Расширительные баки
Как известно, подавляющее большинство веществ в природе обладает свойством расширяться с повышением температуры. Соответствующей характеристикой служит коэффициент теплового расширения, отображающий изменение объема среды либо линейных размеров тела при нагреве на 1 °С в условиях постоянного давления (в первом случае говорят о коэффициенте теплового объемного, во втором – линейного расширения).
Рис. 1. Зависимость объема воды от температуры
С увеличением температуры коэффициент объемного теплового расширения воды изменяется неравномерно (рис. 1): в диапазоне от 0 до 4 °С объем воды и вовсе уменьшается (эта особенность играет важную роль в природных водоемах), при дальнейшем нагреве значение коэффициента меняется так, как показано в табл. 1.
Температура воды, °C | Коэффициент объемного теплового расширения, К -1 |
5–10 | 0,53·10- 4 |
10–20 | 1,50·10 -4 |
20–40 | 3,02·10 -4 |
40–60 | 4,58·10 -4 |
60–80 | 5,87·10- 4 |
Вот, что это означает на практике. Примерный объем воды в системе отопления индивидуального дома тепловой мощностью 30 кВт составляет 450 л (в ориентировочных расчетах допускается принять 15 л/кВт). В табл. 2 приведены расчеты, показывающие, что при нагреве с 5 до 80 °C увеличение этого объема составит порядка 13 л.
Температура воды, °C | Коэффициент объемного теплового расширения, К -1 | Увеличение объема, л |
5–10 | 0,53·10 — 4 | 0,119 |
11–20 | 1,50·10 — 4 | 0,675 |
21–40 | 3,02·10 — 4 | 2,718 |
41–60 | 4,58·10 — 4 | 4,122 |
61–80 | 5,87·10 -4 | 5,283 |
Итого: 12,917 (2,87 %) |
Чтобы принять дополнительный объем жидкости, образующийся при ее нагревании, систему отопления оснащают расширительным баком (экспанзоматом). Раньше в этом качестве широко использовались открытые (с доступом атмосферного воздуха) резервуары, размещаемые в верхней точке системы – как правило, на чердаке дома. Такое решение, хотя применяется и сегодня, не соответствует современным требованиям к элементам отопительных систем, и предпочтение отдано мембранному расширительному баку: его можно устанавливать в любом месте дома (в том числе – непосредственно в котельной), в нем не происходит попадания кислорода в теплоноситель (т.е. исключается основной фактор коррозии оборудования), а рабочая жидкость не теряется из-за испарения.
Если в открытой системе отопления тепловое расширение воды приводит к увеличению ее объема с перемещением образующегося «излишка» в расширительный бак, то в замкнутом трубопроводе результатом окажется повышение давления.
Значение Δp прямо пропорционально коэффициенту теплового расширения и обратно пропорциональна коэффициенту объемного сжатия воды (зависит от давления, в диапазоне 1–25 бар – 49,51∙10 -11 Па, в гидравлических расчетах принимают равным 4,9 ∙10 -10 Па):
Представленные в табл. 3 результаты расчетов показывают, каким значительным является увеличение давления при нагреве воды на 75 °C в замкнутом трубопроводе – в разы выше давления разрушения полнобиметаллического радиатора, не говоря уже о других элементах отопительной системы. Поправка на деформацию труб и оборудования уменьшит это значение, но не изменит ситуации кардинально.
Температура воды, °C | Коэффициент объемного теплового расширения, К -1 | Увеличение давления, бар (1 бар = 0,1 МПа) |
5–10 | 0,53·10 -4 | 5,41 |
11–20 | 1,50·10 -4 | 30,61 |
21–40 | 3,02·10 -4 | 123,26 |
41–60 | 4,58·10 -4 | 186,93 |
61–80 | 5,87·10 -4 | 239,59 |
Итого: 346,21 |
Помимо обязательности расширительного бака, полученные цифры показывают важность его правильного подбора (при недостаточном объеме неизбежно разрушение мембраны ), а также необходимость компенсации теплового расширения воды в замкнутом трубопроводе даже при относительно небольшом перепаде температур. Например, аварийная ситуация может возникнуть в системе холодного водоснабжения квартиры при самопроизвольном нагреве поступившей воды до комнатной температуры и закрытом кране на вводе.
