнительного теплообменника с регулирующей аппаратурой. Правда, делать это придется одновременно во всем районе, подключенном к вашей котельной. Зато так вы сможете сэкономить до 40 процентов на оплату тепла, по сравнению с вашими сегодняшними затратами без установки такого нужного теплообменника в системе отопления.

Как работает теплообменник в многоквартирном доме?

Для чего нужен теплообменник в системе отопления

Теплообменник устройство, передающее тепло от одного источника теплоты другому, исключая при этом непосредственный контакт теплоносителей. Поэтому теоретически теплообменник можно установить в любой системе отопления, главное чтобы от этого была польза, поскольку стоимость самой системы отопления при этом возрастает прямо пропорционально нагрузке, или попросту стоимости самого устанавливаемого теплообменника с регулирующей измерительной и контрольной аппаратурой.

область применения теплообменников в системе отопления это независимая система теплоснабжения. Чтобы понять, зачем нам это нужно необходимо совершить небольшой экскурс в природу имеющихся у нас в стране тепловых сетей.

Зависимая система теплоснабжения, работающая без теплообменника

Индивидуальный тепловой пункт, спроектированный для работы в зависимой системе теплоснабжения без теплообменника

Существуют две схемы отопления или как правильно говорить теплоснабжения. Зависимая система отопления, с которой мы все хорошее знакомы, это когда котел, нагревая воду, подает ее по трубопроводам прямо в отопительные приборы – батареи отопления в квартире, минуя теплообменник. Конечно, в такой схеме есть тепловой пункт, регулирующие и измерительные приборы, иногда устанавливается погодозависимая автоматика. Только без теплообменника влиять на температуру в батареях, а значит, в целом в квартирах мы можем только в сторону уменьшения температуры.

Для котлов в котельной такая схема тоже не удобная, она требует больших насосов, котлы и трубы тепловой сети работают как гармошка, от того рвутся постоянно, а об утечках тепла и потерянных при этом потерях тепла лучше и не вспоминать. Зато на первичном этапе без установки теплообменника в системе отопления получается довольно дешево, но не эффективно, котельная не знает, сколько тепла нужно каждому, а потребитель не в силах влиять на выработку тепла для отопления, отсюда перетоп и низкая энергетическая эффективность такой системы отопления без разделительного теплообменника.

Независимая система теплоснабжения с теплообменником

Индивидуальный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения с теплообменником

Теплообменник в такой системе отопления главный прибор позволяющий экономить. Конечно, экономит не он, он только отделяет среды друг от друга, экономит автоматика. Как экономит? Вот пример независимой системы отопления – современная централизованная отопительная система, в ней имеется один главный тепловой пункт, распределяющий тепло и дополнительные теплообменники для каждого потребителя установленные уже в ИТП жилых домов.

От котельной к центральному тепловому пункту, где установлен главный теплообменник, тепло подается в жестком, фиксированном тепловом режиме – например 95 градусов на подаче и теоретически 70 градусов на обратке. В котельной не нужна автоматика и операторы, мощность насосов и диаметр труб тепловой сети могут быть гораздо меньше, утечек в контуре котлов нет по своей природе. Иногда теплообменник большой мощности устанавливают непосредственно в системе отопления котельной, тогда контур получается двойным и в котлах, из-за малого объема теплоносителя во внутреннем контуре, отсутствует накипь, котлы служат вечно.

Блочный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения и горячего водоснабжения с теплообменниками

Установив теплообменник в системе отопления, потребитель получает возможность влиять на температуру в квартире, сколько нужно каждому столько и возьмет, конечно, если в квартире на батареях тоже установлены регулирующие приборы. Выгода для всех налицо.

Как подключить теплый пол к системе отопления через теплообменник

Нужен теплообменник и для теплого пола. Если вы, например, захотите сделать теплый пол, врезав его в систему отопления без теплообменника вы оставите весь дом без тепла, тепла на полы пойдет немного, но вот вода – теплоноситель будет циркулировать только через ваш пол и не пойдет к соседям, она «лентяй» и идет по самому короткому пути.

Недостаток установки теплообменника в систему отопления только один, увеличение затрат на первоначальном этапе монтажа, но он с лихвой перекрывается всеми ее достоинствами.

Зависимую систему отопления легко модернизировать в независимую систему, путем установки дополнительного теплообменника с регулирующей аппаратурой. Правда, делать это придется одновременно во всем районе, подключенном к вашей котельной. Зато так вы сможете сэкономить до 40 процентов на оплату тепла, по сравнению с вашими сегодняшними затратами без установки такого нужного теплообменника в системе отопления.

Разновидности теплообменников для отопления: как разобраться в них и выбрать нужный?

Теплообменник — неотъемлемый элемент системы отопления, в котором происходит процесс обмена теплом между несколькими средами.

Существует несколько разновидностей теплообменников.

Устройство представляет собой 2 плиты: одна из них статическая, а другая — подвижная. Обе они с отверстиями, между которыми зафиксированы загерметизированные прокладками пластины.

Суть принципа работы такого прибора в том, что пластины гофрированного типа образуют каналы, по которым циркулирует жидкость. Повышение коэффициента переданного тепла от её прогретой части к холодной возникает за счёт увеличения площади контакта.

В пристенном слое гофрированного типа со временем образуется процесс турбулентности. По разным сторонам одной пластины происходит перемещение отдельной среды. Такой способ движения предотвращает их перемешивание.

Прогрев обеих сред возникает вследствие присоединения устройства к трубопроводу. После того как среда закончит своё прохождение по всем каналам, она покинет теплообменник.

Такое оборудование делает возможным:

  • эксплуатировать при необходимости полученного от носителя энергии вторичного тепла для бытовых нужд;
  • применять остаточное тепло при поступлении электроэнергии;
  • формировать необходимый температурный режим для проведения химических процессов;
  • удерживать температурный режим теплоносителя на установленном уровне в бытовых отопительных системах.

Существуют следующие виды теплообменников.

Смесительные водяные

Представляют собой приборы, в которых тепло передаётся через непосредственный контакт двух сред: горячей и холодной.

Суть действия такого теплообменника в том, что в специальной камере соединяются жидкость и пар, скорость которого при этом превышает сверхзвуковое значение.

Разгоняет его до такого показателя расчётное сопло. За счёт такого смешивания и происходит прогрев жидкости и паровая конденсация, а теплоноситель требуемой температуры циркулирует по системе отопления.

Камера прибора предусматривает наличие конденсационного вакуума. Работа теплообменника этой разновидности возможна даже при условии малого парового давления.

Поверхностные

Конструкция таких приборов представлена в виде биметаллических труб с алюминиевым оребрением накатного типа.

В этих устройствах происходит процесс обтекания твёрдого покрытия воздухом. Температуры поверхности и воздушного потока отличаются.

Тепловой обмен между средами осуществляется через стенку с нанесённым на неё специальным теплопроводящим материалом. Контура полностью изолированы друг от друга.