Существуют две основные конструкции мембранных расширительных баков. Наиболее простая – с диафрагменной (лепестковой) мембраной, наглухо зафиксированной в месте соединения полукорпусов. Такие модели имеют меньшую стоимость и применяются достаточно широко, однако обладают недостатками, основные из которых – контакт теплоносителя с материалом корпуса и невозможность ремонта при повреждении мембраны. Баки второго типа оборудуется сменной мембраной – баллонной либо сферической, помещаемой в корпус через горловину с фланцем ( рис. 2 ). Они ремонтопригодны, исключают коррозию металлических стенок от соприкосновения с рабочей средой, характеризуются более полным заполнением внутреннего пространства корпуса (полезный объем), чем экспанзоматы с диафрагменной мембраной.
Pис. 2. Конструкция расширительных баков со сменной мембранойVRV
Принцип работы у мембранных баков обоих типов одинаковый: внутренний объем резервуара разделен эластичной перегородкой на две полости – воздушную и водяную. При нагреве жидкости в системе и увеличении ее объема происходит заполнение водяной полости с растяжением мембраны и сжатием газа (воздуха или азота) в пространстве между ней и корпусом. При остывании теплоносителя имеют место обратные процессы – сжатие жидкости и мембраны, расширение газа.
Давление воздушной подушки настраивается таким образом, чтобы при неработающей системе отопления статическое давление теплоносителя в ней было компенсировано, и мембрана находилась в равновесном состоянии (подробнее читайте в статье о расчете и размещении мембранного бака). Обычно в продажу мембранные расширительные баки поступают с предварительно настроенным давлением в 1,5 бара. Для возможности регулирования и поддержания предварительного давления мембранный бак оснащают ниппелем.
Материалами для изготовления мембран в настоящее время служат различные эластомеры – натуральная каучуковая (используется при изготовлении баков для холодного водоснабжения) и синтетическая резина – бутиловая, стирол-бутадиеновая (SBR), нитрил-бутадиеновая (NBR), а также этилен-пропилен-диен-мономер (EPDM), хорошо зарекомендовавший себя в инженерных системах различного назначения. Мембраны из EPDM эластичны, термостойки, гигиеничны и долговечны (ресурс оценивается в 100 тыс. циклов динамического нагружения), поэтому широко применяются в баках для отопления и водоснабжения, включая питьевое. В нормально работающих системах отопления мембраны экспанзоматов не подвержены резким динамическим воздействиям (изменение объема теплоносителя происходит достаточно плавно), поэтому основными требования к ним являются термическая стойкость и долговечность. EPDM как нельзя лучше отвечает этим критериям.
Производство мембран расширительных баков нормируются европейским стандартом DIN 4807-3 «Расширительные емкости, мембраны из эластомеров для расширительных баков. Технические требования и испытания» (Expansion vessels; elastomer membranes; requirements and testing).
На рис. 3 показаны сменные мембраны из EPDM. Их крепление к фланцу бака осуществляется с помощью контрфланца с приваренным присоединительным штуцером и дырчатым рассекателем струи по центру. В случае порыва мембраны (если такое все же произошло) ее несложно извлечь, чтобы заменить на новую или отремонтировать (повреждение можно заклеить самостоятельно или обратиться в ближайший шиномонтаж для вулканизации).
Рис. 3. Сменные EPDM-мембраны для расширительных баков
Корпус мембранного расширительного бака, как правило, изготавливают из пластичной углеродистой стали методом холодной глубокой штамповки с последующей покраской эпоксидной эмалью. Внутреннюю поверхность экспанзоматов со сменной мембраной обычно не окрашивают, и чтобы исключить риск ее коррозии при выпадении конденсата, в воздушную полость на заводе закачивают химически нейтральный азот.
Как правило, вертикальные баки емкостью от 50 л оборудуют опорами-ножками для напольной установки. Модели меньшего объема (обычно – до 35 л включительно) подвешивают непосредственно на трубопровод или крепят к стене с помощью специальных кронштейнов (консолей).
Таблица 4. Технические характеристики расширительных баков VALTEC
Характеристика | Значение |
Рабочая температура, °С | От –10 до +100 |
Максимальное рабочее давление, бар | 5 |
Заводское давление газовой камеры (преднастройка), бар | 1,5 |
Материал корпуса | Сталь углеродистая с окраской эпоксидным полиэстером красного цвета |
Материал мембраны | EPDM |
Тип мембраны | Сменная |
Срок службы при соблюдении паспортных условий эксплуатации, лет | 25 |
Удобный монтаж экспанзоматов в системах мощностью до 44 кВт обеспечивает группа безопасности расширительного бака VT.495 (рис. 4), представляющая собой полую стальную оцинкованную консоль с фланцем для крепления к стене и предустановленным комплектом сантехнических устройств из предохранительного клапана, автоматического воздухоотводчика и манометра. Имеются также два резьбовых патрубка – для подключения группы к системе и подсоединения расширительного бака. Габариты консольной группы безопасности позволяют подвешивать непосредственно к ней расширительные баки размером до 50 л включительно.
Рис. 4. Группа безопасности расширительного бака VT.495
Важным и полезным аксессуаром для расширительных баков систем отопления и ГВС является также разъемный сгон-отсекатель VT.538, позволяющий отсоединять мембранные баки от трубопровода без его опорожнения.
Открытые и замкнутые системы отопления и охлаждения
В системах отопления и охлаждения для компенсации температурных расширений теплоносителя до недавнего времени широко применялись расширительные баки открытого типа, которые имеют ряд недостатков.
• Постоянный контакт рабочей жидкости с атмосферным воздухом. Как следствие этого, возникает насыщение теплоносителя воздухом, что является причиной возникновения проблем с циркуляцией жидкости, возникновения кавитации в трубопроводах,
насосах и появления дефектов, вызванных коррозией.
• Раздражающий шум в трубопроводе и насосах, возникающий из-за наличия в воде воздушных пузырьков.
• Интенсивное испарение жидкости из системы вследствие контакта с атмосферой (необходимо регулярно пополнять систему).
• Открытый расширительный бак может устанавливаться только в верхней точке системы, что не всегда удобно.
Расширительные баки закрытого типа (мембранного) лишены вышеописанных недостатков. Рабочая жидкость в мембранном баке отделена от газовой полости с помощью высокопрочной резиновой мембраны. В качестве газа используется азотосодержащая смесь. В случае температурного расширения теплоносителя в системе газовая «подушка» в баке сжимается и вода поступает в бак. И наоборот, при охлаждении системы сжатый газ выдавливает жидкость в систему, тем самым пополняя ее. Наличие газовой «подушки», находящейся под давлением, позволяет устанавливать мембранный расширительный бак в любой точке системы (в подвале или непосредственно в тепловом пункте).
Расширительные баки Flexcon для систем отопления и охлаждения
В конце 50-х годов компания Flamco первой на европейском рынке разработала и представила концепцию закрытой циркуляционной системы отопления, которая основывается на применении расширительного мембранного бака Flexcon. Более
пятидесяти лет эксплуатации, исследований и совершенствования конструкции показали: расширительные мембранные баки Flexcon исключительно надежны благодаря высокому качеству изготовления как корпуса бака, так и резиновой мембраны.
В результате на сегодняшний день свыше 30 миллионов расширительных баков такого типа установлены во многих странах мира.
Отличительные особенности баков Flexcon
• Мембрана расширительного бака Flexcon не растягивается, а «раскатывается» по стенкам бака, что повышает ее надежность.
• Специальная конструкция зажимного кольца Flexcon обеспечивает долгий срок службы и предотвращает падение начального давления.
Работа расширительного бака Flexcon (на примере системы отопления)
1. Заполнение системы
Давление воздуха внутри бака плотно прижимает диафрагму к водяной части бака. Расширительный бак не заполнен водой.
Объем газа — Равен полному объему расширительного бака Flexcon.
Давление газа — Равно предварительному давлению в расширительном баке Flexcon.
2. Работа системы
Объем газа — Газ внутри бака сжимается. Расширительный бак Flexcon частично заполнен водой.
Давление газа — Равно рабочему давлению системы в месте установки расширительного бака.
3. Максимальное давление в расширительном баке
Объем газа — Расширительный бак заполнен водой до максимума. Газ занимает минимальный объем.