Поверхностные теплообменники делятся на 2 типа:

  • регенеративные (направление потока среды имеет свойство меняться);
  • рекуперативные (обмен теплом от одного теплоносителя к другому осуществляется через неплотные стенки контура, при этом направление потока среды остаётся постоянным).

Рекуперативный и его разновидности

Они подразделяются в соответствие с особенностями конструкции и областью применения.

Кожухотрубчатые

Это самые простые устройства. Они состоят из большого числа маленьких трубопроводов, которые спаяны в единый пучок и помещены в кожух. Такие теплообменники довольно громоздкие и занимают много места.

Применяются в испарителях, холодильниках, нагревателях, конденсаторах.

Погруженные

Представляют собой змеевики плоской либо цилиндрической форм, погруженные в ёмкость с жидкостью.

Эти теплообменники считаются неэффективными вследствие того, что с внешней стороны змеевика наблюдается низкий уровень теплоотдачи, а процесс омывания жидкостью проходит в крайне малом количестве.

Справка! Использование погруженного теплообменника будет продуктивным, если жидкость в ёмкости будет закипать или содержать механические дополнения.

Погруженные аппараты применяются в качестве холодильников и конденсаторов, а также для прогрева воды и растворов технологического типа.

Вам также будет интересно:

Приборы этой разновидности представляют собой 2 трубы, расположенные внутри друг друга и имеющие отличные диаметры. Так жидкость, нагрев или охлаждение которой требуется произвести, напрямую контактирует с теплоносителем.

Трубы для теплового обмена зафиксированы вдоль друг друга. За счёт разницы между их диаметрами у теплоносителя не возникает препятствий при его циркуляции.

Читайте также:  Панели отопления электрические с терморегулятором настенные

Применяются такие теплообменники преимущественно в пищевой промышленности, в частности, в виноделии и при производстве молочной продукции.

А также использование таких приборов широко распространено в нефтяной, газовой, химической промышленностях.

Оросительные

Теплообменники этого типа представляют собой прямые трубы, расположенные друг над другом и орошаемые водой с наружной стороны. Они фиксируются с помощью сварки или применения «калачей» на фланцах. Орошающая жидкость идёт через верхний жёлоб, края которого имеют форму в виде зубчиков. Часть жидкости, подаваемой для орошения трубопроводов, испаряется.

Широко распространено использование таких агрегатов в качестве конденсаторов в холодильниках.

Графитовые: что это такое

Теплообменники блочного строения. Все прямоугольные или цилиндрические составляющие прочно зафиксированы специальными резиновыми или тефлоновыми прокладками и крышками.

Внутри этой конструкции происходит движение жидкости по перекрёстной схеме.

Изначально для устранения пористости графита его обрабатывают специальными смолами из формальдегида. Одна или обе среды при этом являются коррозионно-активными.

Важно! Если обе жидкости агрессивные, то обязательно по бокам на прижимные плиты наносятся специальные пластины из графита.

За счёт устойчивого воздействия таких приборов их применение пользуется большой популярностью в химической промышленности.

Пластинчатые воздушные с вентилятором

По своей конструкции делятся на разборные и паяные. Первые имеют большое распространение в силу того, что их можно разбирать и собирать, а при необходимости прочистки и увеличивать их эффективность путём наращивания дополнительных пластин.

Прибор состоит из пластин, между которыми расположены прокладки из резины, 2 концевые камеры, болты для стягивания и рама.

Стальные пластины имеют толщину 0,7 мм, их проточная сторона гофрирована или ребристая.

С целью герметизации процесса теплообмена к пластинами фиксируются прокладки из резины.

Теплоноситель в таких теплообменниках может перемещаться в прямом, обратном направлениях или смешанно.

Применяются такие устройства в отоплении, вентиляции, кондиционировании и холодильных установках. Кроме того, он используется в текстильной, нефтяной, целлюлозно-бумажной и других промышленностях.

Пластинчато-ребристые: принцип работы

Суть конструкции такого теплообменника в том, что есть единая система из раздельных пластин, между которыми расположены ребристые насадки.

Их разновидности представлены в широком диапазоне.

Для грамотной подборки формы каналов для прохождения жидкости, требуется использование различных насадок.

Важно! Применение таких устройств для теплового обмена возможно при температуре неагрессивных жидких и газообразных сред от +200 °C до —270 °C.

Используются эти теплообменники в различных транспортных установках.

Оребрённо-пластинчатые

Их отличие от вышеуказанных видов в том, что в основании конструкции используются оребренные панели с тонкими стенами, сформированные путём высокочастотной сварки.

Все они зафиксированы поочерёдно с возможностью поворота на 90 °C.

Применение таких теплообменников часто встречается как в промышленности (в тепловых технологических процессах), так и в быту (система вентиляции с возвращением тепла).

Спиральные

Бывают горизонтальные и вертикальные. Их конструкция состоит из 2 тонких листов из металла, зафиксированных к керну и загнутых в форме спиралей. Для придания листам дополнительной жёсткости к ним по обеим сторонам с помощью сварки присоединены бобышки дистанции.

У спиральных каналов есть ограничения в виде торцевых крышек. Уплотнения таких проходов производят путём заваривания с одной стороны и уплотнения прокладкой — с другой. По мере её износа происходит заваривание и с другой стороны.

Таким образом, исключается вероятность спешивания теплоносителей.

Используется этот прибор в пищевой, металлургической, целлюлозно-бумажной, горнодобывающей, нефтяной, газовой и других областях промышленности.

Как подобрать теплообменник ЦТП

При выборе важно обращать внимание на основные технические характеристики оборудования:

Толщина и материал пластин

Чем ниже масса прибора, тем выше коэффициент теплоотдачи. При этом важно ориентироваться на рекомендуемую толщину пластин. В основном она варьируется от 0,4 мм до 0,7 мм, подходящий материал — нержавеющая сталь.

Вам также будет интересно:

Давление

Чем меньше этот показатель, тем ниже стоимость агрегата. Чтобы не наблюдалось сбоев в системе отопления, требуется обязательно знать это значение и указать его продавцу при приобретении.

Коэффициент передачи тепла

Это один из главных критериев выбора. Он показывает, какую единицу тепла способно передать устройство за определённое время от нагретой среды к холодной через площадь 1 кв. м. и разницу температур 1 К.

Для увеличения теплопередачи требуется меньшее количество пластин. Стоимость у такого теплообменника будет ниже. У оборудования с высокой ценой

Справка! При усилении потока возрастает и потребность в большом количестве чисток за счёт образования отложений.

Рекомендуемый и оптимальный коэффициент тепловой передачи — 7000 Вт/кв. м*К.

Масса

Вес теплообменника напрямую зависит от того, из какого материала он изготовлен. Прежде чем приобретать прибор, требуется определить, сколько места под него есть. При малых площадях лучше воздержаться от крупногабаритного оборудования.

Запас поверхности для теплообмена

У качественного агрегата этот показатель составляет 10—15%, в противном случае его работа не будет эффективной, так как малейший недогрев до установленной температуры или загрязнение приведут к прекращению рабочего процесса.

Помимо вышеуказанных параметров, также стоит учитывать количество тепловых потерь, основные свойства теплоносителя, характеристики труб для обмена теплом.

Типы и материалы

Разновидность теплообменника подбирается исходя из его целевого назначения и применяемого теплоносителя.

Самыми надёжными и долговечными считаются приборы из чугуна. Они не боятся коррозии и обладают высокой теплоёмкостью.

Минусы: крупногабаритность и медленная перестройка под заданное колебание температур. Они занимают достаточно много места.

У стальных агрегатов ощутимее ниже цена, но и уровень эффективности тоже занижен.

Самые распространённые — теплообменники из меди. У них высокий коэффициент теплопроводности, технологичности.

Для увеличения продолжения срока эксплуатации такие приборы с наружной стороны покрываются специальным защитным слоем.

Стальные теплообменники самые дешёвые, подвержены коррозии и имеют большой вес.

Популярные производители: фото

Все производители агрегатов дают гарантию на свою продукцию от 6 месяцев до 1 года.

Большим спросом пользуется продукция следующих фирм:

  • Sondex;Фото 1. Пластинчатый теплообменник, резьбовое соединение, толщина пластин 0,5 мм, производитель — «Sondex», Дания.
  • Ридан;
  • Alfa Laval;Фото 2. Пластинчатый теплообменник модели AQ2S, гофрированная поверхность пластин, производитель — «Alfa Laval».
  • Gea Машимпэкс;
  • Danfoss;Фото 3. Паяный пластинчатый теплообменник модели XB 04-1-8, изготовлен из кислотостойкой нержавеющей стали, производитель — «Danfoss».
  • Funke;
  • Этра.

Ознакомьтесь с видео, в котором рассказывается, как устроены кожухотрубные теплообменники.

  • низкий напор горячей воды;
  • под кожухом скапливается и сыпется сажа;
  • после включения происходит быстрое отключение горелки;
  • плохой прогрев воды; Важно! Прежде чем начинать процесс очистки теплообменника необходимо убедиться, что исправны остальные элементы отопительной системы.
  • постоянное срабатывание тепловой защиты.

Средняя оценка: 0 из 5.
Оценили: 0 читателей.

Поделись с друзьями!

В каких случаях нужен теплообменник для систем отопления

Если для сушилки полотенец используется отдельный отвод (последовательное подключение к системе горячего водоснабжения), а вода из него выводится через источники внутри квартиры, то установка полотенцесушителя на горячую воду проводится без дополнительных работ. Но при таком подключении сушки для полотенец снижается температура горячей воды. Его обычно используют в небольших домах.

Цены на сушилки разного типа в магазине

Чаще устройство подключается к водопроводу, заменяя часть стояка, такое можно увидеть в ванной в панельном доме. При установке полотенцесушителя на стояк горячего водоснабжения необходима дополнительная страховка в виде байпаса.

Пластинчатые теплообменники области применения

Пластинчатые теплообменники применяются в системе отопления дома, горячего водоснабжения, в системах кондиционирования в больших коттеджах, школах, садах, бассейнах, в целых микрорайонах, а также в системе отопления домов сельской местности. Широкое применение пластинчатые теплообменники нашли в пищевой промышленности.

Теплообменники для отопления имеют ряд неоспоримых преимуществ по сравнению с остальными устройствами, используемыми для создания подходящего микроклимата.

Подобные отопительные приборы обладают рядом преимуществ над другими видами.

Положительные качества

Среди основных положительных качеств устройства, обеспечивающего отопление, можно отметить следующие:

  • высокий уровень компактности;
  • пластинчатые теплообменники имеют высокий коэффициент теплопередачи;
  • коэффициент тепловых потерь максимально низкий;
  • потери давления находятся на минимальном уровне;
  • выполнение монтажно-наладочных, ремонтных и изоляционных работ требует низких финансовых затрат;
  • при возможном засорении это устройство может быть разобрано, очищено и собрано обратно всего двумя рабочими уже через 4-6 часов;
  • имеется возможность добавить мощность пластинам.

Кроме того, благодаря своей простоте подключение теплообменника к системе отопления может быть осуществлено просто на полу в тепловом пункте или на обычной несущей конструкции блочного теплового пункта.

Отдельно стоит отметить низкий уровень загрязняемости поверхности теплообменника, что вызвано высокой турбулентностью потока жидкости, а также благодаря качественной полировке используемых теплообменных пластин. На сегодняшний срок эксплуатации уплотнительной прокладки у ведущих европейских производителей составляет не менее 10 лет.

Срок же службы пластин составляет 20-25 лет. Стоимость замены уплотнительной прокладки может составлять 15-25% от общей стоимости всего агрегата.

Очень важно, что после проведения детального расчета конструкцию современного пластинчатого теплообменника можно изменить под необходимые и указанные в техническом задании характеристики (вариативность конструкции и изменяемость задачи). Абсолютно все пластинчатые теплообменники устойчивы к высокому уровню вибрации

У современных аппаратов системы отопления последствия возможных гидроударов сведены практически к нулю.

Из чего состоит современный теплообменник

Теплообменник современного типа состоит из нескольких частей, каждая из которых играет свою важную роль:

  • неподвижной плиты, к которой присоединяются все подводимые патрубки;
  • прижимной плиты;
  • теплообменных пластин со вставленными прокладками уплотнительного типа;
  • верхней и нижней направляющих;
  • задней стойки;
  • шпилек с резьбой.

На данном изображении представлен кожухотрубный теплообменник.

Благодаря такой уникальной конструкции теплообменник способен обеспечивать наиболее эффективную компоновку всей поверхности используемого теплообменника, что дает возможность создавать небольшой по габаритам аппарат отопления. Абсолютно все пластины в собранном пакете одинаковы, только часть из них развернута к другой под углом в 180 градусов. Именно поэтому во время необходимого стягивания всего пакета должны образовываться каналы. Именно через них во время процесса нагрева и протекает рабочая жидкость, принимающая участие в теплообмене. Благодаря такой компоновке элементов системы достигается правильное чередование каналов.

На сегодняшний день можно смело утверждать, что теплообменники пластинчатого типа из-за своих технических характеристик являются более популярными. Ключевой элемент любого современного теплообменника — это теплопередающие пластины, которые изготавливаются из стали, не подверженной коррозии, толщина пластин находится в диапазоне от 0,4 до 1 мм. Для изготовления используется высокотехнологичный метод штамповки.