Давление газа — Равно максимальному давлению системы.
4. Расширительный бак при избыточном давлении
При превышении максимально допустимого давления срабатывает предохранительный клапан Prescor, через который сбрасываются излишки воды.
Подбор расширительных баков для систем отопления
Объем бака следует подбирать так, чтобы полезный объем бака был не менее объема температурного расширения теплоносителя. Исходными данными при расчете расширительного бака будут являться:
• объем теплоносителя (воды) в системе: Vсист., (л). Данная величина может быть вычислена исходя из мощности системы;
• статическая высота (статическое давление). Высота столба жидкости в системе, находящегося над баком. Один метр водяного столба создает давление 0,1 бар;
• предварительное давление расширительного бака: Pпредв. − давление газа в газовой камере пустого расширительного бака при комнатной температуре. Предварительное давление подбирается равным статическому давлению столба теплоносителя в системе.
Таким образом, до введения системы в эксплуатацию давление газа в баке компенсирует статическое давление столба жидкости, в результате чего мембрана бака находится в равновесии, при этом бак еще не заполнен;
• максимальное давление: Pмакс. − максимальное рабочее давление в месте установки расширительного бака;
• средняя температура системы: Tср., (°С) − средняя температура системы в процессе работы.
Порядок расчета
1. Определяется коэффициент расширения жидкости Kрасш. (прирост объема, %) при ее нагреве (охлаждении) от 10 °С(принимается, что система заполняется при температуре 10 °С) до средней температуры системы. Для определения этого коэффициента используется таблица или диаграммы, данные далее.
2. Определяется объем расширения: Vрасш., (л) − объем жидкости, вытесняемый из системы при ее нагреве от 10° С до средней температуры системы.
3. Определяется коэффициент заполнения бака (коэффициент эффективности) Kзап. при заданных условиях работы, показывающий максимальный объем жидкости (в процентах от полного объема расширительного бака), который может вместить расширительный бак. Все давления в формуле измеряются в абсолютных единицах!
4. Определяется потребный полный объем расширительного бака: V, (л); вводится коэффициент запаса 1,25.
5. Выбирается модель расширительного бака Flexcon с округлением в сторону ближайшего целого по таблицам № 5, 6, 7, 9 или 11.
Таблица № 1. Определение коэффициента расширения воды при ее нагреве от 10 °С до средней температуры системы.
Рисунок № 1. Диаграмма температурного расширения смеси воды и этиленгликоля в %, при ее нагреве (охлаждении) от 10 °С до средней температуры системы.
Рисунок № 2. Диаграмма температурного расширения воды в % при ее нагреве (охлаждении) от 10 °С до средней температуры системы
Пример подбора расширительного бака
1. Определяется коэффициент расширения жидкости Kрасш. (прирост объема, %) при ее нагреве (охлаждении) от 10 °С (принимается, что система заполняется при температуре 10 °С) до средней температуры системы. Для определения этого коэффициента используется следующая таблица или диаграммы. Данный порядок подбора использован для составления таблиц подбора расширительных баков.
Таблица подбора расширительных баков Flexcon для системы отопления
Данные таблицы позволяют подобрать расширительные баки Flexcon для систем отопления в зависимости от объема и статической высоты системы (всю терминологию см. в главе «Подбор расширительных баков для систем отопления») в месте установки расширительного бака. Все значения подсчитаны для следующих условий:
• система заполнена водой;
• средняя температура системы 90 °С/70 °С = 80 °С;
• прирост объема при данной температуре − 2,89 %.
Для более точного подбора объема расширительного бака нужно воспользоваться точной методикой подбора (см. главу «Подбор расширительных баков для систем отопления»).
Таблица № 2. Подбор расширительного бака для систем отопления с максимальным давлением в месте его установки 3 бар
Таблица № 3. Подбор расширительного бака для систем отопления с максимальным давлением в месте его установки 6 бар
Таблица № 4. Подбор расширительного бака для систем отопления с максимальным давлением в месте его установки 10 бар
Примечание: Для систем с другой средней температурой значение емкости системы должно быть умножено на следующий коэффициент:
• для 85 °С − 0,89;
• для 90 °С − 0,80;
• для 95 °С − 0,73;
• для 100 °С − 0,66.