Во время работы пластины прижимаются друг к другу, образуя тем самым щелевые каналы. Лицевая сторона каждой из таких пластин имеет специальные канавки, куда специально устанавливается резиновая контурная прокладка, которая обеспечивает полную герметичность каналов. Всего имеется четыре отверстия, два из них необходимы для обеспечения подвода и отвода нагреваемой среды к каналу, а два другие отвечают за предотвращение случаев перемешивания греющей и нагреваемой сред. На случай прорыва одного из малых контуров пластинчатые теплообменники защищены дренажными пазами.

Если имеет место большая разница в расходе сред и совсем небольшое отличие в конечных температурах, то есть возможность многократно использовать теплообменный процесс, который будет происходить через петлеобразное направление потоков.

Двухступенчатая последовательная схема

Сетевая вода разветвляется на два потока: один проходит через регулятор расхода РР, а второй через подогреватель второй ступени, затем эти потоки смешиваются

и поступают в систему отопления.

При максимальной температуре обратной воды

после отопления 70ºС
и

средней нагрузке горячего водоснабжения водопроводная вода практически догревается до нормы в первой ступени, и вторая ступень полностью разгружается, т.к. регулятор температуры РТ закрывает клапан на подогреватель, и вся сетевая вода поступает через регулятор расхода РР в систему отопления, и система отопления получает теплоты больше

Если обратная вода имеет после системы

отопления температуру 30-40ºС

, например, при плюсовой температуре наружного воздуха, то подогрева воды в первой ступени недостаточно, и она догревается во второй ступени. Другой особенностью схемы является принцип связанного регулирования. Сущность его состоит в настройке регулятора расхода на поддержание постоянного расхода сетевой воды на абонентский ввод в целом, независимо от нагрузки горячего водоснабжения и положения регулятора температуры. Если нагрузка на горячее водоснабжение возрастает, то регулятор температуры открывается и пропускает через подогреватель больше сетевой воды или всю сетевую воду, при этом уменьшается расход воды через регулятор расхода, в результате температура сетевой воды на входе в элеватор уменьшается, хотя расход теплоносителя остается постоянным. Теплота, недоданная в период большой нагрузки горячего водоснабжения, компенсируется в периоды малой нагрузки, когда в элеватор поступает поток повышенной температуры. Снижение температуры воздуха в помещениях не происходит, т.к. используется теплоаккумулирующая способность ограждающих конструкций зданий. Это и называется связанным регулированием, которое служит для выравнивания суточной неравномерности нагрузки горячего водоснабжения. В летний период, когда отопление отключено, подогреватели включаются в работу последовательно с помощью специальной перемычки. Эта схема применяется в жилых, общественных и промышленных зданиях при соотношении нагрузок Выбор схемы зависит от графика центрального регулирования отпуска теплоты: повышенный

Преимуществом
последовательной схемы по сравнению с двухступенчатой смешанной является выравнивание суточного графика тепловой нагрузки, лучшее использование теплоносителя, что приводит к уменьшению расхода воды в сети. Возврат сетевой воды с низкой температурой улучшает эффект теплофикации, т.к. для подогрева воды можно использовать отборы пара пониженного давления. Сокращение расхода сетевой воды по этой схеме составляет (на тепловой пункт) 40% по сравнению с параллельной и 25% — по

сравнению со смешанной.

Недостаток – отсутствие возможности полного автоматического регулирования теплового

Зависимая схема с трёхходовым клапаном и циркуляционными насосами

Зависимая схема подключения теплового пункта системы отопления к источнику тепла с трёхходовым клапаном регулятора теплового потока и циркуляционно-смесительными насосами в подающем трубопроводе системы отопления.

Читайте также:  Немецкие армированные полипропиленовые трубы для отопления

Данную схему в ИТП применяют при соблюдении условий:

1 Температурный график работы источника тепла (котельной) превышает либо равен температурному графику системы отопления. Тепловой пункт подключённый по данной принципиальной схеме может работать как с подмесом к подаче потока из обратного трубопровода, так и без него, то есть пустить теплоноситель из подающего трубопровода тепловой сети напрямую в систему отопления.

Например расчётный температурный график системы отопления 90/70°C, равен температурному графику источника, но источник независимо от внешних факторов всё время работает с температурой на выходе 90°C, а для системы отопления подавать теплоноситель с температурой в 90°C нужно лишь при расчётной температуре наружного воздуха (для Киева -22°C). Таким образом в тепловом пункте к воде, поступающей от источника будет подмешиваться остывший теплоноситель из обратного трубопровода пока температура наружного воздуха не опустится до расчётного значения.

2 Подключение теплового пункта выполнено к безнапорному коллектору, гидравлической стрелке или теплотрассе с разницей давлений между подающим и обратным трубопроводом не более 3м.вод.ст..

3 Давление в обратном трубопроводе источника тепла в статическом и динамическом режимах превышает как минимум на 5м.вод.ст высоту от места подключения теплового пункта до верхней точки системы отопления (статику здания).

4 Давление в подающем и обратном трубопроводе источника тепла, а также статическое давление в тепловых сетях не превышают максимально допустимого давления для системы отопления здания подключённой к данному ИТП.

5 Схема подключения теплового пункта должна обеспечивать автоматическое качественное регулирование системой отопления по температурному или временному графику.

Описание работы схемы ИТП с трёхходовым клапаном

Принцип работы данной схемы схож с работой первой схемы за исключением того, что трёхходовым клапаном может быть полностью перекрыт отбор из обратного трубопровода, при котором весь теплоноситель, поступающий от источника тепла без подмеса будет подан в систему отопления.

В случае полного перекрытия подающего трубопровода источника тепла, как и в первой схеме, в систему отопления будет подаваться только вышедший из неё теплоноситель, отбираемый из обрата.

Зависимая схема с трёхходовым клапаном, циркуляционными насосами и регулятором перепада давления.

Применяется при перепаде давления в месте подключения ИТП к тепловой сети превышающем 3м.вод.ст.. Регулятор перепада давления в данном случае подбирается для дросселирования и стабилизации располагаемого напора на вводе.

Как работает теплообменник в многоквартирном доме? — Справочник домашнего мастера

Теплообменник – оборудование, в рабочем блоке которого налажен теплообмен между элементами с различными температурами.

Как выглядят теплообменники

Достоинства систем отопления на основе теплообменников:

  • легкость в эксплуатации и простота технического обслуживания;
  • долговечность;
  • равномерность отопления больших площадей;
  • удобная система терморегулирования;
  • отсутствие громоздких радиаторов;
  • тепловой комфорт в помещении.

Материалы изготовлени

Технология получения теплообменивающих устройств предусматривает их изготовление из материалов: латунь, медь, силумин (кремниево-алюминиевый сплав), нержавеющая сталь. Выбор материала зависит от конечной цели использования оборудования. Медные устройства применимы при изготовлении пива, а латунь чаще выбирают для комплектации оборудования, использующего повышенное давление.

Сферы применения

Выделяют следующие сферы использования теплообменивающего оборудования:

  • системы охлаждения;
  • отопительные системы;
  • системы кондиционирования;
  • химическая промышленность;
  • обогрев бассейнов;
  • солнечные коллекторы;
  • машиностроение;
  • вентиляционные системы;
  • металлургия;
  • фармация;
  • автопроизводство;
  • пищевая промышленность.

Помимо этого, возможно применение теплообменивающего оборудования для отопления частных домовладений. Установить устройство можно как самостоятельно, так и с помощью мастера. Использование такой техники помогает равномерно распределить тепло в помещении.

Классификация

Классификация теплообменников предусматривает их деление на такие виды:

Пластинчатые устройства включают набор пластин с волнистыми каналами со штамповкой и поверхностями, предназначенными для циркуляции жидкостей. Пластины соединены при помощи прорезиненных прокладок и стяжек. Преимущества подобных устройств – легкость в применении и компактность.

Пластинчатые теплообменники находят все более широкое применение. Сфера их использования не ограничивается только промышленным оборудованием, возможен также монтаж этих устройств в жилых домах для монтажа отопительных систем.

Пластинчатые теплообменники классифицируются на группы:

  • неразборные (они же сварные и паяные);
  • полусварные;
  • разборные.

Разборные устройства наиболее популярны. В них пластины разделены при помощи резиновых уплотнителей. Установка не занимает много времени, а эксплуатация не вызывает трудностей.

Классический вариант пластинчатых теплообменников имеет входные и выходные патрубки на поверхности передней плиты. Некоторые устройства имеют патрубки и на передней, и на задней панелях. Рабочие среды подсоединяются к патрубкам посредством фланцевых, резьбовых, стальных соединений. Некоторые модели имеют меньшее количество патрубков, тогда теплоносители подсоединяются непосредственно к плите.

Трубчатые теплообменники включают трубы малого диаметра, вваренные в другие трубы. Достоинствами устройства считается применение в условиях повышения давления.

По критерию способа теплообмена техника подразделяется на смесительную и поверхностную. Устройства смесительного типа передают тепло при плотномконтактировании носителей. Поверхностные теплообменники содержат два контура, в которых происходит перемещение сред с отличными температурами.

Обмен теплом между ними возможен через поверхностные элементы пластин, стенок, листов или труб, которые выполнены из теплопроводящих материалов (нержавеющей или высокоуглеродистой стали, сплавов цветных металлов).

Этот тип оборудования применяется в жилищно-коммунальном хозяйстве, промышленных предприятиях и в организации малого бизнеса.

Поверхностные теплообменники делятся виды: рекуперативные и регенеративные. Рекуперативные теплообменники характеризуются константным обменом тепла посредством стенок контуров при однонаправленном движении носителей. В регенеративных устройствах происходит поочередный контакт носителей с теплообменивающей поверхностью.

Рекуперативные теплообменники тоже классифицируются:

  1. Погружные. Принцип работы предусматривает движение одного теплоносителя по змеевику, который погружен в бак, содержащий второй жидкий теплоноситель. Модель отличается удобством в применении, характеризуется оптимальной стоимостью.
  2. Оросительные. Сфера применения – как конденсаторы в системах охлаждения. Теплобменники выглядят как змеевики из горизонтальных труб, которые размещены в вертикальной плоскости. У каждого ряда труб есть желоб, по которому на них стекает вода пониженной температуры. Вода, которая не испарилась, возвращается в систему благодаря насосу.
  3. Витые. Представляют собой систему труб, намотанных на сердечник. Компактны и высокоэффективны.
  4. Спиральные. Для оборудования характерен вид двух спиральных каналов, которыми обвита центральная перегородка. Предназначены для охлаждения и нагрева вязких жидкостей.
  5. Кожухотрубные. Трубные решетки присоединены к кожуху посредством сварки. В них закрепляются трубы. Крепление их происходит плотно при помощи развальцовки. Решетки закрыты крышками на шпильках, болтах и прокладках. Кожух включает штуцера (патрубки). Принцип работы заключен в циркуляции носителя тепла в межтрубном пространстве и по трубам. Увеличение теплоотдачи происходит при помощи оребрения.
  6. Секционные – последовательность секций, которые представляют собой кожухотрубные устройства.
  7. Пластинчатые. Включают набор пластин с волнистыми поверхностями со штамповкой и каналами для движения жидкостей. Возможна работа только при пониженном давлении.

Строение и принцип работы

Механизм действия легко рассмотреть на примере пластинчатого теплообменника заводской сборки. Структура предусматривает два контура и четыре выхода. Пластинчатое устройство разделяет потоки по давлению и температуре. Теплоносителями выступают кислоты и другие жидкости.

Теплообменники для отопления предполагают подключение к одному контуру теплых полов, а к другому – теплоцентрали.

Прямое подключение центрального теплоносителя невозможно, поскольку это приводит к выходу из строя теплого напольного покрытия.

Это происходит из-за повышения давления в теплоцентрали, температурных перепадов и присутствия химически агрессивных веществ в теплоносителе.

Строение теплообменника представлено на рисунке ниже.

Схематичное устройство пластинчатого теплообменника

Структуру теплообменника составляют:

  • станина, которая с одной стороны устройства прикрепляется к неподвижной прижимной плите и служит элементом опоры;
  • пакет пластин, образующий между составляющими элементами каналы для теплоносителя;
  • рама, которая состоит из подвижной прижимной плиты , неподвижной прижимной плиты и задней стойки;
  • кожух, служащий для защиты устройства от внешних воздействий;
  • шпильки, которые размещены по краю отверстий, через которые в устройство поступает теплоноситель;
  • прокладка, необходимая для герметичности каналов;
  • опорные и крепежные элементы (направляющие балки, несущая база, лапы станины и рамы, подшипники, болты, гайки, шайбы).

Синие и красные стрелки на рисунке обозначают направления движения холодного и горячего теплоносителя внутри теплообменника соответственно.

В быту применяют теплообменник, чей принцип функционирования основан на разделении потоков и поддержании автономного функционирования теплых полов при пониженном уровне рабочего давления в 1,5 бара и подключении чистой воды.

Структуру теплообменного оборудования составляют три группы пластин:

  1. Набранные, принадлежащие автономной системе отопления с пониженным уровнем давления.
  2. Набранные, принадлежащие центральной системе отопления с повышенным уровнем температуры и давления.
  3. Разделительные, характеризующиеся малой толщиной и передающие тепло от централизованной системы к автономной.

Число и параметры пластин предопределяют мощность теплообменного оборудования. Каждое устройство предполагает установку очистительного фильтра. Он способен удержать грубые частицы: окалины, стружку и прочие. Фильтр нуждается в периодическом промывании очистительными растворами.

Принцип работы теплообменника

Принцип работы теплообменника заключается в передаче тепловой энергии от одного теплоносителя к другому. В устройство поступает прямая греющая среда и холодная среда.

При прохождении их между пластинами по каналам происходит нагревание холодной среды. На выходе из теплообменника получают нагретую среду и обратную греющую среду.

Внутри оборудования теплообменивающие жидкости движутся навстречу друг другу, то есть в противотоке, и не могут смешиваться, поскольку разделены пластинами.

Характеристики оборудования

Теплообменное оборудование маркируется следующими данными:

  • уровень тестового давления;
  • уровень максимального рабочего давления;
  • уровень максимальной рабочей температуры;
  • производитель.

Помимо этого, в комплектацию входят схема и техпаспорт на языке страны-производителя, в нужных случаях переведенный на язык продающей страны.

Возможно диагональное и вертикальное расположение контуров. При диагональном расположении контуров требуется производить установку только в вертикальное положение. Тогда возможно поступление горячей воды в теплообменивающий аппарат в направлении сверху вниз. При этом происходит передача тепла в автономную систему посредством разделительных пластин.

Вода на входе – повышенной температуры, а на выходе она снижена. При этом в контуре, принадлежащем автономной системе, движение теплоносителя происходит снизу вверх. На нижних уровнях происходит слабый нагрев воды, при приближении к верхним – нагрев усиливается. Это облегчает функционирование системы. Подача воды в оборудование возможна благодаря принудительной циркуляции.

Монтаж

Монтаж пластинчатого теплообменника, как наиболее распространенного, осуществляется по трем вариантам:

  • параллельному;
  • смешанному двухступенчатому;
  • последовательному двухступенчатому.

При параллельном монтаже требуется установить терморегулятор. Этот способ экономит пространство, время, а также не требует больших затрат. Двухступенчатая смешанная схема обеспечивает значительную экономию теплоносителя. Это достигается благодаря использованию обратного тока теплой воды для обогрева потока с более низкой температурой.

Использование последовательной схемы применяет разделение входящего потока на две ветки. Одна из них проходит сквозь регулятор, другая – сквозь подогреватель. Далее оба потока смешиваются, после чего попадают в отопительный блок. Это экономит теплоноситель. Полная автоматизация оборудования невозможна.

Теплообменники закрепляются на стене с помощью крепежной ленты, консоли и уголка, прикрепленного к нижней части устройства. После этого требуется провести установку фильтров. Минимальное условие – присутствие фильтрующей системы в системе теплоцентрали.

Перед установкой стоит подготовить краны и американки – резьбовые разъемные соединительные компоненты. Каждый из них включает в состав накидную гайку, прокладку и два фитинга. Важно правильно подбирать запчасти, чтобы они подходили к диаметру системы подключения.

Принцип работы и схема пластинчатого теплообменника

Теплообменник — это простое по своей конструкции оборудование, которое часто включается в схему различного рода промышленных устройств. В некоторых случаях пластинчатые теплообменники применяются в бытовых системах кондиционирования и охлаждения. Как ясно из названия, предназначены эти аппараты для отбора тепловой энергии от одной среды и передачи другой.Пластинчатый теплообменник используется для нагрева или охлаждения разных процессов

Особенности конструкции

Основное предназначение любого вида пластичного теплообменника состоит в преобразовании нагретой жидкости в охлажденную среду. Конструкция пластинчатого теплообменника имеет разборные части, а состоит устройство из следующих элементов:

  • набора пластин;
  • подвижной и неподвижной плиты;
  • верхней и нижней направляющей округлой формы;
  • элементов крепления, которые объединяют плиты в общую раму.

Размеры рам разных изделий могут значительно различаться. Они будут зависеть от теплоотдачи и мощности нагревателя — с большим количеством пластин повышается продуктивность оборудования и, естественно, увеличивается вес и габариты.На теплообменнике можно управлять мощностью – увеличивать или уменьшать

Преимущества пластинчатых приборов:

  • незначительные производственные и инвестиционные затраты;
  • высокоэффективная теплопередача;
  • малые габариты;
  • эффект самоочистки с помощью высокого турбулентного потока;
  • возможность увеличить КПД благодаря добавлению пластин;
  • высокая степень надежности;
  • легкость промывки;
  • небольшая масса;
  • легкость монтажа;
  • минимальное загрязнение поверхностей;
  • невозможность смешения жидкостей за счет особой конфигурации уплотнения;
  • высокая устойчивость к коррозии;
  • минимальная поверхность теплообмена благодаря высокому КПД;
  • незначительные потери давления благодаря оптимальному выбору пластин с разными видами профилей;
  • эффективная регулировка температуры за счет небольшого объема теплоносителя.

В этом видео вы узнаете, как образуется горячая вода благодаря теплообменнику:

Устройство пластин

Конструкция и принцип работы пластинчатого теплообменника будет зависеть от модификации оборудования, в котором может находиться разное количество пластин с зафиксированными прокладками. Эти прокладки перекрывают каналы с проходящим тепловым носителем. Чтобы достигнуть необходимой герметичности прилегания пар соединенных между собой прокладок, достаточно крепления этих пластин с подвижной плитой.

Нагрузки, которые действуют на это устройство, распределяются, как правило, на пластины и уплотнители. Рама и элементы крепежа, по большому счету, представляют собой корпус оборудования.

Рельефная поверхность пластин во время сжатия гарантирует прочное крепление и позволяет всей системе теплообменника набрать необходимую прочность и жесткость.

Прокладки фиксируются на пластинах с помощью клипсового соединения. Необходимо сказать, что прокладки во время зажатия самостоятельно центрируются относительно своей оси. Утечка теплового носителя предотвращается благодаря окантовке обшлага, который дополнительно создает барьер.

Для устройства пластинчатого теплообменника изготавливаются несколько видов уплотнителей: с жестким и мягким рифлением.

Подробнее о теплообменном оборудовании:

Читайте также:  Монтажный набор для пленочного теплого пола

В мягких пластинах каналы находятся под углом 30 градусов. Этот вид устройств характеризуется высокой теплопроводностью, но незначительной стойкостью к давлению теплового носителя.

В жестких элементах при изготовлении канавок делается угол в 60 градусов. Для этих устройств не характерна повышенная теплопроводность, их основное достоинство — возможность переносить значительное давление теплоносителя.

Для достижения наилучшего режима тепловой отдачи можно комбинировать пластины. Причем нужно учитывать, что для оптимальной работы устройства необходимо, чтобы оно функционировало в режиме турбулентности — тепловой носитель обязан передвигаться по каналам без каких-либо задержек. Между прочим, кожухотрубный теплообменник, где конструкция имеет схему «труба в трубе», обладает ламинарным течением теплоносителя.

В чем состоит преимущество? Во время одинаковых теплотехнических характеристик пластинчатое оборудование имеет значительно меньшие габариты.

Требования к прокладкам

К аппаратам с пластинами предъявлены довольно жесткие требования касательно герметичности оборудования, именно по этой причине на сегодняшний день прокладки начали изготавливать из полимеров. К примеру, этиленпропилен может с легкостью эксплуатироваться в условиях повышенных температур — и пара, и жидкости. Однако довольно быстро начинает разрушаться в среде, которая содержит большое количество жиров и кислот.

Теплообменники различаются количеством пластин

Крепление уплотнителей к пластинам производится чаще всего с помощью клипсовых замков, в редких случаях — с помощью клеящего состава.

Принцип работы

Если рассматривать, как работает пластинчатый теплообменник, то его принцип действия нельзя назвать очень простым. Пластины развернуты друг к другу под углом 180 градусов. Чаще всего в одном пакете находится по две пары пластин, которые создают 2 коллекторных контура: входа и выхода теплового носителя. Причем необходимо учитывать, что пара, которая находится с края, не задействуется во время теплообмена.

Сегодня изготавливается несколько различных типов теплообменников, которые, в зависимости от механизма работы и конструкции, делятся на:

  • двухходовые;
  • многоконтурные;
  • одноконтурные.

Принцип работы одноконтурного аппарата следующий. Циркуляция теплоносителя в приборе по всему контуру производится перманентно в одном направлении. Помимо этого, производится и противоток тепловых носителей.

Многоконтурные устройства применяются лишь во время незначительного различия между температурой обратки и входящего теплоносителя. Движение воды при этом производится в различных направлениях.

Подробнее о пластинчатом теплообменнике:

Двухходовые устройства имеют два независимых контура. С условием постоянной регулировки тепловой подачи использование этих устройств является наиболее целесообразным.

Область использования

Сегодня есть несколько разновидностей теплообменников.

При этом каждый из приборов имеет уникальную конструкцию и особенность работы:

Устройства с разборной системой зачастую применяются в тепловых сетях, которые подведены к жилым домам и зданиям разного предназначения, в климатических системах и холодильных камерах, бассейнах, теплопунктах и контурах ГВС. Паяные приборы нашли свое предназначение в морозильных установках, вентиляционных сетях, устройствах кондиционирования, промышленном оборудовании разного предназначения, компрессорах.

Подробное устройство пластинчатого теплообменника

Полусварные и сварные теплообменники применяются в:

  • вентиляционных и климатических системах;
  • фармацевтической и химической области;
  • циркуляционных насосах;
  • пищевой сфере;
  • системах рекуперации;
  • аппаратах для охлаждения приборов разного предназначения;
  • в отопительных контурах и ГВС.

Наиболее популярным видом теплообменника, который применяется в быту, является паяный, обеспечивающий обогрев либо охлаждение теплоносителя.

Характеристики и расчет

Пластины и уплотнители в качестве главных деталей теплообменных устройств производятся из разных по своим показателям и характеристикам материалов. Во время выбора в пользу определенного изделия основную роль играет его предназначение и сфера применения.

Если рассматривать отопительные системы и ГВС, то в этой сфере чаще всего используются пластины, которые сделаны из нержавейки, и пластичные уплотнители из специальной резины NBR или EPDM. Наличие пластин из нержавеющей стали дает возможность работать с тепловым носителем, нагретым до 120 градусов, в другом же случае теплообменник может разогревать жидкость до 180°C.

Между пластинами для герметизации расположены прокладки

При применении теплообменников в промышленной сфере и их подключении к технологическим процессам с действием масел, кислот, жиров, щелочей и других агрессивных сред используются пластины, которые сделаны из титана, бронзы и иных металлов. В этих случаях требуется установка асбестовых или фторкаучуковых прокладок.

Выбор теплообменника выполняется с учетом расчетов, которые производятся с помощью специального программного обеспечения.

Во время расчетов необходимо учитывать:

  • расход нагреваемой жидкости;
  • изначальная температура теплового носителя;
  • затраты теплоносителя на отопление;
  • необходимая температура прогревания.

В качестве нагревающей среды, которая протекает через теплообменник, может применяться нагретая вода до температуры 90-120°C или пар с температурой до 170°C. Тип теплового носителя подбирается с учетом вида используемого котельного оборудования. Размеры и число пластин выбираются так, чтобы получился теплоноситель с температурой, которая соответствует действующим стандартам — не выше 65°C.

Теплообменник может быть изготовлен из разных видов металла

Необходимо сказать, что главными техническими характеристиками, которые при этом также считаются и основными преимуществами, являются компактные габариты оборудования и возможность обеспечить довольно значительный расход.

Диапазон площадей обмена и вероятных расходов у аппаратов довольно высокий. Самые маленькие из них, к примеру, от компании Alfa Laval, имеют размер поверхности до 1 м² и при этом обеспечивают прохождение количества теплоносителя до 0,3 м³/час. Наиболее же габаритные приборы имеют размер около 2500 м² и расход, который превышает 4000 м³/час.

Способы обвязки

Теплообменные приборы чаще всего устанавливаются в отдельных помещениях, обслуживающих частные постройки, многоэтажные здания, теплопункты центральных магистралей, промышленные предприятия.

Небольшой вес и габариты оборудования дают возможность производить установку довольно быстро, хотя определенные изделия, которые обладают большой мощностью, нуждаются в сооружении фундамента.

Монтаж и обслуживание теплообменника лучше доверить специалистам

Во время монтирования аппарата нужно соблюдать основное правило: заливка болтов в фундаменте, с помощью которых теплообменник прочно крепится, производится в любом случае. Схема обвязки должна обязательно предусматривать подводку теплоносителя к находящемуся наверху патрубку, а к установленному внизу штуцеру производится подсоединение обратного контура. Подача разогретой жидкости подключается наоборот.

В подающем контуре требуется наличие циркуляционного насоса. Помимо основного, непременно устанавливается и одинаковый с ним по мощности запасной насос.

Если в ГВС находится магистраль обратного передвижения воды, то механизм работы и схема несколько меняется. Горячая вода, которая подается по контуру, перемешивается с холодной из водопровода, и только после этого смесь подается в теплообменник. Регулировка температуры на выходе производится с помощью электронного блока, который управляет клапаном входящего теплового носителя.

Чем больше пластин в теплообменнике, тем выше мощность

В двухступенчатой системе можно использовать тепловую энергию обратной магистрали. Это дает возможность рациональней применять имеющееся тепло и снизить чрезмерную нагрузку на котельное оборудование.

В любой из вышеописанных схем обвязки на входе в теплообменник обязан находиться фильтр. С его помощью можно не допустить засорения системы и продлить срок ее эксплуатации.

При всех иных достоинствах пластинчатые теплообменники не опережают старые кожухотрубчатые модели только по одному важному показателю: во время обеспечения значительного расхода пластинчатые устройства недостаточно нагревают теплоноситель. Этот недостаток устраняется расчетом незначительного запаса при выборе количества пластин.

Характеристика пластинчатых теплообменников:

В каких случаях вам понадобится теплообменник для системы отопления?

Часто в отоплении мы слышим слово «теплообменник». Вещица довольна интересная и применяется в разных ситуациях. В этой статье мы поговорим с Вами о том, что такое теплообменник и какой у него принцип работы.

Что такое теплообменник

Теплообменник — устройство, внутри которого происходит теплообмен между двумя теплоносителями, имеющими разные температуры. Устройство и принцип работы теплообменника разделим на несколько подпунктов.

Виды теплообменников

Различают несколько видов данного устройства. Все теплообменники делятся на:

  • трубчатые;
  • пластинчатые — неразборные (паяные), разборные.

Трубчатые теплообменники — это по сути труба большего диаметра, в которую вварены трубки меньшего диаметра.

Пластинчатые теплообменники — это устройства, состоящие из набора пластин, в которых отштампованы волнистые каналы и поверхности для прохождения жидкости. Пластины укрепляются между собой стяжками и прокладками из резины.

Пластинчатые агрегаты более легки в ремонте. Также они имеют меньшие габариты. В трубчатых агрегатах теплообмен происходит в трубе малого диаметра, находящейся в трубе большого диаметра. Поэтому их можно использовать при высоких давлениях, а пластинчатые нельзя.

Из каких материалов изготавливают теплообменники

При изготовлении теплообменников для систем отопления используют различные материалы, такие как нержавеющая сталь, силумина (сплав алюминия и кремния), латунь (используются для систем высокого давления), медь (используются в пивной промышленности, где нужно резко охладить пиво за счет эффекта большой теплопроводности) и другие.

Принцип работы теплообменника

Давайте разберемся, как работает теплообменник для отопления. Рассмотрим пластинчатый паяный теплообменник, который собран на заводе. У него есть четыре выхода, следовательно, два контура. Теплообменник служит разделителем потоков по температуре, по давлению. Таким образом, можно разделить различные теплоносители, жидкости и кислоты.

Теперь разберём принцип работы теплообменника для отопления в доме. На один контур теплообменника подключаются теплые полы, а на другой контур — теплоцентраль (подача и обратка). Напрямую подключать центральный теплоноситель к теплым полам нельзя, так как это может привести к их порче за короткий промежуток времени. На это есть ряд весомых причин. Во-первых, в центральных теплосетях большое давление. Во-вторых, большая температура. И, в третьих, в теплоносителе содержится много химических реактивов и растворенного железа.

Для этого нам на помощь приходит теплообменник, который позволяет разделить потоки и сделать в квартире автономную систему теплого пола с маленьким рабочим давлением 1,5 бар и чистой водой.

Теплообменник состоит из трех групп пластин:

  • Набранная пластина из центральной системы отопления с большой температурой и высоким давлением,
  • Набранная пластина автономной системы отопления с небольшим давлением,
  • Разделительная пластина, которая имеет небольшую толщину и осуществляет процесс передачи тепла от центральной системы отопления к автономной системе.

Мощность теплообменника зависит от количества пластин и их размеров. На любой теплообменник необходимо поставить очистительный фильтр, который будет удерживать различные грубые частицы (стружки, окалины, мелкие частицы). Периодически его необходимо промывать специальными средствами. В настоящее время на рынке представлен большой выбор подобных средств.

Внешний вид устройства

На любом теплообменнике нанесены технические характеристики:

  • максимальная рабочая температура, например, 200 °C;
  • максимальное рабочее давление, например, 30 бар;
  • тестовое давление, например, 43 бара.

Также указывается страна-производитель, технический паспорт на языке производителя, схема, обозначаются контуры. В случае необходимости паспорт можно перевести на русский язык. Устройство и принцип работы теплообменника от разных производителей иногда могут немного отличаться. Но суть остается одна.

Контуры теплообменника для отопления могут располагаться как вертикально, так и диагонально. Наиболее простое устройство — это диагональное расположение. В данном случае теплообменник необходимо вмонтировать строго в вертикальном положении. Ни горизонтально, ни под острым углом, а именно вертикально.

При таком расположении горячая вода из центральной системы отопления сверху вниз будет поступать в теплообменник, передавая свое тепло автономной системе через разделительную систему. То есть на входе это будет очень горячая вода, на выходе уже вода с упавшей температурой. В контуре же автономной системы теплоноситель будет идти снизу вверх. Внизу вода нагревается незначительно, а чем ближе к верху, тем нагрев будет сильнее. За счет такого устройства системе будет легче работать.

Процесс подачи воды в теплообменник осуществляется на принудительной циркуляции. Теплоэлектростанция работает на своих насосах. А автономная система теплого пола в квартире будет работать на своем циркуляционном насосе.

На деле это выглядит следующим образом.

Установка теплообменника

Используя инструкцию по монтажу, необходимо правильно закрепить теплообменник. Он прямо прижимается к стене за счет специальной консоли или крепежной ленты. Также можно установить теплообменник за счет уголка, который крепится к низу теплообменника. Плюс он завяжется трубами.

Дополнительно нужно смонтировать фильтры. Должен быть хотя бы фильтр грубой очистки на контур теплоэлектростанции. Если подключается к старой отопительной системе, то необходимо два фильтра. Один внизу, другой вверху.

И, безусловно, нужны краны и американки. Последние представляют собой быстроразъемные резьбовые соединения. Как правило, обычная простая американка состоит из четырех частей: двух резьбовых фитингов, накидной гайки и прокладки.

Очень важный момент при монтаже — это диаметр подключения, потому что прибор довольно компактный. В нем небольшой объем теплоносителя. Зазор между пластинами минимальный. Желательно брать такого же диаметра, который нам нужен, или больше. Например, 1 дюйм подключения. И, конечно, лучше брать с запасом уровень мощности теплообменника. Даже на пятьдесят или сто процентов больше.

Потому что на габариты это не влияет. Буквально больше на один или два сантиметра. Но зато скорость теплосъема значительно увеличивается. Особенно это важно в системах, где теплоэлектростанция дает небольшую температуру.

Например, при максимальной подаче температуры воды равной 65-70 °C, надо учесть данный факт, чтобы снять с теплоносителя максимально возможное количество теплоэнергии.

В каких сферах используется теплообменник

Сфера использования теплообменников очень обширная:

  • системы отопления;
  • системы охлаждения;
  • при работе с химикатами;
  • с солнечными коллекторами;
  • для обогрева бассейнов;
  • системы вентиляции;
  • системы кондиционирования;
  • в сфере машиностроения;
  • металлургическая промышленность;
  • фармацевтическая промышленность;
  • пищевая промышленность (сахарная, пивная, молочная и прочие);
  • автомобильная промышленность;
  • химическая промышленность.

Таким образом, устройство и принцип работы теплообменников влияет на работу различных сфер, среди которых как промышленное производство, так и объекты общественного и культурного значения. Вместе с этим их использование возможно и в частных жилых домах, где вопрос поддержки температуры стоит наиболее остро. Установка и монтаж теплообменников может быть произведён как самостоятельно, так и при помощи специалистов. Смысл же устройства состоит в равномерном распределении тепла на помещение.

Оцените статью